首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Esaki  H Tanaka  S Uemura  T Suzuki  K Soda 《Biochemistry》1979,18(3):407-410
We examined the catalytic action of L-methionine gamma-lyase (EC 4.4.1.11) on selenomethionine (2-amino-4-(methylseleno)butyric acid), methaneselenol, l-hexaneselenol, and benzeneselenol. The enzyme catalyzes alpha, gamma-elimination of selenomethionine to yield alpha-letobutyrate, ammonia, and methaneselenol, and also its gamma-replacement reaction with various thiols to produce S-substituted homocysteines. Selenomethionine is an even better substrate than methionine in alpha, gamma-elimination but is less effective in gamma-replacement. In addition, L-methionine gamma-lyase catalyzes gamma-replacement reaction of methionine and its derivatives with selenols to form the corresponding Se-substituted selenohomocysteines, although selenols are less efficient substituent donors than thiols. This is the first proven mechanism for the incorporation of selenium atom into amino acids.  相似文献   

2.
Redox state is a term used widely in the research field of free radicals and oxidative stress. Unfortunately, it is used as a general term referring to relative changes that are not well defined or quantitated. In this review we provide a definition for the redox environment of biological fluids, cell organelles, cells, or tissue. We illustrate how the reduction potential of various redox couples can be estimated with the Nernst equation and show how pH and the concentrations of the species comprising different redox couples influence the reduction potential. We discuss how the redox state of the glutathione disulfide-glutathione couple (GSSG/2GSH) can serve as an important indicator of redox environment. There are many redox couples in a cell that work together to maintain the redox environment; the GSSG/2GSH couple is the most abundant redox couple in a cell. Changes of the half-cell reduction potential (E(hc)) of the GSSG/2GSH couple appear to correlate with the biological status of the cell: proliferation E(hc) approximately -240 mV; differentiation E(hc) approximately -200 mV; or apoptosis E(hc) approximately -170 mV. These estimates can be used to more fully understand the redox biochemistry that results from oxidative stress. These are the first steps toward a new quantitative biology, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.  相似文献   

3.
Metallothioneins (MTs) release bound metals when exposed to nitric oxide. At inflammatory sites, both metallothionein and inducible nitric oxide synthase (iNOS) are induced by the same factors and the zinc released from metallothionein by NO suppresses both the induction and activity of iNOS. In a search for a possible modulatory mechanism of this coexpression of counteracting proteins, we investigated the role of the glutathione redox state in vitro because the oxidation state of thiols is involved in the metal binding in Cd-S or Zn-S clusters found in metallothioneins, and NO also binds to reduced glutathione via S-nitrosation. Using a variety of techniques, we found that NO and also ONOO(-)-mediated metal release from purified MTs is suppressed by reduced glutathione (GSH), but not by oxidized glutathione. Considering the millimolar concentrations of GSH present in mammalian cells, the metal release from MTs by NO should play no role in living systems. Therefore, the fact that it has been observed in vivo points to a hitherto unknown mechanism or additional compound(s) being involved in this physiologically relevant reaction and as long as this additional factor is not found experimental results on the MT-NO interaction should be treated with caution. Contrary to the peroxynitrite-induced activation of guanylyl cyclase, where GSH is needed, we found that the metal release from metallothionein by peroxynitrite is not enhanced, but also suppressed by reduced glutathione. In addition, we show that zinc, the major natural metal ligand in mammalian MTs and suppressor of iNOS, is released more readily under the influence of NO than cadmium, but in contrast to the MT isoform 1, the amount of metal released from the beta-domain of MT-2 is comparable to that from the alpha-domain.  相似文献   

4.
The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 (n=25; 0.2-1 years old); group 2 (n=28; 2-11 years old); group 3 (n=23; 12-24 years old); group 4 (n=40; 25-40 years old); group 5 (n=60; 41-69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups (p<0.001). Conversely, GSSG levels were significantly high in these periods (p<0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group (p<0.001, respectively). GPx activity in group 5 was increased as compared to the other groups (p<0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups (p<0.001). Se levels were found to be low in the oldest group (p<0.001). Selenium levels of women in group 5 were significantly high as compared to the men (p<0.01). We found negative correlations between age and GSH levels (r=0.402; p<0.001), selenium levels (r=0.454; p<0.001), GSH/GSSG molar ratio (r=0.557; p<0.001) and GSSGR activity (r=0.556; p<0.001). There were positive correlations between age and GPx (r=0.538; p<0.001) and GSSG level (r=0.551; p<0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level.  相似文献   

5.
Ascorbate and glutathione: the heart of the redox hub   总被引:7,自引:0,他引:7  
  相似文献   

6.
Dynamic analysis of redox-based processes in living cells is now restricted by the lack of appropriate redox biosensors. Conventional redox-sensitive GFPs (roGFPs) are limited by undefined specificity and slow response to changes in redox potential. In this study we demonstrate that the fusion of human glutaredoxin-1 (Grx1) to roGFP2 facilitates specific real-time equilibration between the sensor protein and the glutathione redox couple. The Grx1-roGFP2 fusion protein allowed dynamic live imaging of the glutathione redox potential (E(GSH)) in different cellular compartments with high sensitivity and temporal resolution. The biosensor detected nanomolar changes in oxidized glutathione (GSSG) against a backdrop of millimolar reduced glutathione (GSH) on a scale of seconds to minutes. It facilitated the observation of redox changes associated with growth factor availability, cell density, mitochondrial depolarization, respiratory burst activity and immune receptor stimulation.  相似文献   

7.
The effects of alterations in sulfur metabolism on hepatic and renal metallothionein and glutathione metabolism were studied in the adult rat using inhibition of two enzymes of these pathways, hepatic cystathionase and renal gamma-glutamyl transpeptidase. Rats were fed a diet containing both methionine (0.66%) and cystine (0.20%) for 1 week before receiving three consecutive daily intraperitoneal injections of propargylglycine, a selective cystathionase inhibitor, at various doses (2.5-375 mumol/kg). When hepatic cystathionase was inhibited greater than 90% (greater than or equal to 50 mumol propargylglycine/kg), renal and hepatic metallothionein and hepatic glutathione were unaltered except at the highest dose. On the other hand, renal glutathione was increased two-fold with a concomitant decrease in renal gamma-glutamyl transpeptidase activity (50% of control). In another experiment, when renal gamma-glutamyl transpeptidase was inhibited greater than 90% with three consecutive daily injections of acivicin, a selective gamma-glutamyl transpeptidase inhibitor (10 mg/kg IP), renal glutathione content was unaltered while hepatic glutathione was decreased. Renal and hepatic metallothionein were not changed. Thus, the cysteine pools for metallothionein and glutathione appear unrelated under the present experimental conditions. In addition, following either proparglyglycine or acivicin injections, renal and hepatic glutathione pools appear to be altered differently. These results suggest that renal glutathione may be preferentially maintained even when hepatic glutathione is decreased.  相似文献   

8.
The integration of glutathione homeostasis and redox signaling   总被引:2,自引:0,他引:2  
Formation of reactive oxygen species (ROS) is a common feature of abiotic and biotic stress reactions. ROS need to be detoxified to avoid deleterious reactions, but at the same time, the increased formation of ROS can also be exploited for redox signaling. Glutathione, as the most abundant low-molecular weight thiol in the cellular redox system, is used for both detoxification of ROS and transmission of redox signals. Detoxification of H(2)O(2) through the glutathione-ascorbate cycle leads to a transient change in the degree of oxidation of the cellular glutathione pool, and thus a change in the glutathione redox potential. The shift in the glutathione redox potential can be sensed by glutaredoxins (GRXs), small ubiquitous oxidoreductases, which reversibly transfer electrons between the glutathione redox buffer and thiol groups of target proteins. While very little is known about native GRX target proteins and their behavior in vivo, it is shown here that reduction-oxidation-sensitive GFP (roGFP), when expressed in plants, is an artificial target protein of GRXs. The specific interaction of roGFP with GRX results in continuous formation and release of the roGFP disulfide bridge depending on the actual redox potential of the cellular glutathione buffer. Ratiometric analysis of redox-dependent fluorescence allows dynamic imaging of the glutathione redox potential. It was hypothesized that a similar equilibration occurs between the glutathione buffer and native target proteins of GRXs. As a consequence, even minor deviations in the glutathione redox potential due to either depletion of reduced glutathione (GSH) or increasing oxidation can be exploited for fine tuning the activity of target proteins. The integration of the glutathione buffer with redox-active target proteins is a local reaction in specific subcellular compartments. This observation emphasizes the importance of subcellular compartmentalization in understanding the biology of the cellular redox system in plants.  相似文献   

9.
Robert F. Anderson 《BBA》1980,590(2):277-281
The one-electron reduction potential of NAD+ has been determined using pulse radiolysis to study electron-transfer equilibria between it and a low potential bipyridylium compound. The determined value E17 (NAD+/NAD.) = ?922 ± 8 mV (NHE scale) is used to calculate E27 (NAD./NADH) = +282 mV. E17 for 1-methylnicotinamide, E17 (MeN+/MeN.) = ?918 ± 7 mV.  相似文献   

10.
Free radical activation and lipid peroxidation have been described in skeletal muscle during strenuous exercise. We hypothesized that oxygen radicals could also be formed in the diaphragm muscle during strenuous resistive breathing and that these radicals might affect diaphragm function. Seven control and 12 experimental male Sprague-Dawley rats were studied. Six experimental animals were subjected to resistive breathing (RB) alone and six animals received 15 min of mechanical ventilatory support (MV) after the resistive breathing period. Inspiratory resistance was adjusted to maintain airway opening pressure at 70% maximum in both groups until exhaustion. Diaphragm samples were obtained for analysis of thiobarbituric acid-reactive substances (TBAR), reduced glutathione (GSH), and glutathione disulfide (GSSG). In vitro isometric contraction times, twitch (Pt) tension and maximum tetanic (Po) tension, force-frequency curves, fatigue index, and recovery index were measured. In RB and MV compared with controls, there were significant decreases in Pt and Po. Diaphragm TBAR concentrations were increased in MV compared with controls or RB. GSSG-to-total glutathione ratio was increased in RB and MV compared with controls. Production of free radicals during RB and MV may represent an important mechanism of diaphragmatic injury that could contribute to the decline in contractility.  相似文献   

11.
ABC (ATP-binding cassette) transporters are arguably the most important family of ATP-driven transporters in biology. Despite considerable effort and advances in determining the structures and physiology of these transporters, their fundamental molecular mechanisms remain elusive and highly controversial. How does ATP hydrolysis by ABC transporters drive their transport function? Part of the problem in answering this question appears to be a perceived need to formulate a universal mechanism. Although it has been generally hoped and assumed that the whole superfamily of ABC transporters would exhibit similar conserved mechanisms, this is proving not to be the case. Structural considerations alone suggest that there are three overall types of coupling mechanisms related to ABC exporters, small ABC importers and large ABC importers. Biochemical and biophysical characterization leads us to the conclusion that, even within these three classes, the catalytic and transport mechanisms are not fully conserved, but continue to evolve. ABC transporters also exhibit unusual characteristics not observed in other primary transporters, such as uncoupled basal ATPase activity, that severely complicate mechanistic studies by established methods. In this chapter, I review these issues as related to ABC exporters in particular. A consensus view has emerged that ABC exporters follow alternating-access switch transport mechanisms. However, some biochemical data suggest that alternating catalytic site transport mechanisms are more appropriate for fully symmetrical ABC exporters. Heterodimeric and asymmetrical ABC exporters appear to conform to simple alternating-access-type mechanisms.  相似文献   

12.
Solar cells based on nanocrystalline TiO2 sensitized by dyes that contain poly-pyridyne rings have been examined by in situ micro- and macro-Raman spectroscopy under positive and negative bias. Four modes in the low frequency range appear for nearly short-circuit conditions and are attributed to the vibrations of triiodide, bound on the oxidized form of the dye. The intensity and frequency of these modes depend on the applied potential and their behavior is correlated with characteristic regions of the current-potential curves. Our results are supported by polarized Raman experiments and basic theoretical simulations.  相似文献   

13.
BackgroundPeroxidation of PUFAs by a variety of endogenous and xenobiotic electrophiles is a recognized pathophysiological process that can lead to adverse health effects. Although secondary products generated from peroxidized PUFAs have been relatively well studied, the role of primary lipid hydroperoxides in mediating early intracellular oxidative events is not well understood.MethodsLive cell imaging was used to monitor changes in glutathione (GSH) oxidation in HAEC expressing the fluorogenic sensor roGFP during exposure to 9-hydroperoxy-10E,12Z-octadecadienoic acid (9-HpODE), a biologically important long chain lipid hydroperoxide, and its secondary product 9-hydroxy-10E,12Z-octadecadienoic acid (9-HODE). The role of hydrogen peroxide (H2O2) was examined by direct measurement and through catalase interventions. shRNA-mediated knockdown of glutathione peroxidase 4 (GPx4) was utilized to determine its involvement in the relay through which 9-HpODE initiates the oxidation of GSH.ResultsExposure to 9-HpODE caused a dose-dependent increase in GSH oxidation in HAEC that was independent of intracellular or extracellular H2O2 production and was exacerbated by NADPH depletion. GPx4 was involved in the initiation of GSH oxidation in HAEC by 9-HpODE, but not that induced by exposure to H2O2 or the low molecular weight alkyl tert-butyl hydroperoxide (TBH).ConclusionsLong chain lipid hydroperoxides can directly alter cytosolic EGSH independent of secondary lipid oxidation products or H2O2 production. NADPH has a protective role against 9-HpODE induced EGSH changes. GPx4 is involved specifically in the reduction of long-chain lipid hydroperoxides, leading to GSH oxidation.SignificanceThese results reveal a previously unrecognized consequence of lipid peroxidation, which may provide insight into disease states involving lipid peroxidation in their pathogenesis.  相似文献   

14.
Mammalian metallothioneins are redox-active metalloproteins. In the case of zinc metallothioneins, the redox activity resides in the cysteine sulfur ligands of zinc. Oxidation releases zinc, whereas reduction re-generates zinc-binding capacity. Attempts to demonstrate the presence of the apoprotein (thionein) and the oxidized protein (thionin) in tissues posed tremendous analytical challenges. One emerging strategy is differential chemical modification of cysteine residues in the protein. Chemical modification distinguishes three states of the cysteine ligands (reduced, oxidized and metal-bound) based on (i) quenched reactivity of the thiolates when bound to metal ions and restoration of thiol reactivity in the presence of metal-ion-chelating agents, and (ii) modification of free thiols with alkylating agents and subsequent reduction of disulfides to yield reactive thiols. Under normal physiological conditions, metallothionein exists in three states in rat liver and in cell lines. Ras-mediated oncogenic transformation of normal HOSE (human ovarian surface epithelial) cells induces oxidative stress and increases the amount of thionin and the availability of cellular zinc. These experiments support the notion that metallothionein is a dynamic protein in terms of its redox state and metal content and functions at a juncture of redox and zinc metabolism. Thus redox control of zinc availability from this protein establishes multiple methods of zinc-dependent cellular regulation, while the presence of both oxidized and reduced states of the apoprotein suggest that they serve as a redox couple, the generation of which is controlled by metal ion release from metallothionein.  相似文献   

15.
Glutathione redox balance—defined as the ratio GSH/GSSG—is a critical regulator of cellular redox state, and declines in this ratio are closely associated with oxidative stress and disease. However, little is known about the impact of genetic variation on this trait. Previous mouse studies suggest that tissue GSH/GSSG is regulated by genetic background and is therefore heritable. In this study, we measured glutathione concentrations and GSH/GSSG in liver and kidney of 30 genetically diverse inbred mouse strains. Genetic background caused an approximately threefold difference in hepatic and renal GSH/GSSG between the most disparate strains. Haplotype association mapping determined the loci associated with hepatic and renal glutathione phenotypes. We narrowed the number of significant loci by focusing on those located within protein-coding genes, which we now consider to be candidate genes for glutathione homeostasis. No candidate genes were associated with both hepatic and renal GSH/GSSG, suggesting that genetic regulation of GSH/GSSG occurs predominantly in a tissue-specific manner. This is the first quantitative trait locus study to examine the genetic regulation of glutathione concentrations and redox balance in mammals. We identified novel candidate genes that have the potential to redefine our knowledge of redox biochemistry and its regulation and inform future therapeutic applications.  相似文献   

16.
Neurons, as non-dividing cells, encounter a myriad of stressful conditions throughout their lifespan. In particular, there is increasing evidence that iron progressively accumulates in the brain with age and that iron induced oxidative stress is the cause of several forms of neurodegeneration. Here, we review recent evidence that gives support to the following notions: 1) neuronal iron accumulation leads to oxidative stress and cell death; 2) neuronal survival to iron accumulation associates with decreased expression of the iron import transporter DMT1 and increased expression of the efflux transporter IREG1; and 3) the adaptive process of neurons towards iron-induced oxidative stress includes a marked increase in both the expression of the catalytic subunit of gamma glutamate-cysteine ligase and glutathione. These findings may help to understand aging-related neurodegeneration hallmarks: oxidative damage, functional impairment and cell death.  相似文献   

17.
Experiments were performed to evaluate the nonenzymatic reaction between glutathione (GSH) and dehydroascorbic acid (DHA). Though both ascorbic acid and glutathione disulfide (GSSG) are formed from this reaction, previous work has focused almost exclusively on measurements of ascorbic acid. In contrast, there is very little information about the formation of GSSG under the same conditions as those used to produce ascorbic acid. The emphasis on ascorbic acid stems from the fact that a spectrophotometric technique is available for its measurement, whereas 1H-NMR or an amino acid analyzer has been used to measure GSSG. The present experiments use a simple, rapid method for accurately and precisely measuring the concentrations of GSSG in a solution. The spectrophotometric (340 nm) procedure uses NADPH and glutathione reductase; analysis time is very short, many replicate samples can be tested and as little as 0.05-0.1 mM GSSG can be detected. Using this method, it is shown that there is an equimolar production of GSSG and ascorbic acid from GSH and DHA and that the decrease in GSH is stoichiometrically related to the increase in the concentration of GSSG. The present findings provide additional insight into the interaction between the GSH/GSSG redox couple and the ascorbic acid/DHA redox couple.  相似文献   

18.
The effects of induction of metallothionein (MT) on the toxicity of menadione were investigated in rat liver slices. The protective role of hepatic glutathione (GSH) was also studied and compared to that of MT. A 3-h incubation of rat liver slices with menadione (100-300 microM) containing medium (37 degrees C, pH 7.4, 95%O2:5%CO2) resulted in cellular toxicity, as shown by changes in cytosolic K, Ca and GSH concentrations and lactate dehydrogenase (LDH) leakage. A dose-dependent decrease in cytosolic K and GSH was observed concomitant with an increase in cytosolic Ca and LDH leakage after incubation with menadione. Pretreatment of rats with zinc sulphate (ZnSO4) (30 mg/kg body wt.) increased MT levels in liver slices and suppressed the toxicity of menadione. Intracellular GSH concentrations in liver slices were either depleted or increased by injection of rats with buthionine sulfoximine (BSO), (4 mmol/kg body wt.) and N-acetyl-L-cysteine (NAC) (1.6 g/kg body wt.), respectively. Intracellular GSH was found to be crucial in protection against menadione toxicity. Menadione toxicity was increased when the rats were injected with sodium phenobarbital (PB) (4 x 80 mg/kg body wt.). Pretreatment with Zn provided partial protection against menadione toxicity in liver slices from both BSO- and PB-injected rats. These findings suggest that induction of MT synthesis does protect against quinone-induced toxicity, but the role may be secondary to that of GSH. The mechanisms by which MT protect against menadione toxicity are still unclear but may involve protection of both redox cycling and sulphydryl arylation.  相似文献   

19.
20.
Cycles have a profound role in cellular life at all levels of organization. Well-known cycles in cell metabolism include the tricarboxylic acid and the urea cycle, in which a specific carrier substrate undergoes a sequence of chemical transformations and is regenerated at the end. Other examples include the interconversions of cofactors, such as NADH or ATP, which are present in the cell in limiting amounts and have to be recycled effectively for metabolism to continue. Every living cell performs a rapid turnover of ATP to ADP to fulfil various energetic demands and effectively regenerates the ATP from ADP in an energy-consuming process. The turnover of the ATP cycle is impressive; a human uses about its body weight in ATP per day. Enzymes perform catalytic reaction cycles in which they undergo several chemical and physical transformations before they are converted back to their original states. The ubiquitous F1F(o) ATP synthase is of particular interest not only because of its biological importance, but also owing to its unique rotational mechanism. Here, we give an overview of the membrane-embedded F(o) sector, particularly with respect to the recent crystal structure of the c ring from Ilyobacter tartaricus, and summarize current hypotheses for the mechanism by which rotation of the c ring is generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号