首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treefrogs of the family Hyperoliidae are distributed in Africa, Madagascar and the Seychelles. In this study, their phylogeny was studied using sequences of fragments of the mitochondrial 16S and 12S rRNA and cytochrome b genes. The molecular data strongly confirmed monophyly of the subfamily Hyperoliinae but indicated that the genus Leptopelis (subfamily Leptopelinae) is more closely related to species of the African family Astylosternidae. The Seychellean genus Tachycnemis was the sister group of the Malagasy Heterixalus in all molecular analyses; this clade was deeply nested within the Hyperoliinae. A re-evaluation of the morphological data did not contradict the sister group relationships of these two genera. The subfamily Tachycneminae is therefore considered as junior synonym of the Hyperoliinae. In addition, the molecular analysis did not reveal justification for a subfamily Kassininae. Biogeographically, the origin of Malagasy hyperoliids may not be well explained by Mesozoic vicariance in the context of Gondwana breakup, as indicated by the low differentiation of Malagasy hyperoliids to their African and Seychellean relatives and by analysis of current distribution patterns.  相似文献   

2.
Previous molecular phylogenetic studies of the genus Chondrostoma (Cyprinidae: Leuciscinae) were unable to resolve the relationship among its major species groups. In this paper we present a phylogeny for this genus, based on five mitochondrial genes and the nuclear gene beta-actin, comprising a total of 4068 bp. Bayesian inference using all gene fragments yielded a fully resolved phylogeny, compatible with topologies obtained from individual fragments using maximum parsimony and minimum evolution. Mapping of morphological characters critical to the rasping feeding mode of most Chondrostoma species indicates that they evolved several times, and questions the use of these characters in the traditional definition of the genus. Our findings led us to the definition of the following new genera: Achondrostoma, Iberochondrostoma, Pseudochondrostoma, Protochondrostoma and Parachondrostoma. Our data contradict the hypothesis of a rapid radiation during Lago Mare phase, suggested by previous studies.  相似文献   

3.
We estimated phylogenetic relationships among 26 species of garter snakes (genus Thamnophis ) using allozyme and mitochondrial cytochrome b gene nucleotide sequence variation. Parsimony analyses of the two data sets give substantially different estimates of phylogeny. Several lines of evidence indicate that much of this conflict is due to error associated with the restricted number of characters in each data set. Such sampling error may be reduced by combining all the characters; we therefore present an estimate of phylogeny based on parsimony analysis of all the data combined. All our analyses support several conclusions in conflict with previous views: a very distant relationship between T.errans and T. elegans , non-monophyly of the elegans group (even excluding T: errans ), and nesting of the form validus (previously considered a member of the genus Nerodia ) within Thamnophis.
The combined analysis gives an almost fully resolved tree. However, bootstrapping indicates only weak support for many clades in this tree. Furthermore, paraphyly of the assemblages of cytochrome b gene lineages within T. elegans and T. radix indicate the potential for discordance between the mitochondrial DNA (mtDNA) and species phylogenies through the sorting of ancestral mtDNA polymorphisms. These problems suggest the need for assaying additional characters, especially ones likely to be independent of those used in the present study.  相似文献   

4.
The use of continuous quantitative characters for phylogenetic analyses has long been contentious in the systematics literature. Recent studies argue for and against their use, but there have been relatively few attempts to evaluate whether these characters provide an accurate estimate of phylogeny, despite the fact that a number of methods have been developed to analyze these types of data for phylogenetic inference. A tree topology will be produced for a given methodology and set of characters, but little can be concluded with regards to the accuracy of phylogenetic signal without an independent evaluation of those characters. We assess the performance of continuous quantitative characters for the mygalomorph spider genus Antrodiaetus, a group that is morphologically homogeneous and one for which few discrete (morphological) characters have been observed. Phylogenetic signal contained in continuous quantitative characters is compared to an independently derived phylogeny inferred on the basis of multiple nuclear and mitochondrial gene loci. Tree topology randomizations, regression techniques, and topological tests all demonstrate that continuous quantitative characters in Antrodiaetus conflict with the phylogenetic signal contained in the gene trees. Our results show that the use of continuous quantitative characters for phylogenetic reconstruction may be inappropriate for reconstructing Antrodiaetus phylogeny and indicate that due caution should be exercised before employing this character type in the absence of other independently derived sources of characters.  相似文献   

5.
Life history studies of scorpionfly species have been used to test predictions of evolutionary theory, but comparative analysis has been hampered by a lacking phylogeny of scorpionflies. We present a molecular phylogeny of selected panorpid scorpionflies inferred from mitochondrial 12S, 16S rRNA, and COI gene fragments, using parsimony and maximum-likelihood methods. Maximum-likelihood reconstructions depend on an explicit evolutionary substitution model; therefore, we estimated fit of substitution models to our data and used an optimal evolutionary substitution model in subsequent reconstructions. Both reconstruction methods converge on compatible trees with considerable statistical support for a majority of nodes. We performed parametric tests of most important phylogenetic conclusions employing the fitted GTR + %I + Gamma substitution model. Parametric bootstrapping allowed rejection of alternative explanations of the data set, where classical tests, like the KHY test, failed. Parametric bootstrapping confirmed that the association of Neopanorpa sp. with Asian Panorpa species is currently the superior explanation of the data set. Therefore, it is concluded that the genus Panorpa is most likely paraphyletic to the representative of the genus Neopanorpa. We conclude that the sequenced mitochondrial gene fragments appear to be well suited for future more comprehensive phylogenetic investigations of panorpid scorpionflies.  相似文献   

6.
The construction and interpretation of gene trees is fundamental in molecular systematics. If the gene is defined in a historical (coalescent) sense, there can be multiple gene trees within the single contiguous set of nucleotides, and attempts to construct a single tree for such a sequence must deal with homoplasy created by conflict among divergent histories. On a larger scale, incongruence is expected among gene tree topologies at different loci of individuals within sexually reproducing species, and it has been suggested that this discordance can be used to delimit species. A practical concern for such topological methods is that polymorphisms may be maintained through numerous cladogenic events; this polymorphism problem is less of a concern for nontopological approaches to species delimitation using molecular data. Although a central theoretical concern in molecular systematics is discordance between a given gene tree and the true "species tree," the primary empirical problem faced in reconstructing taxic phylogeny is incongruence among the trees inferred from different sequences. Linkage relationships limit character independence and thus have important implications for handling multiple data sets in phylogenetic analysis, particularly at the species level, where incongruence among different historically associated loci is expected. Gene trees can also be reconstructed for loci that influence phenotypic characters, but there is at best a tenuous relationship between phenotypic homoplasy and homoplasy in such gene trees. Nevertheless, expression patterns and orthology relationships of genes involved in the expression of phenotypes can in theory provide criteria for homology assessment of morphological characters.  相似文献   

7.
Panicum L. is a cosmopolitan genus with approximately 450 species. Although the genus has been considerably reduced in species number with the segregation of many taxa to independent genera in the last two centuries, Panicum remains a heterogeneous assemblage, as has been demonstrated in recent years. The genus is remarkably uniform in its floral characters but exhibits considerable variation in anatomical, physiological, and cytological features. As a result, several classifications, and criteria of what the genus should really include, have been postulated in modern literature. The purpose of this research, based on molecular data of the chloroplast ndhF gene, is to test the monophyly of Panicum, to evaluate infrageneric classifications, and to propose a robust phylogenetic hypothesis. Based on the present results, previous morphological and molecular phylogenetic studies, and inferred diagnostic morphological characters, we restrict Panicum sensu stricto (s.s.) to the former subgenus Panicum and support recognition of Dichanthelium, Phanopyrum, and Steinchisma as distinct genera. We have transfered other species of Panicum to other genera of the Paniceae. Most of the necessary combinations have been made previously, so few nomenclatural changes have been required. The remaining species of Panicum sensu lato (s.l.) are included within Panicum incertae sedis representing isolated species or species grouped within monophyletic clades. Additionally, we explore the performance of the three codon position characters in producing the supported phylogeny.  相似文献   

8.
The leaf beetle genus Trirhabda contains 26 described species from the United States and Canada, feeding on host plants from the families Asteraceae and Hydrophyllaceae. In this study, we present a phylogeny for the genus that was reconstructed from mitochondrial COI and 12S rRNA fragments, nuclear ITS2 rRNA, and morphological characters. Both parsimony and mixed-model Bayesian likelihood analyses were performed. Under both methods, the mitochondrial and nuclear partitions support the same backbone phylogeny, as do the combined data. The utility of the molecular data is contrasted with the low phylogenetic signal among morphological characters. The phylogeny was used to trace the evolution of the host-plant association in Trirhabda. The recovered phylogeny shows that although the host-plant association is phylogenetically conservative, Trirhabda experienced one shift to a distantly related host-plant family, 6 shifts between host-plant tribes, and 6 between genera within tribes. The phylogeny reveals that Trirhabda were plesiomorphically adapted to tolerate complex secondary compounds of its host plants and this adaptation is retained in Trirhabda species, as evidenced by multiple shifts from chemically simpler host plants back to the more complex host plants.  相似文献   

9.
Lu S  Yuan ZG  Pang J  Yang D  Yu F  McGuire P  Xie F  Zhang YP 《Biochemical genetics》2004,42(5-6):139-148
To elucidate the phylogeny of the genus Paramesotriton (Caudata: Salamandridae), we investigated three mitochondrial DNA gene fragments (1207 bp in total) of cytochrome b, ND2, and ND4 for its six recognized species. The phylogenetic relationships within Paramesotriton were reconstructed by maximum parsimony (MP) and maximum likelihood (ML) methods. Phylogenetic trees (MP and ML trees) that were constructed from the combined data set of the three gene fragments indicated that all six species of Paramesotriton formed a monophyletic group, with P. caudopunctatus as basal to the other five species. This result suggests that P. fuzhongensis is a valid species in Paramesotriton.  相似文献   

10.
The use of diverse data sets in phylogenetic studies aiming for understanding evolutionary histories of species can yield conflicting inference. Phylogenetic conflicts observed in animal and plant systems have often been explained by hybridization, incomplete lineage sorting (ILS), or horizontal gene transfer. Here, we used target enrichment data, species tree, and species network approaches to infer the backbone phylogeny of the family Caprifoliaceae, while distinguishing among sources of incongruence. We used 713 nuclear loci and 46 complete plastome sequence data from 43 samples representing 38 species from all major clades to reconstruct the phylogeny of the family using concatenation and coalescence approaches. We found significant nuclear gene tree conflict as well as cytonuclear discordance. Additionally, coalescent simulations and phylogenetic species network analyses suggested putative ancient hybridization among subfamilies of Caprifoliaceae, which seems to be the main source of phylogenetic discordance. Ancestral state reconstruction of six morphological characters revealed some homoplasy for each character examined. By dating the branching events, we inferred the origin of Caprifoliaceae at approximately 66.65 Ma in the late Cretaceous. By integrating evidence from molecular phylogeny, divergence times, and morphology, we here recognize Zabelioideae as a new subfamily in Caprifoliaceae. This work shows the necessity of using a combination of multiple approaches to identify the sources of gene tree discordance. Our study also highlights the importance of using data from both nuclear and plastid genomes to reconstruct deep and shallow phylogenies of plants.  相似文献   

11.
The phylogeny of the flycatcher genus Anairetes was previously inferred using short fragments of mitochondrial DNA and parsimony and distance-based methods. The resulting topology spurred taxonomic revision and influenced understanding of Andean biogeography. More than a decade later, we revisit the phylogeny of Anairetes tit-tyrants using more mtDNA characters, seven unlinked loci (three mitochondrial genes, six nuclear loci), more closely related outgroup taxa, partitioned Bayesian analyses, and two coalescent species-tree approaches (Bayesian estimation of species trees, BEST; Bayesian evolutionary analysis by sampling trees, (*)BEAST). Of these improvements in data and analyses, the fourfold increase in mtDNA characters was both necessary and sufficient to incur a major shift in the topology and near-complete resolution. The species-tree analyses, while theoretically preferable to concatenation or single gene approaches, yielded topologies that were compatible with mtDNA but with weaker statistical resolution at nodes. The previous results that had led to taxonomic and biogeographic reappraisal were refuted, and the current results support the resurrection of the genus Uromyias as the sister clade to Anairetes. The sister relationship between these two genera corresponds to an ecological dichotomy between a depauperate humid cloud forest clade and a diverse dry-tolerant clade that has diversified along the latitudinal axis of the Andes. The species-tree results and the concatenation results each reaffirm the primacy of mtDNA to provide phylogenetic signal for avian phylogenies at the species and subspecies level. This is due in part to the abundance of informative characters in mtDNA, and in part to its lower effective population size that causes it to more faithfully track the species tree.  相似文献   

12.
A molecular phylogeny of New World emballonurid bats based on parsimony and Bayesian analyses of loci from the three different nuclear genetic transmission pathways in mammals (autosomal, X, and Y chromosomes) is well supported and independently corroborated by each individual gene tree. This is in contrast to a single most parsimonious but poorly supported tree based on morphological data, which has only one intergeneric or higher relationship shared with the molecular phylogeny. Combining the morphological and molecular data partitions results in a tree similar to the molecular tree suggesting a high degree of homoplasy and low phylogenetic signal in the morphological data set. Behavioral data are largely incomplete and likewise produce a poorly resolved tree. Nonetheless, patterns of evolution in morphology and behavior can be investigated by using the molecular tree as a phylogenetic framework. Character optimization of the appearance of dorsal fur and preferred roosting sites maps consistently and are correlated on the phylogeny. This suggests an association of camouflage for bats with unusual appearance (two dorsal stripes in Rhynchonycteris and Saccopteryx, or pale fur in Cyttarops and Diclidurus) and roosting in exposed sites (tree trunks or under palm leaves). In contrast, the ancestral states for Old and New World emballonurids are typically uniform brown or black, and they usually roost in sheltered roosts such as caves and tree hollows. Emballonuridae is the only family of bats that has a sac-like structure in the wing propatagium, which is found in four New World genera. Mapping the wing sac character states onto the phylogeny indicates that wing sacs evolved independently within each genus and that there may be a phylogenetic predisposition for this structure. Ear orientation maps relatively consistently on the molecular phylogeny and is correlated to echolocation call parameters and foraging behavior, suggesting a phylogenetic basis for these character systems.  相似文献   

13.
The Channichthyidae is a lineage of 16 species in the Notothenioidei, a clade of fishes that dominate Antarctic near-shore marine ecosystems with respect to both diversity and biomass. Among four published studies investigating channichthyid phylogeny, no two have produced the same tree topology, and no published study has investigated the degree of phylogenetic incongruence between existing molecular and morphological datasets. In this investigation we present an analysis of channichthyid phylogeny using complete gene sequences from two mitochondrial genes (ND2 and 16S) sampled from all recognized species in the clade. In addition, we have scored all 58 unique morphological characters used in three previous analyses of channichthyid phylogenetic relationships. Data partitions were analyzed separately to assess the amount of phylogenetic resolution provided by each dataset, and phylogenetic incongruence among data partitions was investigated using incongruence length difference (ILD) tests. We utilized a parsimony-based version of the Shimodaira-Hasegawa test to determine if alternative tree topologies are significantly different from trees resulting from maximum parsimony analysis of the combined partition dataset. Our results demonstrate that the greatest phylogenetic resolution is achieved when all molecular and morphological data partitions are combined into a single maximum parsimony analysis. Also, marginal to insignificant incongruence was detected among data partitions using the ILD. Maximum parsimony analysis of all data partitions combined results in a single tree, and is a unique hypothesis of phylogenetic relationships in the Channichthyidae. In particular, this hypothesis resolves the phylogenetic relationships of at least two species (Channichthys rhinoceratus and Chaenocephalus aceratus), for which there was no consensus among the previous phylogenetic hypotheses. The combined data partition dataset provides substantial statistical power to discriminate among alternative hypotheses of channichthyid relationships. These findings suggest the optimal strategy for investigating the phylogenetic relationships of channichthyids is one that uses all available phylogenetic data in analyses of combined data partitions.  相似文献   

14.
The systematics and speciation literature is rich with discussion relating to the potential for gene tree/species tree discordance. Numerous mechanisms have been proposed to generate discordance, including differential selection, long-branch attraction, gene duplication, genetic introgression, and/or incomplete lineage sorting. For speciose clades in which divergence has occurred recently and rapidly, recovering the true species tree can be particularly problematic due to incomplete lineage sorting. Unfortunately, the availability of multilocus or "phylogenomic" data sets does not simply solve the problem, particularly when the data are analyzed with standard concatenation techniques. In our study, we conduct a phylogenetic study for a nearly complete species sample of the dwarf and mouse lemur clade, Cheirogaleidae. Mouse lemurs (genus, Microcebus) have been intensively studied over the past decade for reasons relating to their high level of cryptic species diversity, and although there has been emerging consensus regarding the evolutionary diversity contained within the genus, there is no agreement as to the inter-specific relationships within the group. We attempt to resolve cheirogaleid phylogeny, focusing especially on the mouse lemurs, by employing a large multilocus data set. We compare the results of Bayesian concordance methods with those of standard gene concatenation, finding that though concatenation yields the strongest results as measured by statistical support, these results are found to be highly misleading. By employing an approach where individual alleles are treated as operational taxonomic units, we show that phylogenetic results are substantially influenced by the selection of alleles in the concatenation process.  相似文献   

15.
线粒体D-loop序列变异与东方鲀属鱼类系统发育   总被引:2,自引:0,他引:2  
东方鲀属的红鳍东方鲀(Takifugu rubripes)是后基因组时代的一种重要模式生物。本研究中,利用东方鲀属11种鱼类(18尾)的D-loop基因序列,对东方鲀属鱼类的系统发育关系进行研究。经序列比对排定后,分析中D-loop序列有841个位点,其中395个位点为可变位点,267个位点为系统发育信息位点。分别采用邻接法(NJ)、最大简约法(MP)、最大似然法(ML)和贝叶斯方法构建了分子系统树。研究结果表明:(1)东方鲀属鱼类为一单系类群;(2)由横纹东方鲀(T. oblongus)和铅点东方鲀(T. alboplumbeus)构成的姊妹群位于这个类群的基部。此外,本属鱼类物种分类现状还需要进一步的澄清。  相似文献   

16.
A phylogenetic analysis of the family Lemuridae was accomplished using multiple gene partitions and morphological characters. The results of the study suggest that several nodes in the lemurid phylogeny can be robustly resolved; however, the relationships of the species within the genus Eulemur are problematically nonrobust. The genus Varecia is strongly supported as the basal genus in the family. Hapalemur and Lemur catta are strongly supported as sister taxa and together are the sister group to the genus Eulemur. E. mongoz is the most basal species in the genus Eulemur. E. fulvus subspecies form a monophyletic group with three distinct lineages. E. coronatus is strongly supported as the sister taxon to E. macaco. The relationships of E. rubriventer, E. fulvus, and the E. macaco-E. coronatus pair are unresolved. Our combined molecular and morphological analysis demonstrates the lack of influence that morphology has on the simultaneous analysis tree when these two kinds of data are given equal weight. The effects of several extreme weighting schemes (removal of transitions and of third positions in protein-coding regions) and maximum-likelihood analysis were also explored. We suggest that these other forms of inference add little to resolving the problematic relationships of the species in the genus Eulemur.  相似文献   

17.
Peperomia is with approximately 1,600 species one of the species rich angiosperm genera. Several characters on which current infrageneric classifications are based are influenced by parallel evolution. A well-resolved molecular backbone phylogeny of the genus is needed to address evolutionary questions about morphological traits. Based on separate and combined analyses of a morphological data set and three molecular data sets, phylogenetic relationships within Peperomia are investigated with respect to character evolution. The resulting trees from different datasets are highly congruent. Morphological characters are mapped on a combined molecular tree, visualizing the contrast between previously used homoplastic characters and some newly observed characters, that can be used to delimit monophyletic groups. Length mutational events of the chloroplast dataset are coded and plotted on the respective tree, to test if indels support alternative hypothesis of relationships found in the nuclear datasets as well as the overall performance of indels compared with substitutional mutations. Our findings indicate that length distribution of indels is highest among five and six bp events. Autapomorphic and synapomorphic length mutations are most frequent in both insertions and deletions and are also more frequent independent of the length of the mutation. Concluding, independent of the length, mutations are of phylogenetic importance and should not be disregarded. None of the homoplastic indels turn into synapomorphic indels, supporting the different topology of the nrDNA tree but indicate areas of molecular evolution in favour of length mutations resulting in independent events.  相似文献   

18.
The genus Dacus Fabricius includes economically important pest fruit flies distributed in the Afrotropical and Indo-Australian regions. Two recent revisions based on morphological characters proposed new and partially discordant classifications synonymizing/revalidating several subgeneric names and forming species groups. Regardless these efforts, the phylogenetic relationships among Dacus species remained largely unresolved mainly because of the difficulties in assigning homologous character states. Therefore we investigated the phylogeny of African Dacus by sequencing 71 representatives of 32 species at two mitochondrial (COI, 16S) and one nuclear (period) gene fragments. Phylogenetic relationships were inferred through Bayesian and Maximum Parsimony methods and hypotheses about the monophyly of Dacus subgenera were tested by Shimodaira–Hasegawa tests. The congruence tests and the analyses of the single gene fragments revealed that the nuclear gene supports similar conclusions as the two mitochondrial genes. Levels of intra- and inter-specific differentiation of Dacus species were highly variable and, in some cases, largely overlapping. The analyses of the concatenated dataset resolved two major bootstrap-supported groups as well as a number of well-supported clades and subclades that often comprised representatives of different subgenera. Additionally, specimens of Dacus humeralis from Eastern and Western African localities formed separate clades, suggesting cryptic differentiation within this taxon. The comparisons between the molecular phylogeny and the morphological classification revealed a number of discrepancies and, in the vast majority of cases, the molecular data were not compatible with the monophyly of the currently recognised subgenera. Conversely, the molecular data showed that Apocynaceae feeders are a monophyletic sister group of species feeding on both Cucurbitaceae and Passifloraceae (these latter being also monophyletic). These results show a clear association between the molecular phylogeny of African Dacus and the evolution of host plant choice and provide a basis towards a more congruent taxonomy of this genus.  相似文献   

19.
A molecular phylogenetic study of the plant genus Coreocarpus was conducted using nuclear (ITS) and plastid (rpl16 intron) DNA sequences, with phylogenies of the nuclear and plastid sequences highly congruent in defining a monophyletic group of six species (core Coreocarpus), although three other species often placed within the genus were excluded. Relationships within the genus are largely but not totally concordant with prior biosystematic studies. Despite strong molecular support, no morphological characters uniting the six species of core Coreocarpus have been identified; retention of plesiomorphic characters and the genetic lability of characters are two probable factors contributing to lack of consistent defining characters. The age of the core Coreocarpus is estimated at 1 million years because the basal species is endemic to a volcanic island that emerged in the past million years. Mapping the results of earlier breeding studies on the molecular phylogeny showed that use of cross-compatibility as a criterion for species delimitation would result in the recognition of paraphyletic species. Prior field, morphological, and biosystematic studies provided no indication of past hybridization in the evolution of Coreocarpus, and species in the genus appeared to be well defined morphologically. However, three instances of incongruence were observed. Two of these were between the nuclear and plastid partitions, and the third was between the morphological species assignment of one accession and the molecular data. If hybridization accounts for incongruence between the nuclear and plastid data, it occurred between species that now appear to be cross-incompatible and allopatric. The incongruence between morphological species assignment and the molecular data could be the result of parallel fixation of characters that have a simple genetic basis. This study suggests that the evolutionary history of Coreocarpus is much more complex than indicated from prior biosystematic investigations and that biosystematic and molecular phylogenetic studies may complement each other for elucidating the evolution and phylogeny of a group.  相似文献   

20.
External morphological characters are the basis of our understanding of diversity and species relationships in many darter clades. The past decade has seen the publication of many studies utilizing mtDNA sequence data to investigate darter phylogenetics, but only recently have nuclear genes been used to investigate darter relationships. Despite a long tradition of use in darter systematics few studies have examined the phylogenetic utility of external morphological characters in estimating relationships among species in darter clades. We present DNA sequence data from the mitochondrial cytochrome b (cytb) gene, the nuclear encoded S7 intron 1, and discretely coded external morphological characters for all 20 species in the darter clade Nothonotus. Bayesian phylogenetic analyses result in phylogenies that are in broad agreement with previous studies. The cytb gene tree is well resolved, while the nuclear S7 gene tree lacks phylogenetic resolution, node support, and is characterized by a lack of reciprocal monophyly for many of the Nothonotus species. The phylogenies resulting from analysis of the morphological dataset lack resolution, but nodes present are found in the cytb and S7 gene trees. The highest resolution and node support is found in the Bayesian combined data phylogeny. Based on our results we propose continued exploration of the phylogenetic utility of external morphological characters in other darter clades. Given the extensive lack of reciprocal monophyly of species observed in the S7 gene tree we predict that nuclear gene sequences may have limited utility in intraspecific phylogeographic studies of Nothonotus darters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号