首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal excitability can cooperate with synaptic transmission to control the information storage. This regulation of neuronal plasticity can be affected by alterations in neuronal inputs and accomplished by modulation of voltage-dependent ion channels. In this study, we report that enhanced excitatory input negatively regulated neuronal excitability. Enhanced excitatory input by glutamate, electric field stimulation or high K+ increased transient outward K+ current, whereas did not affect the delayed rectifier K+ current in rat cultured cortical neurons. Both the voltage-dependent K+ channel 4.2 and 4.3 subunits contributed to the increase. The increase in the K+ current density by Kv4.2 was ascribed to its cytoplasmic membrane translocation, which was mediated by NMDA type of glutamate receptor. Furthermore, enhanced excitatory input inhibited neuronal excitability. Taken together, our results suggest that excitatory neurotransmission affects neuronal excitability via the regulation of the K+ channel membrane translocation.  相似文献   

2.
Activation of P2X3 and P2X2/3 receptors (P2X3R/P2X2/3R), ionotropic ATP receptor subtypes, in primary sensory neurons is involved in neuropathic pain, a debilitating chronic pain that occurs after peripheral nerve injury. However, the underlying mechanisms remain unknown. We investigated the role of cytosolic phospholipase A2 (cPLA2) as a downstream molecule that mediates the P2X3R/P2X2/3R-dependent neuropathic pain. We found that applying ATP to cultured dorsal root ganglion (DRG) neurons increased the level of Ser505-phosphorylated cPLA2 and caused translocation of Ser505-phosphorylated cPLA2 to the plasma membrane. The ATP-induced cPLA2 activation was inhibited by a selective antagonist of P2X3R/P2X2/3R and by a selective inhibitor of cPLA2. In the DRG in vivo , the number of cPLA2-activated neurons was strikingly increased after peripheral nerve injury but not after peripheral inflammation produced by complete Freund's adjuvant. Pharmacological blockade of P2X3R/P2X2/3R reversed the nerve injury-induced cPLA2 activation in DRG neurons. Moreover, administering the cPLA2 inhibitor near the DRG suppressed nerve injury-induced tactile allodynia, a hallmark of neuropathic pain. Our results suggest that P2X3R/P2X2/3R-dependent cPLA2 activity in primary sensory neurons is a key event in neuropathic pain and that cPLA2 might be a potential target for treating neuropathic pain.  相似文献   

3.
A-Kinase anchoring protein 150 (AKAP150) is required for the phosphorylation of transient receptor potential cation channel subfamily V member 1 (TRPV1) by PKA or PKC in sensory neurons and, hence, affects TRPV1-dependent hyperalgesia under pathological conditions. Recently, we showed that the activation of N-methyl-d-aspartate (NMDA) receptors sensitizes TRPV1 by enhancing serine phosphorylation through PKC in trigeminal nociceptors. In this study, we extended this observation by investigating whether AKAP150 mediates NMDA-induced phosphorylation of TRPV1 via PKC in native sensory neurons in the rat. By adopting a phospho-specific antibody combined with a surface biotinylation assay, we first assessed NMDA-induced changes in the phosphorylation level of serine 800 residues (S800) in TRPV1 delimited to cell surface membrane in cultured trigeminal ganglia (TG). The biotinylation assay yielded that the application of NMDA significantly increased the phosphorylation of S800 (p-S800) of TRPV1 at time points correlating with the development of NMDA-induced mechanical hyperalgesia [10]. We then obtained a siRNA sequence against AKAP150 that dose-dependently down-regulated the AKAP150 protein. Pretreatment of TG culture with the siRNA, but not mismatch sequences, prevented the NMDA-induced phosphorylation of serine residues of total TRPV1 as well as S800 of membrane bound TRPV1. We confirmed that AKAP150 co-immunoprecipitated with TRPV1 and demonstrated that it also co-immunoprecipitated with NMDA receptor subunits (NR1 and NR2B) in TG. These data offer novel information that the activation of NMDA-induced TRPV1 sensitization involves p-S800 of TRPV1 in cell surface membrane in native sensory neurons and that AKAP150 is required for NMDA-and PKC-mediated phosphorylation of TRPV1 S800. Therefore, we propose that the NMDA receptor, AKAP150, and TRPV1 forms a signaling complex that underlies the sensitization of trigeminal nociceptors by modulating phosphorylation of specific TRPV1 residues.  相似文献   

4.
Activation of protein kinases and phosphatases at the plasma membrane often initiates agonist-dependent signalling events. In sensory neurons, AKAP150 (A-kinase-anchoring protein 150) orientates PKA (protein kinase A), PKC (protein kinase C) and the Ca2+/calmodulin-dependent PP2B (protein phosphatase 2B, also known as calcineurin) towards membrane-associated substrates. Recent evidence indicates that AKAP150-anchored PKA and PKC phosphorylate and sensitize the TRPV1 (transient receptor potential subfamily V type 1 channel, also known as the capsaicin receptor). In the present study, we explore the hypothesis that an AKAP150-associated pool of PP2B catalyses the dephosphorylation and desensitization of TRPV1. Biochemical, electrophysiological and cell-based experiments indicate that PP2B associates with AKAP150 and TRPV1 in cultured TG (trigeminal ganglia) neurons. Gene silencing of AKAP150 reduces basal phosphorylation of TRPV1. However, functional studies in neurons isolated from AKAP150-/- mice indicate that the anchoring protein is not required for pharmacological desensitization of TRPV1. Behavioural analysis of AKAP150-/- mice further support this notion, demonstrating that agonist-stimulated desensitization of TRPV1 is sensitive to PP2B inhibition and does not rely on AKAP150. These findings allow us to conclude that pharmacological desensitization of TRPV1 by PP2B may involve additional regulatory components.  相似文献   

5.
P2X receptors mediate a variety of physiological actions, including smooth muscle contraction, neuro-endocrine secretion and synaptic transmission. Among P2X receptors, the P2X3 subtype is expressed in sensory neurons of dorsal root- and trigeminal-ganglia, where it performs a well-recognized role in sensory and pain transmission. Recent evidence indicates that the strength of P2X3-mediated responses is modulated in vivo by altering the number of receptors at the plasma membrane. In the present study, we investigate the trafficking properties of P2X3 receptor in transfected HEK293 cells and in primary cultures of dorsal root ganglion neurons, finding that P2X3 receptor undergoes rapid constitutive and cholesterol-dependent endocytosis. We also show that endocytosis is accompanied by preferential targeting of the receptor to late endosomes/lysosomes, with subsequent degradation. Furthermore, we observe that at steady state the receptor localizes predominantly in lamp1-positive intracellular structures, with a minor fraction present at the plasma membrane. Finally, the level of functional receptor expressed on the cell surface is rapidly up-regulated in response to agonist stimulation, which also augments receptor endocytosis. The findings presented in this work underscore a very dynamic trafficking behavior of P2X3 receptor and disclose a possible mechanism for the rapid modulation of ATP-mediated responses potentially relevant during physiological and pathological conditions.  相似文献   

6.
Previous study has shown that there is a functional link between the transient receptor potential vanilloid type 1 (TRPV1) receptor and protease-activated receptor-4 (PAR4) in modulation of inflammation and pain. Capsaicin activation of TRPV1 is involved in enhancement of the expression of TRPV1 in mRNA and protein in dorsal root ganglion (DRG) in vivo. Whether capsaicin could influence expression of PAR4 in primary sensory neurons remains unknown. In the present study, expression of PAR4 in cultured rat DRG neurons was observed using immunofluorescence, real-time PCR and Western blots to examine whether increases in PAR4 mRNA and protein levels are induced by capsaicin treatment with or without pre-treatment of forskolin, a cyclic AMP/protein kinase A (cAMP/PKA) activator or PKA inhibitor fragment 14-22 (PKI14-22), a PKA inhibitor. Capsaicin treatment of cultured DRG neurons significantly increased the expression of PAR4 in mRNA and protein levels. The percentage of PAR4-, TRPV1-immunoreactive neurons and their co-localization in cultured DRG neurons increased significantly in the presence of capsaicin as compared with that in the absence of capsaicin. Compared with capsaicin-only group, pre-incubation with forskolin strongly enhanced the capsaicin-induced increase of PAR4 in mRNA and protein levels. Consistent with the involvement of PKA in the modulation of PAR4 expression, this evoked expression both at mRNA and protein levels was significantly inhibited after PKA was inhibited by pre-incubation with PKI14-22. Taken together, these results provide evidence that TRPV1 activation significantly increases the expression of PAR4 mRNA and protein levels in primary cultures of DRG neurons after capsaicin incubation. Effects of capsaicin on PAR4 expression appear to be mediated by cAMP/PKA signal pathways in DRG neurons.  相似文献   

7.
It has previously been observed that expression of chemokine monocyte chemoattractant protein-1 (MCP-1/CC chemokine ligand 2 (CCL2)) and its receptor CC chemokine receptor 2 (CCR2) is up-regulated by dorsal root ganglion (DRG) neurons in association with rodent models of neuropathic pain. MCP-1 increases the excitability of nociceptive neurons after a peripheral nerve injury, while disruption of MCP-1/CCR2 signaling blocks the development of neuropathic pain, suggesting MCP-1 signaling is responsible for heightened pain sensitivity. To define the mechanisms of MCP-1 signaling in DRG, we studied intracellular processing, release, and receptor-mediated signaling of MCP-1 in DRG neurons. We found that in a focal demyelination model of neuropathic pain both MCP-1 and CCR2 were up-regulated by the same neurons including transient receptor potential vanilloid receptor subtype 1 (TRPV1) expressing nociceptors. MCP-1 expressed by DRG neurons was packaged into large dense-core vesicles whose release could be induced from the soma by depolarization in a Ca2+-dependent manner. Activation of CCR2 by MCP-1 could sensitize nociceptors via transactivation of transient receptor potential channels. Our results suggest that MCP-1 and CCR2, up-regulated by sensory neurons following peripheral nerve injury, might participate in neural signal processing which contributes to sustained excitability of primary afferent neurons.  相似文献   

8.
Important pain transducers of noxious stimuli are small- and medium-diameter sensory neurons that express transient receptor vanilloid-1 (TRPV1) channels and/or adenosine triphosphate (ATP)-gated P2X3 receptors whose activity is upregulated by endogenous neuropeptides in acute and chronic pain models. Little is known about the role of endogenous modulators in restraining the expression and function of TRPV1 and P2X3 receptors. In dorsal root ganglia, evidence supports the involvement of the natriuretic peptide system in the modulation of nociceptive transmission especially via the B-type natriuretic peptide (BNP) that activates the natriuretic peptide receptor-A (NPR-A) to downregulate sensory neuron excitability. Since the role of BNP in trigeminal ganglia (TG) is unclear, we investigated the expression of BNP in mouse TG in situ or in primary cultures and its effect on P2X3 and TRPV1 receptors of patch-clamped cultured neurons. Against scant expression of BNP, almost all neurons expressed NPR-A at membrane level. While BNP rapidly increased cGMP production and Akt kinase phosphorylation, there was no early change in passive neuronal properties or responses to capsaicin, α,β-meATP or GABA. Nonetheless, 24 h application of BNP depressed TRPV1 mediated currents (an effect blocked by the NPR-A antagonist anantin) without changing responses to α,β-meATP or GABA. Anantin alone decreased basal cGMP production and enhanced control α,β-meATP-evoked responses, implying constitutive regulation of P2X3 receptors by ambient BNP. These data suggest a slow modulatory action by BNP on TRPV1 and P2X3 receptors outlining the role of this peptide as a negative regulator of trigeminal sensory neuron excitability to nociceptive stimuli.  相似文献   

9.
10.
O'Connell PJ  Pingle SC  Ahern GP 《FEBS letters》2005,579(23):5135-5139
Inflammatory stimuli provide critical activation signals for dendritic cells (DC). Signaling through the capsaicin receptor TRPV1 is reported to initiate DC maturation and migration. We attempted to characterize TRPV1 channels in DC. Capsaicin or extracellular protons failed to elicit a change in intracellular [Ca(2+)] or membrane current in DC. In contrast, capsaicin evoked a sustained increase in [Ca(2+)] and large inwards currents in sensory neurons and TRPV1-expressing HEK293 cells. TRPV1 expression was confirmed by RT-PCR in sensory neurons, but was undetectable in DC. Interestingly, and in contrast to capsaicin, the inflammatory neuropeptide substance P evoked Ca(2+) transients in DC. Thus, our data do not support the hypothesis that DC express TRPV1 channels. Rather, signaling through TRPV1 in sensory nerves may modulate DC via neurogenic actions.  相似文献   

11.
Abstract: Aromatase in the diencephalic neurons, the level of which increases transiently during the prenatal to neonatal period, has been suggested to be involved in control of sexual behavior and differentiation of the CNS. Effects of neurotransmitters on levels of aromatase mRNA in cultured neurons were investigated to determine factors regulating the developmental increase that occurs in level of fetal brain aromatase. The expression of aromatase in diencephalic neurons of fetal mice at embryonic day 13, cultured in vitro, was significantly affected by α1-adrenergic receptor ligands. Aromatase mRNA levels were higher in neurons treated with the α1-agonist phenylephrine than in control neurons, whereas prazosin, an α1-antagonist, suppressed this increase, and ligands for α2- or β-adrenergic receptors did not exert any influence. The profile of α1-adrenergic receptor subtypes during actual development in vivo suggested that the α1B subtype is in fact responsible for the signal transduction. Substance P, cholecystokinin, neurotensin, and brain natriuretic peptide also increased the level of expression along with phorbol 12-myristate 13-acetate and dibutyryl-cyclic GMP, whereas forskolin and dibutyryl-cyclic AMP caused a decrease. These data indicate that stimulation via α1 (possibly α1B)-adrenergic receptors, as well as receptors of specific neuropeptides, controls the expression of aromatase in embryonic day 13 diencephalic neurons through activation of protein kinase C or G. β-Adrenergic receptors would not appear to participate in the regulation, judging from their developmental profile, although cyclic AMP might be a suppressive second messenger.  相似文献   

12.
13.
Abstract : Agonist-induced down-regulation of opioid receptors appears to require the phosphorylation of the receptor protein. However, the identities of the specific protein kinases that perform this task remain uncertain. Protein kinase C (PKC) has been shown to catalyze the phosphorylation of several G protein-coupled receptors and potentiate their desensitization toward agonists. However, it is unknown whether opioid receptor agonists induce PKC activation under physiological conditions. Using cultured SH-SY5Y neuroblastoma cells, which naturally express μ- and δ-opioid receptors, we investigated whether μ-opioid receptor agonists can activate PKC by measuring enzyme translocation to the membrane fraction. PKC translocation and opioid receptor densities were simultaneously measured by 3H-phorbol ester and [3H]diprenorphine binding, respectively, to correlate alterations in PKC localization with changes in receptor binding sites. We observed that μ-opioid agonists have a dual effect on membrane PKC density depending on the period of drug exposure. Exposure for 2-6 h to [ d -Ala2, N -Me-Phe4, Gly-ol]enkephalin or morphine promotes the translocation of PKC from the cytosol to the plasma membrane. Longer periods of opioid exposure (>12 h) produce a decrease in membrane-bound PKC density to a level well below basal. A significant decrease in [3H]diprenorphine binding sites is first observed at 2 h and continues to decline through the last time point measured (48 h). The opioid receptor antagonist naloxone attenuated both opioid-mediated PKC translocation and receptor down-regulation. These results demonstrate that opioids are capable of activating PKC, as evidenced by enhanced translocation of the enzyme to the cell membrane, and this finding suggests that PKC may have a physiological role in opioid receptor plasticity.  相似文献   

14.
Abstract: The peptide neurotransmitter Phe-Met-Arg-PheNH2 (FMRFamide) increases outward K+ currents and promotes dephosphorylation of many phosphoproteins in Aplysia sensory neurons. We examined FMRFamide-induced current responses in sensory neurons injected with thiophosphorylated protein phosphate inhibitor-1 and inhibitor-2 (I-1 and I-2), two structurally different vertebrate protein phosphatase-1 (PP1) inhibitors to define a role for PP1 in the physiological actions of FMRFamide. Thiophosphorylated I-1 and I-2 both reduced the amplitude of outward currents elicited by FMRFamide by 50–60% and were as effective as microcystin-LR, which inhibited both PP1 and protein phosphatase-2A in Aplysia neuronal extracts. These data suggested that of the two major neuronal protein serine/threonine phosphatases, FMRFamide utilized primarily PP1 to open serotonin-sensitive K+ (S-K+) channels. Earlier studies showed that a membrane-associated phosphatase regulated S-K+ channels in cell-free patches from sensory neurons. Utilizing its unique substrate specificity and inhibitor sensitivity, we have characterized PP1 as the principal protein phosphatase associated with neuronal plasma membranes. Two protein phosphatase activities (apparent Mr values of 170,000 and 38,000) extracted from crude membrane preparations from the Aplysia nervous system were shown to be isoforms of PP1. These biochemical and physiological studies suggest that PP1 is preferentially associated with neuronal membranes and that its activity may be required for the induction of outward K+ currents in the Aplysia sensory neurons by FMRFamide.  相似文献   

15.
Chronic loss of intracellular K+ can induce neuronal apoptosis in pathological conditions. However, the mechanism by which the K+ channels are regulated in this process remains largely unknown. Here, we report that the increased membrane expression of Kv2.1 proteins in cortical neurons deprived of serum, a condition known to induce K+ loss, promotes neuronal apoptosis. The increase in I K current density and apoptosis in the neurons deprived of serum were inhibited by a dominant negative form of Kv2.1 and MK801, an antagonist to NMDA receptors. The membrane level of Kv2.1 and its interaction with SNAP25 were increased, whereas the Kv2.1 phosphorylation was inhibited in the neurons deprived of serum. Botulinum neurotoxin, an agent known to prevent formation of soluble N -ethylmaleimide-sensitive factor attachment protein receptor complex, suppressed the increase in I K current density. Together, these results suggest that NMDA receptor-dependent Kv2.1 membrane translocation is regulated by a soluble N -ethylmaleimide-sensitive factor attachment protein receptor-dependent vesicular trafficking mechanism and is responsible for neuronal cell death induced by chronic loss of K+.  相似文献   

16.
Abstract: In the absence of neurotrophic factors, chronic depolarization of plasma membrane has been shown to maintain several populations of primary neurons in culture. We report that in the PC12 cell line, depolarization causes Ca2+ influx through voltage-gated Ca2+ channels, which is able to stimulate extracellular-regulated kinase (ERK) activity. We studied which mediators were responsible for ERK activation resulting from increased levels of Ca2+ in the cytoplasm and found that calmodulin was involved in this process. The addition of W13, a calmodulin inhibitor, to the culture medium, prevented ERK activation when PC12 cells were depolarized. In addition, we show that high K+ treatment did not induce Trk A phosphorylation, thus excluding the possibility of Ca2+ operating through this receptor to activate the ERK signal transduction pathway. Moreover, although high K+ treatment is able to phosphorylate the epidermal growth factor receptor (EGFR) and thus to activate the ERK signal transduction pathway, we demonstrate that W13 did not alter the state of EGFR phosphorylation in conditions that almost completely blocked ERK activation. These data suggest that calmodulin mediates ERK activation induced by increases in intracellular Ca2+ concentration in PC12 cells by a mechanism that seems to be independent of Trk A and EGFR activation.  相似文献   

17.
The ability of sensory neurons to detect potentially harmful stimuli relies on specialized molecular signal detectors such as transient receptor potential (TRP) A1 ion channels. TRPA1 is critically implicated in vertebrate nociception and different pain states. Furthermore, TRPA1 channels are subject to extensive modulation and regulation - processes which consequently affect nociceptive signaling. Here we show that the neuropeptide Nocistatin sensitizes TRPA1-dependent calcium influx upon application of the TRPA1 agonist mustard oil (MO) in cultured sensory neurons of dorsal root ganglia (DRG). Interestingly, TRPV1-mediated cellular calcium responses are unaffected by Nocistatin. Furthermore, Nocistatin-induced TRPA1-sensitization is likely independent of the Nocistatin binding partner 4-Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) as assessed by siRNA-mediated knockdown in DRG cultures. In conclusion, we uncovered the sensitization of TRPA1 by Nocistatin, which may represent a novel mechanism how Nocistatin can modulate pain.  相似文献   

18.
N-oleoyldopamine (OLDA) has been identified as an agonist of the transient receptor potential vanilloid type 1 (TRPV1) receptor. A related fatty acid amide, N-oleoylethanolamide (OEA), was found to excite sensory neurons and produce visceral hyperalgesia via activation of the TRPV1 receptor, however, a recent study described this agent as an antinociceptive one. The aim of the present paper was to characterize two newly synthesized derivatives of N-oleoyldopamine, 3-methyl-N-oleoyldopamine (3-MOLDA) and 4-methyl-N-oleoyldopamine (4-MOLDA) as well as OEA with regard to their effects on the TRPV1 receptor. Radioactive 45Ca2+ uptake was measured in HT5-1 cells transfected with the rat TRPV1 receptor and intracellular Ca2+ concentration was monitored by fura-2 microfluorimetry in cultured trigeminal sensory neurons. Thermonociception was assessed by determining the behavioral noxious heat threshold in rats. 3-MOLDA induced 45Ca2+ uptake in a concentration-dependent manner, whereas 4-MOLDA and OEA were without effect. 4-MOLDA and OEA, however, concentration-dependently reduced the 45Ca2+ uptake-inducing effect of capsaicin. In trigeminal sensory neurons, 3-MOLDA caused an increase in intracellular Ca2+ concentration and this effect exhibited tachyphylaxis upon repeated application. Again, 4-MOLDA and OEA failed to alter intracellular Ca2+ levels. Upon intraplantar injection, 3-MOLDA caused an 8-10 degrees C drop of the noxious heat threshold in rats which was inhibited by the TRPV1 receptor antagonist iodo-resiniferatoxin. 4-MOLDA and OEA failed to alter the heat threshold but inhibited the threshold drop induced by the TRPV1 receptor agonist resiniferatoxin. These data show that 3-MOLDA behaves as an agonist, whereas 4-MOLDA and OEA appear to be antagonists, at the rat TRPV1 receptor.  相似文献   

19.
Membrane-associated cytoskeletal proteins provide support for endothelial cell (EC) junctional cell adhesion molecules. Nonmuscle filamin is a dimeric actin cross-linking protein that interacts with F-actin and membrane glycoproteins. Both bradykinin and des-Arg9-bradykinin cause filamin redistribution from the plasma membrane to the cytosol of confluent EC. Kinin-induced filamin translocation parallels the dynamics of intracellular Ca2+ increases. Pretreatment with kinin receptor antagonists blocks the Ca2+ response as well as filamin translocation induced by kinins. Protein kinase C activation prior to kinin stimulation attenuates intracellular Ca2+ increases and filamin translocation. BAPTA, a cell-permeable Ca2+ chelator, attenuates bradykinin-induced intracellular Ca2+ increases and filamin translocation. This study demonstrates that bovine pulmonary artery ECs express both kinin B1 and B2 receptors, and that activation of either receptor leads to intracellular Ca2+ increases. This Ca2+ signalling, which is downregulated by protein kinase C activation, is essential for kinin-induced filamin translocation.  相似文献   

20.
The fusion of synaptic vesicles with the pre-synaptic plasma membrane mediates the secretion of neurotransmitters at nerve terminals. This pathway is regulated by an array of protein–protein interactions. Of central importance are the soluble NSF ( N -ethylmaleimide-sensitive factor) attachment protein receptor (SNARE) proteins syntaxin 1 and SNAP25, which are associated with the pre-synaptic plasma membrane and vesicle-associated membrane protein (VAMP2), a synaptic vesicle SNARE. Syntaxin 1, SNAP25 and VAMP2 interact to form a tight complex bridging the vesicle and plasma membranes, which has been suggested to represent the minimal membrane fusion machinery. Synaptic vesicle fusion is stimulated by a rise in intraterminal Ca2+ levels, and a major Ca2+ sensor for vesicle fusion is synaptotagmin I. Synaptotagmin is likely to couple Ca2+ entry to vesicle fusion via Ca2+-dependent and independent interactions with membrane phospholipids and the SNARE proteins. Intriguingly, syntaxin 1, SNAP25, VAMP2 and synaptotagmin I have all been reported to be modified by palmitoylation in neurons. In this review, we discuss the mechanisms and dynamics of palmitoylation of these proteins and speculate on how palmitoylation might contribute to the regulation of synaptic vesicle fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号