首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphofructokinase-1 and -2 (Pfk-1 and Pfk-2, respectively) from Escherichia coli belong to different homologous superfamilies. However, in spite of the lack of a common ancestor, they share the ability to catalyze the same reaction and are inhibited by the substrate MgATP. Pfk-2, an ATP-dependent 6-phosphofructokinase member of the ribokinase-like superfamily, is a homodimer of 66 kDa subunits whose oligomerization state is necessary for catalysis and stability. The presence of MgATP favors the tetrameric form of the enzyme. In this work, we describe the structure of Pfk-2 in its inhibited tetrameric form, with each subunit bound to two ATP molecules and two Mg ions. The present structure indicates that substrate inhibition occurs due to the sequential binding of two MgATP molecules per subunit, the first at the usual site occupied by the nucleotide in homologous enzymes and the second at the allosteric site, making a number of direct and Mg-mediated interactions with the first. Two configurations are observed for the second MgATP, one of which involves interactions with Tyr23 from the adjacent subunit in the dimer and the other making an unusual non-Watson-Crick base pairing with the adenine in the substrate ATP. The oligomeric state observed in the crystal is tetrameric, and some of the structural elements involved in the binding of the substrate and allosteric ATPs are also participating in the dimer-dimer interface. This structure also provides the grounds to compare analogous features of the nonhomologous phosphofructokinases from E. coli.  相似文献   

2.
Modification of Escherichia coli phosphofructokinase-2 (Pfk-2) with N-(1-pyrenil)maleimide results in an enzyme form that is inactive. However, the rate of modification is drastically reduced in the presence of the allosteric effector MgATP. The stoichiometry of the label incorporation was found to be 2.03 +/- 0.035 mol of the reagent/mol of subunit, in agreement with the number of titratable SH groups by 5,5'-dithiobis(2-nitrobenzoic acid) in the labeled protein. HPLC gel filtration experiments demonstrate that native Pfk-2 is a dimer in the absence of ligands, while in the presence of MgATP a dimer-tetramer transition is promoted. In contrast, the modified enzyme eluted as a monomer and the presence of MgATP was not able to induce aggregation. Although the modified monomers are inactive, the dissociation constants for the substrates and the allosteric effector MgATP, measured by following the fluorescence of the binding probe, are the same as for the native enzyme. Quenching of pyrene fluorescence emission of labeled phosphofructokinase-2 monomers by acrylamide gave downward curved Stern-Volmer plots, with very similar quenching efficiencies for the control and for the fructose-6-P and MgATP-enzyme complexes. These results show the presence of SH groups in the interface of Pfk-2 subunits, critical for subunit interactions, and that conformational changes occurring through the dimers are essential for catalytic activity.  相似文献   

3.
Mauricio Baez 《FEBS letters》2009,583(12):2054-2164
Escherichia coli phosphofructokinase-2 (Pfk-2) is a homodimer whose subunits consist of a large domain and an additional β-sheet that provides the interfacial contacts between the subunits, creating a β-barrel flattened-like structure with the adjacent subunit’s β-sheet. To determine how the structural organization of Pfk-2 determines its stability, the reversible unfolding of the enzyme was characterized under equilibrium conditions by enzymatic activity, circular dichroism, fluorescence and hydrodynamic measurements. Pfk-2 undergoes a cooperative unfolding/dissociation process with the accumulation of an expanded and unstructured monomeric intermediate with a marginal stability and a large solvent accessibility with respect to the native dimer.  相似文献   

4.
Earlier studies have shown that native tryptophanyl-tRNA synthetase from beef pancreas is composed of two apparently identical subunits having a molecular weight of 60000 plus or minus 2000 each. Incubation of the pruified enzyme with trypsin under restrictive conditions results in splitting of each subunit to form an enzymatically inactive polypeptide chain of mol. wt 24500 plus or minus 1500. During proteolysis, two distinct intermediate forms of mol. wt 51000 plus or minus 2000 and 40000 plus or minus 2000 and fragments of mol. wt 14000 plus or minus 2500 are formed. The presence of substrates, viz. ATP, tryptophan or tryptophanyl adenylate, decreases the rate of proteolysis. However, a band pattern monitored by acrylamide gel electrophoresis is qualitatively indistinguishable from that obtained in the absence of substrates. Native and trypsin-modified subunits (the latter having a molecular weight of 24500) have been maleylated, reduced, carbosymethylated and subjected to exhaustive digestion by trypsin followed by peptide mapping. Comparison of the finger prints has shown that the trypsin-modified subunit represents a polypeptide with lowered content of dicarboxylic amino acids. That the number of peptides revealed after complete proteolysis of native and trypsin-modified subunits does not favour the presence of long repetitive sequences in each subunit, is at variance with some bacterial aminoacyl-tRNA synthetases. Study of the fluorescence polarisation of 1-anilino-8-napthalene sulphonate adsorbed on the dimeric tryptophanyl-tRNA synthetase, indicates that the molecule behaves as a complete entity in Brownian rotation. The trypsin-resistant end products, composed of two types of polypeptides (mol. wts 24500 and 14000), remain associated with each other. From the mol. wt of this associate it follows that each fragment is present in the associate in duplicate. When the purification procedure was carried out in the absence of a protease inhibitor, the active modified enzyme form was obtained. As judged from the molecular weight values, it is composed of two equal subunits corresponding to one of the products of limited proteolysis. The data presented are compatible with compact three-dimensional structure of tryptophanyl-tRNA synthetase having very limited regions exposed to exogenous or endogenous proteolysis.  相似文献   

5.
Protein phosphatase 2A (PP2A) holoenzyme is composed of a catalytic subunit, C, and two regulatory subunits, A and B. The A subunit is rod shaped and consists of 15 nonidentical repeats. According to our previous model, the B subunit binds to repeats 1 through 10 and the C subunit binds to repeats 11 through 15 of the A subunit. Another form of PP2A, core enzyme, is composed only of subunits A and C. It is generally believed that core enzyme does not exist in cells but is an artifact of enzyme purification. To study the structure and relative abundance of different forms of PP2A, we generated monoclonal antibodies against the native A subunit. Two antibodies, 5H4 and 1A12, recognized epitopes in repeat 1 near the N terminus and immunoprecipitated free A subunit and core enzyme but not holoenzyme. Another antibody, 6G3, recognized an epitope in repeat 15 at the C terminus and precipitated only the free A subunit. Monoclonal antibodies against a peptide corresponding to the N-terminal 11 amino acids of the A alpha subunit (designated 6F9) precipitated free A subunit, core enzyme, and holoenzyme. 6F9, but not 5H4, recognized holoenzymes containing either B, B', or B" subunits. These results demonstrate that B subunits from three unrelated gene families all bind to repeat 1 of the A subunit, and the results confirm and extend our model of the holoenzyme. By sequential immunoprecipitations with 5H4 or 1A12 followed by 6F9, core enzyme and holoenzyme in cytoplasmic extracts from 10T1/2 cells were completely separated and they exhibited the expected specificities towards phosphorylase a and retinoblastoma peptide as substrates. Quantitative analysis showed that under conditions which minimized proteolysis and dissociation of holoenzyme, core enzyme represented at least one-third of the total PP2A. We conclude that core enzyme is an abundant form in cells rather than an artifact of isolation. The biological implications of this finding are discussed.  相似文献   

6.
The aggregation states of Escherichia coli phosphofructokinase 2 (Pfk-2) and of a mutant enzyme (Pfk-2*) altered in the inhibitory allosteric site for MgATP were measured in the presence and in the absence of substrates and products of the reaction. When sucrose gradient ultracentrifugation experiments were performed in the absence of added ligands, both enzymes sedimented as dimers. Likewise, at low concentrations of both substrates (0.1 mM) the aggregation state of Pfk-2 and Pfk-2* corresponded to a dimer. However, in the presence of 1 mM MgATP alone, Pfk-2 sedimented as a tetramer, whereas Pfk-2* sedimented as a dimer. At a low fructose 6-phosphate concentration (0.1 mM) and an inhibitory concentration of MgATP (4 mM), Pfk-2 sedimented as a tetramer. However, at the same MgATP concentration but at a higher fructose-6-P concentration (1 mM), a condition under which Pfk-2 is not inhibited by the Mg-nucleotide complex, the enzyme sedimented as a dimer. Pfk-2* is not inhibited under these conditions and sedimented as a dimer in each case. Thus, the effectiveness of MgATP in promoting the aggregation of Pfk-2 and Pfk-2* parallels the inhibitability of the enzymes by the nucleotide complex. However, ATP4-, a potent inhibitor of Pfk-2 and Pfk-2* that binds to the catalytic site of the enzymes, had no effect upon their aggregation states. Possibly Pfk-2* is not able to form a tetramer because of an alteration in the regulatory site for the Mg-nucleotide complex.  相似文献   

7.
Structure of a voltage-dependent K+ channel beta subunit.   总被引:3,自引:0,他引:3  
J M Gulbis  S Mann  R MacKinnon 《Cell》1999,97(7):943-952
The integral membrane subunits of many voltage-dependent potassium channels are associated with an additional protein known as the beta subunit. One function of beta subunits is to modify K+ channel gating. We have determined the structure of the conserved core of mammalian beta subunits by X-ray crystallography at 2.8 A resolution. Like the integral membrane component of K+ channels, beta subunits form a four-fold symmetric structure. Each subunit is an oxidoreductase enzyme complete with a nicotinamide co-factor in its active site. Several structural features of the enzyme active site, including its location with respect to the four-fold axis, imply that it may interact directly or indirectly with the K+ channel's voltage sensor. This structure suggests a mechanism for coupling membrane electrical excitability directly to chemistry of the cell.  相似文献   

8.
Purification and characterization of catalase HPII from Escherichia coli K12   总被引:11,自引:0,他引:11  
Catalase (hydroperoxidase II or HPII) of Escherichia coli K12 has been purified using a protocol that also allows the purification of the second catalase HPI in large amounts. The purified HPII was found to have equal amounts of two subunits with molecular weights of 90,000 and 92,000. Only a single 92,000 subunit was present in the immunoprecipitate created when HPII antiserum was added directly to a crude extract, suggesting that proteolysis was responsible for the smaller subunit. The apparent native molecular weight was determined to be 532,000, suggesting a hexamer structure for the enzyme, an unusual structure for a catalase. HPII was very stable, remaining maximally active over the pH range 4-11 and retaining activity even in a solution of 0.1% sodium dodecyl sulfate and 7 M urea. The heme cofactor associated with HPII was also unusual for a catalase, in resembling heme d (a2) both spectrally and in terms of solubility. On the basis of heme-associated iron, six heme groups were associated with each molecule of enzyme or one per subunit.  相似文献   

9.
11 S acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) from the electric eel Electrophorus electricus essentially consists of four catalytic subunits which appear to be identical structurally but to be assembled with slight asymmetry. During isolation and storage of the enzyme, proteolysis cleaves a portion of the subunits into major fragments containing the active site and minor fragments containing no active sites without change in the enzyme molecular weight. A previous report (Gentinetta, R. and Brodbeck, U. (1976) Biochim. Biophys. Acta 438 437--448) indicated that the intact and the fragmented subunits reacted with diisopropylfluorophosphate at different rates and that the reaction rate in the presence of excess phosphorylating agent was not strictly first order. Those findings could not be reproduced in this report. Intact and fragmented subunits were observed to react at the same rate with diisopropylfluorophosphate. In addition, the overall reaction kinetics both of 11 S and 18 S plus 14 S acetylcholinesterase were found to be strictly first order in the presence of an excess of diisopropylfluorophosphate throughout the course of reaction. These results are consistent with several previous reports that only one type of active site can be detected in acetylcholinesterase. The proteolysis which fragments a portion of the catalytic subunit has no apparent effect on the catalytic properties of the enzyme.  相似文献   

10.
Bovine liver mitochondrial monoamine oxidase was isolated in a more active state and in higher yields by an improved purification method which utilized β-mercaptoethanol and which contained several other important modifications. The subunit structure of the purified enzyme components was investigated by chemical and enzymatic methods. The subunit molecular weight of the three enzyme components isolated was estimated to be 52,000 by sodium dodecyl sulfate disc electrophoresis and by exclusion-diffusion chromatography on Biogel A-5m with 6 m guanidine HCl as the solvent. The number of peptides observed in the peptide map of the tryptic digest of the S-β-carboxymethylcysteine derivative of the enzyme also showed that the subunit molecular weight was about 52,000. Since it was previously reported that the monomer molecular weight of the enzyme was about 110,000, the active enzyme is made up of two subunits. The NH2-terminus of the enzyme of both subunits is blocked since Edman degradation and aminopeptidase failed to release an NH2-terminal amino acid. The COOH-terminal amino acid of both subunits was shown to be leucine by carboxypeptidase digestion of the enzyme since it was liberated quantitatively. From the FAD content of the enzyme and the subunit data, it is proposed that the enzyme probably consists of two subunits which differ possibly in that only one subunit contains 8-α-cysteinyl FAD.  相似文献   

11.
Pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from human liver and red cells has been purified to homogeneity; its subunit structure and some of its kinetic characteristics have been studied. The influence of a partial proteolysis by trypsin on the subunit structure, the isozymic pattern and the kinetic characteristics of red cell and liver enzyme have been investigated. From the results of this study we may conclude that: 1. Liver (L-type) pyruvate kinase is composed of 4 identical L subunits while the major form of erythrocyte enzyme (PK-R2) is a heterotetramer designated as L2L2', the molecular weight of L' being slightly higher than that of L subunits (63 000 and 58 000 respectively). Pyruvate kinase PK-R1, predominant in the erythroblasts and the young red cells, is composed of four identical L' subunits. 2. A mild tryptic attack is able to transform PK-R1 into PK-R2, then PK-R2 into pyruvate kinase L (PK-L). The same proteolytic treatment transforms the L' subunits into L ones. 3. Consequently L-type pyruvate kinase seems to be initially synthesized in the erythroid precursors as an L4' enzyme secondarily partially proteolysed into L2L2'. In liver a very active proteolytic system would be responsible for the total transformation into L4 pyruvate kinase. 4. L4' enzyme exhibits Michaelis-Menten kinetic behaviour with an apparent Michaelis constant of 3.8 mM whereas L4 enzyme shows both positive and negative homotropic interactions towards phosphoenolpyruvate and has [S] 0.5 of 1.2 mM. The characteristics of L2L2' are roughly intermediate between those of L4' and of L4. Fructose 1,6-biphosphate decreases [S]0.5 for these three pyruvate kinase forms without suppressing the differences in the apparent affinity for phosphoenolpyruvate of these enzymes. 5. L4 pyruvate kinase is more inhibited by Mg-ATP than L4', with L2L2' in the intermediate range. 6. Tryptic treatment of each enzyme form studied transforms its kinetic behaviour into that observed for L4.  相似文献   

12.
Lipoprotein lipase (LPL), a key enzyme in the metabolism of triglyceride-rich plasma lipoproteins, is a homodimer. Dissociation to monomers leads to loss of activity. Evidence that LPL dimers rapidly exchange subunits was demonstrated by fluorescence resonance energy transfer between lipase subunits labeled with Oregon Green and tetrametylrhodamine, respectively, and also by formation of heterodimers composed of radiolabeled and biotinylated lipase subunits captured on streptavidine-agarose. Compartmental modeling of the inactivation kinetics confirmed that rapid subunit exchange must occur. Studies of activity loss indicated the existence of a monomer that can form catalytically active dimers, but this intermediate state has not been possible to isolate and remains hypothetical. Differences in solution properties and conformation between the stable but catalytically inactive monomeric form of LPL and the active dimers were studied by static light scattering, intrinsic fluorescence, and probing with 4,4'-dianilino-1,1'-binaphtyl-5,5'-disulfonic acid and acrylamide. The catalytically inactive monomer appeared to have a more flexible and exposed structure than the dimers and to be more prone to aggregation. By limited proteolysis the conformational changes accompanying dissociation of the dimers to inactive monomers were localized mainly to the central part of the subunit, probably corresponding to the region for subunit interaction.  相似文献   

13.
A new approach to studying the arrangement of subunits in the multienzyme complex tryptophan synthase is reported. Comparative studies of limited tryptic proteolysis of the alpha2beta2 complex and of the separate beta2 and alpha subunits show that subunit association inhibits two types of proteolysis which occur with the separate subunits: (i) cleavage of the beta2 subunit to two fragments with consequent loss of activity and (ii) complete degradation of the alpha subunit with loss of activity. Trypsin treatment of the alpha2beta complex does, however, result in at least one cleavage of the alpha subunit and yields an active alpha'2beta2 complex. The alpha'2beta2 complex can be resolved into an active beta2 subunit and an active alpha derivative termed alpha'. These two species can reassociate into the active alpha'2beta2 complex. alpha' derivative can be separated into a large fragment of Mr approximately 20,000 to 23,000 and a small peptide by polyacrylamide gel electrophoresis under denaturing conditions.  相似文献   

14.
Ribonucleotide reductase catalyzes the rate-limiting step in the formation of 2'-deoxyribonucleoside 5'-triphosphates. It consists of two nonidentical protein subunits, the nonheme iron subunit, and the effector-binding subunit. It has previously been shown that these two components making up the active enzyme species are not coordinately synthesized or degraded. It was found that the effector-binding subunit was more sensitive to proteolysis by chymotrypsin, to heating at 55 degrees C, and to the sulfhydryl reagents, pCMB and NEM. The nonheme iron subunit was more sensitive to trypsin treatment. ATP and dATP protected the effector-binding subunit from proteolytic inactivation. Neither ATP nor CDP protected the effector-binding subunit from inactivation by the sulfhydryl reagents. These data indicate that the protein properties of the two subunits of mammalian ribonucleotide reductase are significantly different.  相似文献   

15.
FRS1 and FRS2, the structural genes encoding the large (alpha) and small (beta) subunits of yeast phenylalanyl-tRNA synthetase (PheRS) were placed under the control of the lacZ promoter by creating an artificial operon. The FRS2 gene was fused next to the promoter, followed by a 14 base pair intergenic sequence containing a translation reinitiation site in front of the FRS1 coding sequences. The engineered PheRS has 16 N-terminal amino acids from beta-galactosidase fused to the beta subunit. However, the purified protein shows a Km value for tRNA(Phe) that is indistinguishable from that of the the native enzyme. The product of the FRS2-FRS1 operon is not able to complement thermosensitive E. coli PheRS, indicating the lack of heterologous aminoacylation in vivo. We made a deletion in the FRS2 gene that removed about 150 amino terminal residues of the beta subunit. The truncated protein showed intact ATP-PPi exchange, whereas tRNA aminoacylation was lost. This result is similar to that of limited proteolysis performed on the native enzyme that yielded a tetrameric alpha 2 beta'2 structure, able to form aminoacyladenylate but unable to bind tRNA(Phe). A deletion of 50 amino acids from the carboxyl terminus of the beta chain resulted in the loss of both enzyme activities; this suggests the participation of the C-terminal end of the beta subunit in the active site or in subunit assembly to yield a tetrameric functional enzyme.  相似文献   

16.
Subunit association in acetohydroxy acid synthase isozyme III.   总被引:2,自引:1,他引:1       下载免费PDF全文
Acetohydroxy acid synthase isozyme III (AHAS III) from Escherichia coli is composed of large and small subunits (encoded by the genes ilvI and ilvH) in an alpha 2 beta 2 structure. The large (61-kDa) subunit apparently contains the catalytic machinery of the enzyme, while the small (17-kDa) subunit is required for specific stabilization of the active conformation of the large subunit as well as for valine sensitivity. The interaction between subunits has been studied by using purified enzyme and extracts containing subcloned subunits. The association between large and small subunits is reversible, with a dissociation constant sufficiently high to have important experimental consequences: the activity of the enzyme shows a concentration dependence curve which is concave upward, and this dependence becomes linear upon the addition of excess large or small subunits. We estimate that at a concentration of 10(-7) M for each subunit (7 micrograms of enzyme ml-1), the large subunits are only half associated as the I2H2 active holoenzyme. This dissociation constant is high enough to cause underestimation of the activity of AHAS III in bacterial extracts. The true activity of this isozyme in extracts is observed in the presence of excess small subunits, which maintain the enzyme in its associated form. Reexamination of an E. coli K-12 ilvBN+ ilvIH+ strain grown in glucose indicates that AHAS III is the major isozyme expressed. As an excess of small subunits does not influence the apparent Ki for valine inhibition of the purified enzyme, it is likely that valine binds to and inhibits I2H2 rather than inducing dissociation. AHAS I and II seem to show a much lower tendency to dissociate than does AHAS III.  相似文献   

17.
Prolyl 4-hydroxylase, a key enzyme in collagen biosynthesis, catalyzes the conversion of selected prolyl residues to trans-hydroxyproline in nascent or completed pro-alpha chains of procollagen. The enzyme is a tetramer composed of two nonidentical subunits, designated alpha and beta. To compare the enzyme and its subunits from different sources, the chick embryo and human placental prolyl 4-hydroxylases were purified to homogeneity and their physicochemical and immunological properties were determined. Both enzymes were glycoproteins with estimated apparent molecular weights ranging between 400 and 600 kDa. Amino acid and carbohydrate analyses showed slight differences between the two holomeric enzymes, consistent with their deduced amino acid sequences from their respective cDNAs. Human placental prolyl 4-hydroxylase contained more tightly bound iron than the chick embryo enzyme. Immunodiffusion of the human placental enzyme with antibodies raised against the purified chick embryo prolyl 4-hydroxylase demonstrated partial identity, indicating different antigenic determinants in their tertiary structures. The enzymes could be separated by high-resolution capillary electrophoresis, indicating differential charge densities for the native chick embryo and human placental proteins. Electrophoretic studies revealed that the human prolyl 4-hydroxylase is a tetrameric enzyme containing two nonidentical subunits of about 64 and 62 kDa, in a ratio of approximately 1 to 2, designated alpha and beta, respectively. In contrast, the chick embryo alpha and beta subunit ratio was 1 to 1. Notably, the human alpha subunit was partially degraded when subjected to electrophoresis under denaturing conditions. Analogously, when the chick embryo enzyme was subjected to limited proteolysis, selective degradation of the alpha subunit was observed. Finally, only the alpha subunit was bound to Concanavalin A demonstrating that the alpha subunits of prolyl 4-hydroxylase in both species were glycosylated. Using biochemical techniques, these results demonstrated that the 4-trans-hydroxy-L-proline residues in human placental collagens are synthesized by an enzyme whose primary structure and immunological properties differ from those of the previously well-characterized chick embryo enzyme, consistent with their recently deduced primary structures from cDNA sequences.  相似文献   

18.
Substrate inhibition by ATP is a regulatory feature of the phosphofructokinases isoenzymes from Escherichia coli (Pfk-1 and Pfk-2). Under gluconeogenic conditions, the loss of this regulation in Pfk-2 causes substrate cycling of fructose-6-phosphate (fructose-6-P) and futile consumption of ATP delaying growth. In the present work, we have broached the mechanism of ATP-induced inhibition of Pfk-2 from both structural and kinetic perspectives. The crystal structure of Pfk-2 in complex with fructose-6-P is reported to a resolution of 2 Å. The comparison of this structure with the previously reported inhibited form of the enzyme suggests a negative interplay between fructose-6-P binding and allosteric binding of MgATP. Initial velocity experiments show a linear increase of the apparent K0.5 for fructose-6-P and a decrease in the apparent kcat as a function of MgATP concentration. These effects occur simultaneously with the induction of a sigmoidal kinetic behavior (nH of approximately 2). Differences and resemblances in the patterns of fructose-6-P binding and the mechanism of inhibition are discussed for Pfk-1 and Pfk-2, as an example of evolutionary convergence, because these enzymes do not share a common ancestor.  相似文献   

19.
In wild type Escherichia coli K-12 ca. 90% of phosphofructokinase is known to be the allosteric enzyme Pfk-1, and the rest is Pfk-2, a non-allosteric enzyme. An isogenic strain series has now been constructed with varying combinations and amounts of Pfk-1 and Pfk-2 (e.g., no Pfk-1, high level of Pfk-2; normal level Pfk-1, high level Pfk-2, etc.). In minimal medium with glucose, glucose-6-P, and glycerol, aerobically and anaerobically, provided there is adequate total amount of enzyme, what allosteric type it is does not make much difference to growth rate or yield of this organism.  相似文献   

20.
When electrophoresed on polyacrylamide gels in the presence of sodium lauryl sulfate, highly purified rat renal phosphate-dependent glutaminase exhibits subunits which range in molecular weight from 57,000 to 75,000. Peptide mapping of the separated subunits following limited proteolysis in the presence of sodium lauryl sulfate shows that all of the various subunits are related in structure. The glutaminase, immunoprecipitated from Triton X-100-solubilized mitochondria, is composed primarily of subunits which have molecular weights of 83,000. In addition, the series of smaller subunits is generated during storage of the Triton-solubilized glutaminase at 4 degrees C. These results indicate that the heterogeneity of subunit size found in the purified glutaminase results from a noninactivating partial proteolysis of the native form of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号