首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study was conducted to investigate the effect of the 1BL.1RS wheat-rye-translocation on the androgenic response in spring bread wheat. Therefore, four bread wheat cultivars carrying the translocation, four Greek and three Canadian bread wheat cultivars without the translocation were used. An equal number of anthers from each cultivar, containing microspores in the mid (MU) to late uninucleate (LU) microspore developmental stage, were cultured after cold pre-treatment for seven days at 4°C. W14, 190-2 and the basic MS were used as induction, regeneration, and rooting media respectively. The best androgenic response was recorded in two cultivars carrying the translocation. Only two cultivars lacking the translocation responded to anther culture. It is concluded that the positive effect of the 1BL.1RS translocation on anther culture response of bread wheat cultivars cannot be attributed entirely to its presence because the genetic background of the cultivars carrying the translocation could be also important.  相似文献   

2.
青海省小麦品种中Yr10和Yr15基因及其1BL/1RS易位的分子检测   总被引:2,自引:0,他引:2  
利用抗条锈病基因Yr10和Yr15的SCAR和Barc8标记以及1BL/1RS易位的复合标记,对青海省育成和引进的137份小麦品种进行检测,以明确Yr10和Yr15基因以及1BL/1RS易位在青海小麦品种资源中的分布.结果显示:在137份材料中,有4份检测到Yr10基因,19份检测到Yr15基因,分别占参试材料的2.9%和13.9%,没有检测到同时携带Yr10和Yr15基因的材料;有22份材料为1BL/1RS易位,占参试材料的16.1%.研究表明,青海省大部分小麦抗锈品种及1BL/1RS易位品种为外引种品种.  相似文献   

3.
The simplified AFLP method was developed and evaluated for identification and genetic diversity studies of wheat cultivars. Selective primers exploited in AFLP assay based on a single cutting enzyme PstI ((PstI)AFLP) generated total of 111 robust fragments, including 67 (60%) monomorphic and 12 (11%) cultivar-specific markers. Average similarity between 15 cultivars was 0.650, and varied from 0.293 ('Hope' vs. 'Aurora') to 0.865 ('Norman' vs. 'Hornet'). Mean similarities within groups of winter wheat cultivars with and without 1BL/1RS chromosome were 0.713 and 0.685, respectively. A higher variation was found in the group of spring wheats: 0.677. The obtained results confirm the usefulness of the proposed modification of the AFLP technique for diversity studies and identification of common wheat cultivars.  相似文献   

4.
Using genomic in situ hybidization, among the common wheat cultivars produced in West Siberia (Siberian Research Institute of Agriculture, Omsk) with the involvement of the winter wheat cultivar Kavkaz carrying the wheat-rye 1RS.1BL translocation we identified three cultivars with this translocation: Omskaya 29, Omskaya 37, and Omskaya 38. The protein and crude gluten contents in the grain of these cultivars are equal to or exceed the levels observed in cultivars without the wheat-rye translocation. The common wheat cultivars carrying the wheat-rye translocation were evaluated in terms of resistance of plants reaching wax ripeness to leaf rust and powdery mildew in the natural field conditions. The cultivars Omskaya 37 and Omskaya 38 displayed a high field resistance to leaf rust and were resistant to a variable extent to powdery mildew. The cultivar Omskaya 29 was susceptible to leaf rust and powdery mildew pathogens. Importance of the selection direction and the role of the genetic background in developing common wheat cultivars carrying the wheat-rye translocation is discussed.  相似文献   

5.
The gluten proteins document the genotypic identity of a wheat variety, in addition to providing valuable clues about its ancestry and technological properties. In this study, an Indian durum wheat genotype B662 was identified to carry 1BL/1RS translocation and characterized further for its effect on end use quality traits. Comparison of the end use quality traits of B662 with five other durum cultivars without 1BL/1RS, showed decreased gluten content, lower swelling index of glutenins and low MSDS-SV indicating that, B662 with 1BL/1RS is not good for pasta making. In F2:3 seeds from a durum wheat cross between the 1BL/1RS cultivar B662 and HI8498 without the translocation, the secalin Sec-1 loci segregated in theoretically expected 3:1 proportion and were inherited as a block of the rye chromosome arm. The analysis of F2:3 harvests for the two most important durum wheat quality tests showed that the presence of 1BL/1RS translocation did not alter the grain protein content values, but was associated with significant reduction of micro SDS-sedimentation volume indicating inferior quality, thus limiting the commercial exploitation of durum wheat genotypes with 1BL/1RS translocation. The cautious use of rye translocation in Indian durum wheat breeding is suggested.  相似文献   

6.
黑麦碱基因(Sec–1)表达缺失的1RS/1BL易位系的鉴定   总被引:5,自引:0,他引:5  
晏本菊  张怀琼  任正隆 《遗传》2005,27(4):513-517
用改良的Giemsa C-带技术、DNA原位杂交和酸性聚丙烯酰胺凝胶电泳(A-PAGE)对来源于小麦品种绵阳11与不同黑麦自交系远缘杂交获得的高代株系(BC1F7)的染色体结构和醇溶蛋白进行了研究。结果发现,在鉴定的200个株系中,有45个株系经C-带和A-PAGE检测均一致地发现它们含有一对1RS /1BL易位染色体,而一个株系843-1-1,C-带鉴定、原位杂交结果均证明它含有一对1RS/1BL易位染色体,但A-PAGE醇溶蛋白图谱却不具有黑麦1RS染色体臂的黑麦碱特征带,而表达出既不同于黑麦碱又不同于亲本绵阳11的醇溶蛋白带型。这一结果表明,利用不同的黑麦亲本资源,可以获得黑麦碱基因Sec-1表达缺失的新的1RS/1BL易位系。这种新的1RS/1BL易位系缺失了影响小麦品质的黑麦碱蛋白,因此是进一步研究1RS/1BL 易位对小麦品质影响的珍贵材料。研究指出,在利用外源基因的植物育种中,外源种供体材料的遗传多样性是值得重视的基因资源。  相似文献   

7.
1RS.1BL translocations are centric translocations formed by misdivision and have been used extensively in wheat breeding. However, the role that the centromere plays in the formation of 1RS.1BL translocations is still unclear. Fluorescence in situ hybridization (FISH) was applied to detect the fine structures of the centromeres in 130 1RS.1BL translocation cultivars. Immuno‐FISH, chromatin immunoprecipitation (ChIP)‐qPCR and RT‐PCR were used to investigate the functions of the hybrid centromeres in 1RS.1BL translocations. New 1R translocations with different centromere structures were created by misdivision and pollen irradiation to elucidate the role that the centromere plays in the formation of 1RS.1BL translocations. We found that all of the 1RS.1BL translocations detected contained hybrid centromeres and that wheat‐derived CENH3 bound to both the wheat and rye centromeres in the 1RS.1BL translocation chromosomes. Moreover, a rye centromere‐specific retrotransposon was actively transcribed in 1RS.1BL translocations. The frequencies of new 1RS hybrid centromere translocations and group‐1 chromosome translocations were higher during 1R misdivision. Our study demonstrates the hybrid nature of the centromere in 1RS.1BL translocations. New 1R translocations with different centromere structures were created to help understand the fusion centromere used for wheat breeding and for use as breeding material for the improvement of wheat.  相似文献   

8.
The main objective of the present work was to develop a wheat genotype containing both the recessive crossability alleles (kr1kr1kr2kr2), allowing high crossability between 6x wheat and diploid rye, and the 1BL.1RS wheat/rye translocation chromosome. This wheat genotype could be used as a recipient partner in wheat–rye crosses for the efficient introduction of new allelic variation into 1RS in translocation wheats. After crossing the wheat cultivars ‘Mv Magdaléna’ and ‘Mv Béres’, which carry the 1BL.1RS translocation involving the 1RS chromosome arm from ‘Petkus’, with the line ‘Mv9 kr1’, 117 F2 plants were analysed for crossability, ten of which had higher than 50% seed set with rye and thus presumably carried the kr1kr1kr2kr2 alleles. Four of the ten plants contained the 1BL.1RS translocation in the disomic condition as detected by genomic in situ hybridization (GISH). The wheat × rye F1 hybrids produced between these lines and the rye cultivar ‘Kriszta’ were analysed in meiosis using GISH. 1BL.1RS/1R chromosome pairing was detected in 62.4% of the pollen mother cells. The use of fluorescent in situ hybridization (FISH) with the repetitive DNA probes pSc119.2, Afa family and pTa71 allowed the 1R and 1BL.1RS chromosomes to be identified. The presence of the 1RS arm from ‘Kriszta’ besides that of ‘Petkus’ was demonstrated in the F1 hybrids using the rye SSR markers RMS13 and SCM9. In four of the 22 BC1 progenies analysed, only ‘Kriszta’-specific bands were observed with these markers, though the presence of the 1BL.1RS translocation was detected using GISH. It can be concluded that recombination occurred between the ‘Petkus’ and ‘Kriszta’ 1RS chromosome arms in the translocated chromosome in these plants.  相似文献   

9.
Two new T1BL.1RS translocation lines, 48112 and 89121, derived from cross between common wheat (Triticum aestivum L.) cultivar “Xiaoyan No. 6” and rye (Secale cereale L.) cultivar “German White”, were developed and identified by using of molecular markers and cytogenetical methods, GISH and FISH. PCR results of primers NOR-R1 specific for rye and Glu-B3 for 1BS detected the presence of 1RS chromatin and absence of 1BS, and primer for gene 1Bx14 in 1BL indicated the existence of chromosome arm 1BL in the two lines. GISH and FISH methods confirmed the replacement of chromosome arm 1BS with 1RS. Further stripe rust resistant test and quality analysis demonstrated that the new 1BL.1RS translocation lines were higher resistant to mixed races of P. striiformis Westend and observed considerable better quality than other popularized T1BL.1RS cultivars in China. The two lines have been used in wheat breeding for high-yield potential and rust resistance.  相似文献   

10.
Gobaa S  Bancel E  Kleijer G  Stamp P  Branlard G 《Proteomics》2007,7(23):4349-4357
The introduction of the 1RS chromosome of rye into wheat made wheat more resistant to several pathogens. Today, this resistance has been overcome but the 1BL.1RS translocation remains interesting because of the improved yield and despite the lower rheological properties it produces. Nothing has been reported yet on the impact of rye chromatin introgression on the grain proteome of wheat. The comparison of the 2-DE profiles of 16 doubled haploid lines, with or without the 1BL.1RS translocation, revealed quantitative and qualitative proteic variations in prolamins and other endosperm proteins. Eight spots were found specifically in lines having the 1BL.1RS translocation; 16 other spots disappeared from the same lines. Twelve spots, present in both genotypes, met the criteria for up- or down-regulated spots. In translocated genotypes, a highly overexpressed spot, identified as a gamma-gliadin with nine cysteine residues, suggests that the lack of LMW-GS induced by 1BL.1RS is counterbalanced by an overexpression of a relatively similar prolamin. Moreover, a spot that was absent from 1BL.1RS genotypes was identified as a dimeric alpha-amylase inhibitor. It was considered to be a valuable candidate to explain the sticky dough associated with translocated cultivars.  相似文献   

11.
Genotypes at the gliadin loci Gli-A1, Gli-B1, Gli-D1 and the high-molecular-weight glutenin subunit loci Glu-A1, Glu-B1, Glu-D1 were identified in 77 winter common wheat cultivars developed in the Central Forest Steppe of Ukraine in different periods of time. The highest level of variation was observed at the Gli-A1 locus. Predominant alleles (one or two per locus) were revealed. The comparison of allele frequencies in groups of cultivars developed in different periods of time (before 1996 and in 1996–2007) has demonstrated appearance of new alleles and change of frequencies of existing alleles at the storage protein loci. The high frequency of cultivars with the wheat-rye 1BL/1RS translocation was detected (about 40%). The wheat rye 1AL/1RS translocation was identified in six cultivars developed in the last decade. Four gliadin alleles, Gli-A1w (a marker for the 1AL/1RS translocation), Gli-A1x, Gli-A1y and Gli-B1x, were proposed for cataloging. The article is published in the original.  相似文献   

12.
Out-crossing indices (the out-rcrossing rate, the frequency of plants with cross-pollination and outcrossing intensity) in F2 plants of winter common wheat from the reciprocal cross B-16 x Odesskaya Krasnokolosaya were analysed using storage proteins as genetic markers. Outcrossing indices greatly differed depending on growth conditions. The out-crossing rate was 0,35 % (Odessa, 2000) and 5,11% (Kyiv, 2004). The highest out-crossing indices were detected in homozygotes for the presence of the rye 1BL/1RS translocation. The out-crossing indices in heterozygotes for the presence of the 1BL/1RS translocation were intermediate. Differences in the out-crossing indices were detected between populations of F2 plants derived from direct and reciprocal crossing. Different directions of these differences were noted for the out-rcrossing rate and the frequency of plants with cross-pollination, on the one hand, and out-crossing intensity, on the other hand.  相似文献   

13.
Chromosome arm 1RS of rye (Secale cereale) is a valuable resource for wheat (Triticum aestivum) improvement. 1AL.1RS and 1BL.1RS translocations play an important role in wheat breeding, since wheat carrying these chromosomal translocations has higher tolerance to biotic and abiotic stress. In this study, the presence of 1RS and the distribution of 1AL.1RS and 1BL.1RS wheat-rye translocations were examined in 66 Iranian cultivars and 70 regional foreign accessions of bread wheat, using three rye-specific primers (“RYER3/F3”, “O-SEC5′-A/O-SEC3′-R”, “PAWS5/S6”). Based on “RyeR3/F3”, the presence of 1RS was verified in 15 (23%) Iranian cultivars and in two (3%) foreign accessions. Further, “O-SEC5′-A/O-SEC3′-R” and “PAWS5/S6” were used to distinguish 1AL.1RS and 1BL.1RS translocations. According to results from these primers, 1BL.1RS was identified in 14 (21%) Iranian cultivars and two (3%) foreign accessions. The results confirm that “Sholeh” is the only cultivar (1.5%), among all cultivars and accessions, that carries 1AL.1RS. This study provides a useful tool in marker-assisted selection of materials containing 1RS, and in the creation of new Iranian common wheat cultivars with a larger genetic diversity in wheat breeding programs.  相似文献   

14.
小麦主栽品种中的1RS分布和兰考90(6)系列白粉病新抗源   总被引:5,自引:0,他引:5  
利用黑麦染色体臂1RS的特异性PCR标记,对黄淮麦区138个小麦主栽品种、系进行了PCR扩增,结果表明:有42.0%的小麦品种、系携带1RS染色体臂。以六倍体小黑麦Mzalenod Beer为黑麦染色体供体,培育的兰考90(6)系列小麦品系是新的小麦-黑麦1BL/1RS易位系。这些品系对小麦白粉病具有很高的抗性,是小麦抗白粉病育种的新抗源。对兰考90(6)系列品系白粉病抗性进行了研究,结果表明,兰考90(6)系列品系的抗谱与许多已经知道的小麦抗白粉病基因的抗谱不同,并具有数量抗性特点。  相似文献   

15.
Identification of the chromosomal composition of common wheat lines with rye chromosomes was carried out using genomic in situ hybridization and 1RS- and 5P-specific PCR markers. It was demonstrated that wheat chromosomes 5A or 5D were substituted by rye chromosome 5R in the wheat-rye lines. It was established that one of the lines with complex disease resistance contained rye chromosome 5R and T1RS.1BL, while another line was found to contain, in addition to T1RS.1BL, a new Robertsonian translocation, T5AS.5RL. Substitution of the wheat chromosome 5A with the dominant Vrn-A1 gene for the Onokhoiskaya rye chromosome 5R led to lengthening of the germination-heading period or to a change in the type of development. A negative influence of T1RS.1BL on SDS sedimentation volume and grain hardness was demonstrated, along with a positive effect of the combination of T1RS.1BL and 5R(5D) substitution on grain protein content. Quantitative traits of the 5R(5A) and 5R(5D) substitution lines were at the level of recipient cultivars. A line with two translocations, T1RS.1BL + T5AS.5Rl, appeared to be more productive as compared to the line carrying T1RS.1BL in combination with the 5R(5D) substitution.  相似文献   

16.
威岭栽培黑麦抗白粉病特性导入小麦的研究   总被引:6,自引:0,他引:6  
威岭黑麦(Weiling rye)是一个高抗白粉病(Erysiphe gramininis f.sp.tritici)的中国矮杆栽培黑麦。以Weiling rye作为白粉病抗源,高感白粉病小麦栽培品种My8443为母本,从Weiling rye与小麦My8443远缘杂交的BC_2F_6后代中鉴定出一个新的小麦-黑麦易位系No.147,以实现威岭黑麦白粉病抗性向普通栽培小麦的转移。No.147及其亲本的抗白粉病特性通过苗期和成株期优势生理小种混合接种和室内单生理小种接种鉴定,改良的染色体C-分带和基因组原位杂交技术(GISH。Ge- nomic in situ hybridization)被用于鉴定小麦和黑麦的染色质,酸性聚丙烯酰胺凝胶电泳(APAGE)被用于鉴定黑麦醇溶蛋白1RS特异条带,11个黑麦种属特异性标记SCM(Secale cereale marker)引物被用于扩增分析黑麦特异性简单重复序列(SSR)。研究结果证实No.147是一个新的高抗白粉病的1BL/1RS小麦-黑麦染色体易位系,并对其产生的细胞学机制进行了分析。论文对中国栽培黑麦抗性基因资源的利用和该易位系在小麦遗传育种改良中的利用价值进行了讨论。  相似文献   

17.
Identification of the 1RS rye chromosomal segment in wheat by RAPD analysis   总被引:13,自引:0,他引:13  
The introgression of rye DNA into the wheat genome was studied using random decamer and specific primers with the polymerase chain reaction (PCR). DNA from paired near-isolines in Chisholm and Arkan backgrounds differing with respect to the presence of a 1 RS.1 BL translocation was amplified with 120 arbitrary sequence primers. Two of the primers (OPR 19 and OPJ07) amplified rye-specific DNA fragments. The OPR19 primer amplified a 1.35-kb fragment that appeared to be specific to the 1 RS.1 BL translocation, based on its presence only in lines carrying the 1 RS. 1 BL translocation. A fragment of the same size was also amplified in 1 RS.1 AL translocation lines. This 1 RS. 1 BL marker locus was designated Ximc 1. The other primer, OPJ07, amplified a 1.2-kb DNA sequence, that was designated Ximc 2, specific to the wheat-rye translocation in various wheat backgrounds. The sequences of the two marker loci were found to be different from each other. The Ximc 1 locus was a low-copy sequence which was also present in Balboa rye genomic DNA. Through the use of specific primers, the presence of the rye-specific marker was confirmed in hexaploid as well as in tetraploid wheat backgrounds. The use of RAPDs for the study of smaller alien introgressions into wheat is discussed.  相似文献   

18.
The 1BL.1RS translocations between wheat (Triticum aestivum L.) and rye (Secale cereale L.) are widely used in bread wheat breeding programs, but all modern wheat cultivars with the 1BL.1RS have shown genetic vulnerability due to one rye source – a German cultivar, Petkus. We have developed, a new 1BL.1RS wheat-rye translocation line from the backcross of the F1 hybrid of wheat cv. Olmil and rye cv. Paldanghomil, both cultivars from Korea. The GISH technique was applied to identify the presence of rye chromatin in 467 BC1F6 lines selected from 77 BC1F5 lines. Only one line, Yw62–11, showed wheat-rye translocated chromosomes, with a somatic chromosome number of 2n=42. C-banding patterns revealed that the translocated chromosome was 1BL.1RS, showing prominent bands in the terminal and sub-terminal regions of the short arm as well as in the centromeric region and terminal region of the long arm. This new 1BL.1RS translocation line formed 21 bivalents like common wheat at meiotic metaphase I, thereby showing complete homology. Received: 28 February 2001 / Accepted: 17 April 2001  相似文献   

19.
A rye–wheat centric chromosome translocation 1RS.1BL has been widely used in wheat breeding programs around the world. Increased yield of translocation lines was probably a consequence of increased root biomass. In an effort to map loci-controlling root characteristics, homoeologous recombinants of 1RS with 1BS were used to generate a consensus genetic map comprised of 20 phenotypic and molecular markers, with an average spacing of 2.5 cM. Physically, all recombination events were located in the distal 40% of the arms. A total of 68 recombinants was used and recombination breakpoints were aligned and ordered over map intervals with all the markers, integrated together in a genetic map. This approach enabled dissection of genetic components of quantitative traits, such as root traits, present on 1S. To validate our hypothesis, phenotyping of 45-day-old wheat roots was performed in five lines including three recombinants representative of the entire short arm along with bread wheat parents ‘Pavon 76’ and Pavon 1RS.1BL. Individual root characteristics were ranked and the genotypic rank sums were subjected to Quade analysis to compare the overall rooting ability of the genotypes. It appears that the terminal 15% of the rye 1RS arm carries gene(s) for greater rooting ability in wheat.  相似文献   

20.
Xu H  Yin D  Li L  Wang Q  Li X  Yang X  Liu W  An D 《Cytogenetic and genome research》2012,136(3):220-228
To develop a set of molecular markers specific for the chromosome arms of rye, a total of 1,098 and 93 primer pairs derived from the expressed sequence tag (EST) sequences distributed on all 21 wheat chromosomes and 7 rye chromosomes, respectively, were initially screened on common wheat 'Chinese Spring' and rye cultivar 'Imperial'. Four hundred and fourteen EST-based markers were specific for the rye genome. Seven disomic chromosome addition lines, 10 telosomic addition lines and 1 translocation line of 'Chinese Spring-Imperial' were confirmed by genomic in situ hybridization and fluorescencein situ hybridization, and used to screen the rye-specific markers. Thirty-one of the 414 markers produced stable specific amplicons in 'Imperial', as well as individual addition lines and were assigned to 13 chromosome arms of rye except for 6RS. Six rye cultivars, wheat cultivar 'Xiaoyan 6' and accessions of 4 wheat relatives were then used to test the specificity of the 31 EST-based markers. To confirm the specificity, 4 wheat-rye derivatives of 'Xiaoyan 6 × German White', with chromosomes 1RS, 2R and 4R, were amplified by some of the EST-based markers. The results indicated that they can effectively be used to detect corresponding rye chromosomes or chromosome arms introgressed into a wheat background, and hence to accelerate the utilization of rye genes in wheat breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号