首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cotyledon venation patterns are described for 131 species representing the four main tribes of the Mimosoideae. The range of variation in venation pattern falls within that described previously for the Caesalpinioideae and is consistent with the proposal that all patterns in the Leguminosae have been derived from a prototype with four vascular strands and a protoxylem trace in the petiole and seven primary veins in the lamina. Each tribe is characterized by a particular set of patterns, pattern frequencies and evolutionary trends. In the Mimoseae, correlations between venation pattern and cotyledon size and anatomy match those found in the Caesalpinioideae, but different correlations unique to these tribes occur in the Acacieae and Ingeae.  相似文献   

2.
Primary shoot vasculature has been studied for 31 species of Pereskioideae and Opuntioideae from serial transections and stained, decorticated shoot tips. The eustele of all species is interpreted as consisting of sympodia, one for each orthostichy. A sympodium is composed of a vertically continuous axial bundle from which arise leaf- and areole-trace bundles and, in many species, accessory bundles and bridges between axial bundles. Provascular strands for leaf traces and axial bundles are initiated acropetally and continuously within the residual meristem, but differentiation of procambium for areole traces and bridges is delayed until primordia form on axillary buds. The differentiation patterns of primary phloem and xylem are those typically found in other dicotyledons. In all species vascular supply for a leaf is principally derived from only one procambial bundle that arises from axial bundles, whereas traces from two axial bundles supply the axillary bud. Two structural patterns of primary vasculature are found in the species examined. In four species of Pereskia that possess the least specialized wood in the stem, primary vascular systems are open, and leaf traces are mostly multipartite, arising from one axial bundle. In other Pereskioideae and Opuntioideae the vascular systems are closed through a bridge at each node that arises near the base of each leaf, and leaf traces are generally bipartite or single. Vascular systems in Pereskiopsis are relatively simple as compared to the complex vasculature of Opuntia, in which a vascular network is formed at each node by fusion of two sympodia and a leaf trace with areole traces and numerous accessory bundles. Variations in nodal structure correlate well with differences in external shoot morphology. Previous reports that cacti have typical 2-trace, unilacunar nodal structure are probably incorrect. Pereskioideae and Opuntioideae have no additional medullary or cortical systems.  相似文献   

3.
Observations based on a study of more than 1350 species distributed among 165 families of angiosperms are presented. The tracheary elements which mature later than the helical ones in the protoxylem-metaxylem transition are described in terms of a 2-phase wall deposition process. These elements have a helical framework (first-order secondary wall) between the gyres of which is deposited additional secondary wall material in the form of sheets or strands or both (second-order framework). This is indicated both by the sequence of mature elements throughout the primary xylem and by the ontogeny of later maturing elements. Elements in which the second-order system of the secondary wall is deposited more or less synchronously and in which the sheets or strands are restricted to cell edges, i.e., lines of intersection of adjacent cell faces, are interpreted as primitive. Elements in which the second-order sheets and strands appear nonsynchronously and with less regard for cell edges are interpreted as advanced. Alternate pitting results from the appearance of oblique second-order strands with subsequent wall deposition maintaining strand orientation such that pit axes are tilted. In certain elements second-order strands are deposited before, and wall deposition continues after, the cessation of cell elongation. This results in an alternate pit pattern and may explain certain irregular patterns. Branching of the first-order helix seems to be relatively insignificant in the development of more elaborate wall patterns. It is more significant in perforation plate elaboration. “Open pits” occur in a number of dicotyledons. These are pit-like openings which are extended laterally as the thin areas between the gyres of a helix or comparable openings in a reticulum. They constitute a conspicuous feature of the entire protoxylem-metaxylem transition in certain species. The simple perforation plate of only certain angiosperms seems to be the result of bar breakdown in a multipored plate. Reduction in pore number is also the result of fusions in the first-order framework lateral to a multipored plate. In dicots this trend rarely culminates in a simple perforation plate, but it frequently does so in monocots. This type of pore number reduction and enlargement frequently accompanies bar breakdown in dicots and certain monocots. The perforation plate is often simple as the result of a terminalization on the cell, in which case the pore does not intersect the first-order framework. This type of perforation plate occurs in species with and without more obliquely oriented simple perforation plates subject to a breakdown interpretation. Complex multiperforate plates are interpreted as falling into 3 categories : Plates in which a reticulum has resulted from introduction of second-order secondary wall strands at various orientations and with variable amounts of distortion following deposition; plates in which a reticulum has resulted from ramification and fusion of the strands of the first-order framework ; and plates which are multiperforate as the result of the presence of a number of separate loci of breakdown within a single pore membrane. Possible ontogenetic complexities in the development of perforation plates subject to breakdown interpretation are discussed. Protoxylem-metaxylem transitions are described in terms of the sequence of types of perforation plates. Most sequences with various types of plates support the concept of progressively earlier ontogenetic expression of specialized features with progressive elimination of primitive ones. The concept is contradicted by those species in which nearly all perforation plates are simple. Non-simple plates in these species are found from early protoxylem through mid-metaxylem but not in the earliest protoxylem. If non-simple plates are uncommon in a species, they may have a different ontogenetic history in terms of procambial divisions and apical cell growth. In the monocots with a variety of perforation plate types, the probability that a given element will be imperforate or perforate in one way or another will depend on its diameter, not on its position within the sequence. The occurrence of vessels of very limited extent is discussed. It has been calculated that vessels in the stem of Scleria average from 2 to nearly 50 cells in length depending on their diameter.  相似文献   

4.
Ants are considered an important faunal group for the functioning of arid rangelands, they have a long history of use for environmental monitoring, and exhibit four global patterns in grazing lands: (i) soil and vegetation type are primary determinants of ant community composition, and have a far greater effect on ant community composition than grazing; (ii) grazing induces species compositional change, but does not necessarily affect species richness or abundance; (iii) a species response to grazing is not necessarily consistent across habitats; and (iv) approximately one‐quarter to one‐half of species that are common enough for statistical analysis have significant responses to grazing. Here we report the patterns of arid zone ant faunas as they exist after several decades of sheep grazing in southern Australia, and examine the extent to which they conform to the four global patterns. We measured ant faunas along grazing gradients (varying distance to water) in seven paddocks containing two soil and two vegetation types on five pastoral properties. Total site abundance and richness of ants did not differ significantly with distance from water, but the abundance of 10 (34%) of the 29 most common species did differ; three were increasers, three were decreasers, and four had mixed responses dependent on soil/vegetation type. Rare species showed no trend with grazing intensity. The ant fauna of the more structurally complex vegetation types appeared to be the most vulnerable to grazing effects. Multivariate analysis showed soil type was the primary factor influencing ant faunal composition, followed by vegetation structure; however, grazing treatment effects were present. This study fully supports the recently identified global patterns of ant responses to grazing. It also shows that sampling regional ant faunas using widely dispersed traps can detect ant faunal patterns comparable to studies that use smaller‐scale grids of traps.  相似文献   

5.
杜鹃花属的子叶形态分类   总被引:4,自引:0,他引:4  
张长芹   《广西植物》1993,13(1):12-25
通过对杜鹃花属中4个亚厲104种或变种的广叶形态观察发现:1、杜鹃花属中4个亚属间的子叶形态差异较大,杜鹃花鳞片的有无从子叶上就可以清楚地看出。2、常绿无鳞杜鹃亚属Subgenus Hymenanthes(BL)K.Koch的子叶边缘多只腺体状毛或白、棕色单毛,极少无毛。背面多为暗紫红色或为灰白及灰绿色,叶片多具侧脉少数仅具中脉;有鳞杜鹃亚屈SubgenusRhododendron的子叶边缘无毛或仅少数有白色单毛,背面基部或边缘具可数片,背面多为灰绿色极少暗紫色,叶片多具中脉少有侧脉;映山红亚属Subgeuus Tsutsusi(Sweet)Pojar-kova的子叶边缘无毛或仅一种有毛,背面灰绿色,具侧脉;马银花亚属Subgentis AzaleaslrumPlanch.的子叶近圆形,边缘无毛,具侧脉3-4对,背面白绿色。 有关杜鹃花属子叶形态研究,国外虽有报道,但仅涉及少数种类,最多的也不超过35种,其中野生种仅有7种,其代表性显然是不够的。在国内,有关杜鹃花属于叶形态分类方面的研究目前尚未见报道。杜鹃花是久负盛誉的世界名花,云南是杜鹃花的分布中心之一。观察杜鹃花和子叶形态并进行分类,不仅为杜鹃花的系统发育及杜鹃花属的分类提供佐证而且为杜鹃花的育种提供一个早期的鉴定指标。  相似文献   

6.
王永  何顺志 《广西植物》2015,35(4):476-486
采用制作叶脉标本和透明叶标本的方法,对贵州产28种2变种小檗属植物叶脉特征进行比较研究。结果表明:贵州小檗属植物的脉序类型有5种:半达缘羽状脉、花环状半达缘羽状脉、简单弓形羽状脉、花环状弓形羽状脉和混合型。叶脉分支一般有五级:1一级脉构架均为羽状脉,粗度有很粗、粗、中等粗细和纤细四种类型,分支方式包括单轴分支和合轴分支;2粗二级脉构架中有分支达缘或分支均不达缘,与中脉夹角变化各异,内二级脉存在或缺失,细二级脉半达缘、真曲行或简单弓形,间二级脉类型复杂多变但频度种间有差异;3三级脉贯串型、结网型或分支型;4四、五级脉网状或自由分支且常混合在一起。脉间区从发育差到良好,小脉从不分支到不均等分支等各种类型均有,叶缘末级脉缺失、不完整、钉状和环状。大部分种类叶缘具齿,每1cm齿数目和齿内腺点的特性等特征在不同种类间有区别,具有鉴定价值,但齿其它特征复杂多变或种间区别较小,同时齿内脉性状也不稳定。此外,齿的有无会对脉序类型产生影响。小檗属植物叶脉类型存在种间差异,具有重要的分类学价值,叶脉类型的变化和复杂程度显示了该属植物的进化特点;叶齿的有无和齿特征具有分类学和系统学意义。基于叶脉特征的研究结果并结合重要的外部形态学特征编制了贵州小檗属植物的分种检索表。研究结果可为小檗属植物分类寻找新的依据并探讨其系统学意义。  相似文献   

7.
Calcium oxalate crystal types and distribution within leaves ofPrunus sensu lato (Rosaceae; Prunoideae) were surveyed from mostly herbarium specimens (196 specimens of 131 species of all five subgenera usually recognized). Rehydrated samples were bleached, mounted unstained, and viewed microscopically between crossed polarizers. Six patterns were recognized based on crystal type and relative distribution around veins and in mesophyll. Druses predominate in four subgenera, but prismatics are most common in subgenus Padus. Prunophora and Amygdalus, considered to be the most advanced subgenera, have virtually only druses, which are almost always associated with veins. Cerasus and Laurocerasus, intermediate subgenera, have the greatest diversity of patterns, but few species with prismatics. A trend is evident from mostly mesophyll prismatics in Padus to fewer prismatics and more druses of mixed distribution in Laurocerasus and Cerasus, to mostly druses restricted to veins in Amygdalus and Prunophora.  相似文献   

8.
长果安息香属和秤锤树属植物叶片脉序研究   总被引:4,自引:0,他引:4  
杨庆锋  蔡雪珍  陈涛   《广西植物》1997,17(2):145-148
本文观察和描述了单种属长果安息香属和秤锤树属5种植物的叶脉特征。结果表明,两属植物的脉序特征比较一致;但各种之间也存在一些差别,根据这些差别可编出分种检索表;长果安息香与秤锤树属各种的三级脉特征明显不同,支持成立长果安息香属  相似文献   

9.
中国木犀属植物叶脉形态及其分类学意义   总被引:1,自引:0,他引:1  
观察了中国木犀属植物4组19种叶脉形态。主要分析木犀属植物叶片脉序走向,脉序为环结曲行或半直行羽状脉。二级脉急转曲行或半直行,叶脉分支一般为4级,少数5级。盲脉1~2次分支,少数3次或不分支。仅柊树叶缘末级脉汇合成边脉.部分叶缘具齿,叶缘齿性状不稳定,因其内主脉不同而在本属种间表现出一个连续的变异过程。圆锥花序组与李榄属和木犀榄属从叶片脉序特征方面表现出较近的亲缘关系。四个组的叶脉形态在演化上关系上与花粉形态表现相一致。编写了叶片脉序特征分种检索表。  相似文献   

10.
Variation in aggression among species can be due to a number of proximate and ultimate factors, leading to patterns of divergent and convergent evolution of behavior among even closely related species. Caribbean Anolis lizards are well known for their convergence in microhabitat use and morphology, but they also display marked convergence in social behavior and patterns of aggression. We studied 18 Anolis species across six ecomorphs on four different Caribbean islands to test four main hypotheses. We hypothesized that species differences in aggression would be due to species differences in circulating testosterone (T), a steroid hormone implicated in numerous studies across vertebrate taxa as a primary determinant of social behavior; more aggressive species were expected to have higher baseline concentrations of T and corticosterone. We further hypothesized that low-T species would increase T and corticosterone levels during a social challenge. Within three of the four island assemblages studied we found differences in T levels among species within an island that differ in aggression, but in the opposite pattern than predicted: more aggressive species had lower baseline T than the least aggressive species. The fourth island, Puerto Rico, showed the pattern of baseline T levels among species we predicted. There were no patterns of corticosterone levels among species or ecomorphs. One of the two species tested increased T in response to a social challenge, but neither species elevated corticosterone. Our results suggest that it is possible for similarities in aggression among closely related species to evolve via different proximate mechanisms.  相似文献   

11.
During leaf development, ground meristem cells along continuous lines undergo coordinated oriented cell divisions and differentiate to form procambial cells, the precursors of all vascular cells. The molecular genetic dissection of early procambial development suffers from the lack of easily identifiable markers, especially of cell states preceding procambium formation. In this study, we have identified and characterized three reporter gene expression markers that reflect three distinct preprocambial stages, as well as one marker whose expression seems to be perfectly congruent with the appearance of procambial cells. All four markers are invariably expressed in continuous domains connected to pre-existing vasculature and their expression profiles reveal a common spatiotemporal pattern of early vein formation. We observed progressive extension of vascular strands at the preprocambial stage, suggesting that veins are initiated as freely ending preprocambial domains and that network formation occurs through subsequent fusion of these domains. Consistent with this interpretation, we demonstrate that veins are generally not programmed to become freely ending or interconnected network elements. Instead, we found that the progressive extension of preprocambial domains can be interrupted experimentally and that this leads to less complex vein patterns consisting of fewer vein orders, in which even lower-order veins become freely ending. Mesophyll differentiation turned out to be strictly correlated with the termination of preprocambial domain extension. These findings suggest that Arabidopsis vein pattern is not inherently determinate, but arises through reiterative initiation of new preprocambial branches until this process becomes terminated by the differentiation of mesophyll.  相似文献   

12.
A giant form of Anadyomene, most similar to Anadyomene pavonina (J. Agardh) Wille, a rare and diminutive alga endemic to Florida, appeared as up to 10 m long net‐like strands covering 10%–80% of a 0.5 km region of the 25–50 m deep Belizean outer reef slope where none had been present up to 12 months earlier. This new species, described herein as Anadyomene gigantodictyon Littler et D. S. Littler, is characterized by a unistratose blade or cluster of blades formed by the polychotomous branching of uniseriate veins, with the interstices, or spaces between the veins, completely or partially filled with cells that are smaller than those of the veins, with cylindrical to ovate cells. The cells at mid‐blade are 1.7–2.0 mm in length and 0.2–0.3 mm diameter; interstitial cells are parallel and not juxtaposed. All cells are joined in one plane and form species‐specific, fan‐shaped patterns with secondary interstitial cells loosely or tightly woven.  相似文献   

13.
Twelve species belonging to seven monocotyledonous families:Hydrocharitaceae, Taccaceae, Dioscoreaceae, Smilacaceae, Araceae,Alismataceae and Aponogetonaceae show reticulate venation typicalof dicotyledons. A study of the leaves of these species showsthat venation patterns are usually curvipalmate-convergate,occasionally rectipalmate or collimate, and rarely pinnate lyratetype. Number, size and shape of areoles, number of primaries,number of secondaries along one side of the primaries, anglebetween 1 and 2° veins and number of vein endings per areoleare given for each species. Intesecondary veins, isolated tracheids,loops, extension cells, raphide and raphide idioblasts and terminaltracheids were observed. Marginal ultimate venation is mostlyarcuate. Major and minor veins are jacketed by parenchymatousbundle sheath cells. The lamina of Tacca leontopetaloides, Colocasiaesculenta and Scindapsus aureus show a single midrib-like centralregion similar to that of dicotyledonous leaves, and it is multistrandedin Aponogeton natans, Limnophyton obtusifolium and Ottelia alismoides.The degree of vein order is most commonly up to fourth or fifthand rarely up to sixth in Dioscorea hispida. Monocotyledons, leaf architecture, vein endings, venation, areoles  相似文献   

14.
The vascular bundles in the inflorescence axis of Andropogon gerardii occur in inner and outer systems. The inner system is made up of large, early developing strands that, at earliest stages of development, are precocious (= the appendage they are to serve has not yet been initiated). The outer system consists of later developing smaller strands that are open ended in a proximal direction (= strands differentiate basipetally in the cortex below the appendage they serve). Bundles of both the inner and outer systems are not connected to other procambium early in their development but exist as isolated strands. The veins of the inner system of the inflorescence axis occur as sympodia. The presence of inner and outer systems in the vascular tissue is common to most monocotyledons. However, amongst monocotyledons, only certain grasses have been shown to have strands of the inner system that are isolated early in development. Many dicotyledons have large strands which are precocious and some have smaller, later developing strands which are open ended in a proximal direction, hence they occur as isolated strands. These smaller strands in dicotyledons occur between large strands. Certain dicotyledons have an inner and an outer system of veins. Of these, some have veins of the inner system that differ from the inner system bundles of monocotyledons in that they also form part of the outer system of veins, or develop at a different time. One other dicotyledon with an inner and outer system, Bougainvillea, differs from monocotyledons only in that the bundles of the outer system do not seem to be isolated early in their development and anastomoses are seen between the inner and outer systems. Thus, it appears that monocotyledons differ from dicotyledons only in the presence of independent inner and outer systems of vascular bundles in the former. Thus, the hypothesis of Zimmermann and Tomlinson that there are basic differences between monocotyledon and dicotyledon vascular systems is not substantiated. It is even suspected that monocotyledon and dicotyledon vascular systems will be demonstrated to be modifications of a basic plan consisting of large, acropetally differentiating and smaller, basipetally differentiating strands.  相似文献   

15.
Drosophila melanogaster is widely used as a model in DNA variation studies. Patterns of polymorphism have, however, been affected by the history of this species, which is thought to have recently spread out of Africa to the rest of the world. We analyzed DNA sequence variation in 11 populations, including four continental African and seven non-African samples (including Madagascar), at four independent X-linked loci. Variation patterns at all four loci followed neutral expectations in all African populations, but departed from it in all non-African ones due to a marked haplotype dimorphism at three out of four loci. We also found that all non-African populations show the same major haplotypes, though in various frequencies. A parsimonious explanation for these observations is that all non-African populations are derived from a single ancestral population having undergone a substantial reduction of polymorphism, probably through a bottleneck. Less likely alternatives involve either selection at all four loci simultaneously (including balancing selection at three of them), or admixture between two divergent populations. Small but significant structure was observed among African populations, and there were indications of differentiation across Eurasia for non-African ones. Since population history may result in non-equilibrium variation patterns, our study confirms that the search for footprints of selection in the D. melanogaster genome must include a sufficient understanding of its history.  相似文献   

16.
The architecture of the musculature of the eutardigrade species Milnesium tardigradum Doyère, 1840, Hypsibius sp. and Ramazzottius oberhaeuseri (Doyère in Ann Sci Nat Zool Sér 2(14):269–369, 1840) is investigated by phalloidin staining and confocal laser scanning microscopy. There are methodological problems in staining eutardigrades due to physiological alterations under stress (anhydrobiosis) and due to penetration problems of the cuticle. It is helpful to fix specimens in the state of asphyxy, where animals are stretched following an oxygen shortage in their environment. The musculatures of all three species correspond in their general architecture, but differ in detail, such as in the number of muscles. All muscles are isolated muscle strands. There are on each body side two dorsal and one ventral muscle strands, in addition to a system of dorsoventral, lateral and lateroventral muscles. Seven median ventral attachment points give rise to dorsoventral, ventrolateral and appendage muscles. The appendages receive several muscles originating dorsally and ventrally. The number of muscles and the arrangement differ in each appendage. The fourth appendage shows the greatest differences with a far smaller number of muscles compared to other species. The musculature shows comparably few strict segmental patterns, for example, the musculature of each appendage differs from the other ones. By comparison with literature data on the same species and data of Macrobiotus hufelandi it can be shown that eutardigrades have a roughly comparable muscular architecture, but that there are several differences in detail. Dedicated to Professor Westheide on the occasion of his 70th birthday.  相似文献   

17.
S M Du  S Zhang  N C Seeman 《Biochemistry》1992,31(45):10955-10963
Antijunctions and mesojunctions are new classes of multistranded DNA complexes. They represent a generalization of DNA branched junction complexes, such as the Holliday recombination intermediate. Each strand of a conventional branched junction participates in two different double helices, and this is also true for mesojunctions and antijunctions. The helix axes of conventional branched junction complexes may be drawn to converge at a point, but this convergence occurs for lines drawn perpendicular to the helix axes of antijunctions. Mesojunctions are complexes that mix these features of junctions and antijunctions. Antijunction complexes require an even number of strands. We have synthesized the mesojunction containing three strands, the two mesojunctions containing four strands, and the antijunction containing four strands; we compare them with branched junctions containing three and four strands, derived by permutations of the same sequences. Each double helix is designed to contain 1.5 turns of DNA. A tendency to oligomerize makes it difficult to capture antijunctions and mesojunctions in stable discrete complexes, in contrast to conventional branched junctions. For both three-strand and four-strand complexes, Tm is highest for conventional branched junctions. Ferguson analysis indicates similarities in the occluded surface area of junctions, antijunctions, and one four-strand mesojunction, but the other four-strand mesojunction has a much lower apparent surface area. Hydroxyl radical cleavage patterns suggest that the four-strand antijunction and the low-surface-area four-strand mesojunction form stacking domains, analogous to the behavior of conventional branched junctions. These new structures are related to replicational and recombinational intermediates and to single-stranded nucleic acid knots.  相似文献   

18.
Q Guo  M Lu  N R Kallenbach 《Biopolymers》1991,31(4):359-372
Four-arm DNA branched junctions are stable analogues of Holliday recombinational intermediates. A number of four-arm DNA junctions synthesized from oligonucleotides have now been studied. Gel mobility or chemical footprinting experiments on several immobile four-arm junctions indicate that in the presence of Mg2+, they assume a preferred conformation consisting of two helical domains, each formed by stacking a particular pair of arms on each other. We show here that a junction we designate as J1c that has the same chemical composition as one we have previously studied in detail, J1, but is formed from the four strands complementary to those of the latter, exhibits the reverse stacking preference. The pattern of self-protection of the strands of J1c exposed to Fe(II).EDTA-induced scission reveals that twofold symmetry is preserved, but the opposite pair of strands preferentially cross over. Moreover, the Fe(II).EDTA scission profiles of J1c indicate that this junction exhibits a weaker bias as to which strands cross over than is observed in J1. The preference for the dominant species in J1 is 1.3 times greater than in J1c at 4 degrees C and in the presence of 10 mM Mg2+, based on chemical reactivity data. This is confirmed by a cleavage experiment using the resolvase enzyme, endonuclease I, from bacteriophage T7. This difference could reflect either sequence-dependent differences in the equilibrium among isomers, or in the structure of these junctions. Chemical footprinting experiments using the probes MPE.Fe(II) and (OP)2Cu(I) show that the high-affinity ligand binding site in immobile junctions is determined by junction geometry.  相似文献   

19.
Certain anatomical features, especially of roots, leaves, and fruits, provide useful criteria for delimiting a genus and defining its component species. Most species of Perideridia have 1-5 multistelic tuberous roots; however, P. Howellii and P. Kelloggii possess fascicles of up to 20 thickened fibrous roots, each of which is monostelic and composed of four or five primary xylem strands arranged alternately with isolated strands of secondary vascular tissues. The curious multistelic condition of the tuber apparently has not been reported for any other group of dicotyledons. An accessory vascular bundle located internally to the median collateral bundle of the leaf rachis is found in only three species of Perideridia. Depending on the species, the leaf mesophyll may be either dorsiventral or isolateral. In about two-thirds of the species, the oil ducts of the fruit are solitary in the intercostal intervals and paired on the commissure; in the remaining one-third they are more numerous in both situations, rising to 3-5 in the intervals and 12-13 on the commissure in P. Pringlei. Variation in number of oil ducts in the intervals assumes taxonomic importance because it has been used as a generic criterion in this group, but the present study shows no correlation between the number of oil ducts and other characters.  相似文献   

20.
During early development of Eisenia andrei (Crassiclitellata), a loose arrangement of primary circular and longitudinal muscles encloses the whole embryo. Circular muscles differentiate in an anterior–posterior progression creating a segmental pattern. Primary circular muscles emerge at the segmental borders while later in development the central part of each segment is filled with circular strands. Longitudinal muscles develop in an anterio‐posterior manner as well, but by continuous lengthening. Muscle growth is not restricted by segmental boundaries. The development begins with one pair of prominent longitudinal muscles differentiating ventrally along the right and the left germ band. These first muscles provide a guiding structure for the parallel organization of the afterwards differentiating longitudinal musculature. Additional primary longitudinal muscles emerge and form, together with the initial circular muscles, the primary muscle grid of the embryo. During the following development, secondary longitudinal muscle strands develop and integrate themselves into the primary grid. Meanwhile the primary circular muscles split into thin strands in a ventral to dorsal progression. Thus, a fine structured mesh of circular and longitudinal muscles is generated. Compared to other “Oligochaeta”, embryonic muscle patterns in E. andrei are adapted to the development of a lecithotrophic embryo. Nevertheless, two general characteristics of annelid muscle development become evident. The first is the segmental development of the circular muscles from a set of initial muscles situated at the segment borders. Second, there is a continuous development of primary longitudinal muscles starting at the anterior pole. At least one pair of main primary longitudinal strands is characteristic in Annelida. The space between all primary strands is filled with secondary longitudinal strands during further development. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号