首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Towards an understanding of position effect variegation   总被引:16,自引:0,他引:16  
Most variegating position effects are a consequence of placing a euchromatic gene adjacent to alpha-heterochromatin. In such rearrangements, the affected locus is inactivated in some cells, but not others, thereby giving rise to a mosaic tissue of mutant and wild-type cells. A detailed examination of the molecular structure of three variegating white mottled mutations of Drosophila melanogaster, all of which are inversions of the X chromosome, reveals that their euchromatic breakpoints are clustered and located approximately 25 kb downstream of the white promoter and that the heterochromatic sequences to which the white locus is adjoined are transposons. An analysis of three revertants of the wm4 mutation, created by relocating white to another euchromatic site, demonstrates that they also carry some heterochromatically derived sequences with them upon restoration of the wild-type phenotype. This suggests that variegation is not controlled from a heterochromatic sequence immediately adjacent to the variegating gene but rather from some site more internal to the heterochromatic domain itself. As a consequence of this observation we have proposed a boundary model for understanding how heterochromatic domains may be formed. It has been recognized for many years that the phenotype of variegating position effects may be altered by the presence of trans-acting dominant mutations that act to either enhance or suppress variegation. Using P-element mutagenesis, we have induced and examined 12 dominant enhancers of variegation that represent four loci on the second and third chromosomes. Most of these mutations are cytologically visible duplications or deficiencies. They exert their dominant effects through changes in the copy number of wild-type genes and can be divided into two reciprocally acting classes. Class I modifiers are genes that act as enhancers of variegation when duplicated and as suppressors when mutated or deficient. Conversely, class II modifiers are genes that enhance when mutated or deleted and suppress when duplicated. The available data indicate that, in Drosophila, there are 20-30 loci capable of dominantly modifying variegation. Of these, most appear to be of the class I type whereas only two class II modifiers have been identified so far.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
G L Sass  S Henikoff 《Genetics》1998,148(2):733-741
In Drosophila melanogaster, heterochromatin-induced silencing or position-effect variegation (PEV) of a reporter gene has provided insights into the properties of heterochromatin. Class I modifiers suppress PEV, and class II modifiers enhance PEV when the modifier gene is present in fewer than two doses. We have examined the effects of both class I and class II modifiers on four PEV mutations. These mutations include the inversions In(1)w(m4) and In(2R)bw(VDe2), which are classical chromosomal rearrangements that typify PEV mutations. The other mutations are a derivative of brown(Dominant), in which brown+ reporters are inactivated by a large block of heterochromatin, and a P[white+] transposon insertion associated with second chromosome heterochromatin. In general, we find that class I modifiers affect both classical and nonclassical PEV mutations, whereas class II modifiers affect only classical PEV mutations. We suggest that class II modifiers affect chromatin architecture in the vicinity of reporter genes, and only class I modifiers identify proteins that are potentially involved in heterochromatin formation or maintenance. In addition, our observations support a model in which there are different constraints on the process of heterochromatin-induced silencing in classical vs. nonclassical PEV mutations.  相似文献   

3.
4.
Dominant modifiers of position-effect variegation of Drosophila melanogaster were tested for their effects on the variegation of genes normally located in heterochromatin. These modifiers were previously isolated as strong suppressors of the variegation of euchromatic genes and have been postulated to encode structural components of heterochromatin or other products that influence chromosome condensation. While eight of the modifiers had weak or no detectable effects, six acted as enhancers of light (lt) variegation. The two modifiers with the strongest effects on lt were shown to also enhance the variegation of neighboring heterochromatic genes. These results suggest that the wild-type gene products of some modifiers of position-effect variegation are required for proper expression of genes normally located within or near the heterochromatin of chromosome 2. We conclude that these heterochromatic genes have fundamentally different regulatory requirements compared to those typical of euchromatic genes.  相似文献   

5.
6.
P. Dimitri  C. Pisano 《Genetics》1989,122(4):793-800
Position effect variegation results from chromosome rearrangements which translocate euchromatic genes close to the heterochromatin. The euchromatin-heterochromatin association is responsible for the inactivation of these genes in some cell clones. In Drosophila melanogaster the Y chromosome, which is entirely heterochromatic, is known to suppress variegation of euchromatic genes. In the present work we have investigated the genetic nature of the variegation suppressing property of the D. melanogaster Y chromosome. We have determined the extent to which different cytologically characterized Y chromosome deficiencies and Y fragments suppress three V-type position effects: the Y-suppressed lethality, the white mottled and the brown dominant variegated phenotypes. We find that: (1) chromosomes which are cytologically different and yet retain similar amounts of heterochromatin are equally effective suppressors, and (2) suppression effect is positively related to the size of the Y chromosome deficiencies and fragments that we tested. It increases with increasing amounts of Y heterochromatin up to 60-80% of the entire Y, after which the effect reaches a plateau. These findings suggest suppression is a function of the amount of Y heterochromatin present in the genome and is not attributable to any discrete Y region.  相似文献   

7.
In position-effect variegation (PEV) genes become silenced by heterochromatisation. Genetic dissection of this process has been performed by means of dominant suppressor [Su(var)] and enhancer [E(var)] mutations. Selective genetic screens allowed mass isolation of more than 380 PEV modifier mutations identifying about 150 genes. Genetic fine structure studies revealed unique dosage dependent effects. Most of the haplo-dependent Su(var) and E(var) genes do not display triplo-dependent effects. Several Su(var) loci with triplo-dependent opposite enhancer effects have been identified and shown to encode heterochromatin-associated proteins. From these the evolutionary conserved histone H3 lysine 9 methyltransferase SU(VAR)3-9 plays a central role in heterochromatic gene silencing. Molecular function of most PEV modifier genes is still unknown also including genes identified with mutations displaying lethal interaction to heterochromatin. Their analysis should contribute to further understanding of processes connected with regulation of higher order chromatin structure and epigenetic programming.  相似文献   

8.
Summary The dose dependent effects of position-effect variegation (PEV) modifying genes were studied in chromosome arms2L, 2R and3R. Four groups of PEV modifying genes can be distinguished: haplo-abnormal suppressor and enhancer loci with or without a triplo-effect. using duplications four triplo-abnormal suppressor and four triplo-abnormal enhancer functions were localized. In two cases we proved that these functions correspond to a converse haplo-abnormal one. Altogether 43 modifier loci were identified. Most of these loci proved not to display significant triplo-effects (35). The group of haplo-abnormal loci with a triplo-effect may represent genes which play an important role in heterochromatin packaging.  相似文献   

9.
10.
Polycomb group (PcG) genes of Drosophila are negative regulators of homeotic gene expression required for maintenance of determination. Sequence similarity between Polycomb and Su(var)205 led to the suggestion that PcG genes and modifiers of position-effect variegation (PEV) might function analogously in the establishment of chromatin structure. If PcG proteins participate directly in the same process that leads to PEV, PcG mutations should suppress PEV. We show that mutations in E(Pc), an unusual member of the PcG, suppress PEV of four variegating rearrangements: In(l)wm4, B(SV), T(2;3)Sb(V) and In(2R)bw(VDe2). Using reversion of a Pelement insertion, deficiency mapping, and recombination mapping as criteria, homeotic effects and suppression of PEV associated with E(Pc) co-map. Asx is an enhancer of PEV, whereas nine other PcG loci do not affect PEV. These results support the conclusion that there are fewer similarities between PcG genes and modifiers of PEV than previously supposed. However, E(Pc) appears to be an important link between the two groups. We discuss why Asx might act as an enhancer of PEV.  相似文献   

11.
C. P. Bishop 《Genetics》1992,132(4):1063-1069
The results of an investigation into intrinsic differences in the formation of two different heterochromatic domains are presented. The study utilized two different position effect variegation mutants in Drosophila melanogaster for investigating the process of compacting different stretches of DNA into heterochromatin. Each stretch of DNA encodes for a gene that affects different aspects of bristle morphology. The expression of each gene is prevented when it is compacted into heterochromatin thus the genes serve as effective reporter systems to monitor the spread of heterochromatin. Both variegating mutants are scored in the same cell such that environmental and genetic background differences are unambiguously eliminated. Any differences observed in the repression of the two genes must therefore be the result of intrinsic differences in the heterochromatic compaction process for the two stretches of DNA. Studies of the effects different enhancers of variegation have upon the compaction of the two genes indicate each compaction event occurs independently of the other, and that different components are involved in the two processes. These results are discussed with regard to spreading heterochromatin and the role this process may play in regulating gene expression.  相似文献   

12.
Cattani MV  Presgraves DC 《Genetics》2012,191(2):549-559
The Dobzhansky-Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophila has remained slow, mainly because Drosophila melanogaster, with all of its genetic tools, forms dead or sterile hybrids when crossed to its sister species, D. simulans, D. sechellia, and D. mauritiana. To circumvent this problem, we used chromosome deletions and duplications from D. melanogaster to map two hybrid incompatibility loci in F(1) hybrids with its sister species. We mapped a recessive factor to the pericentromeric heterochromatin of the X chromosome in D. simulans and D. mauritiana, which we call heterochromatin hybrid lethal (hhl), which causes lethality in F(1) hybrid females with D. melanogaster. As F(1) hybrid males hemizygous for a D. mauritiana (or D. simulans) X chromosome are viable, the lethality of deficiency hybrid females implies that a dominant incompatible partner locus exists on the D. melanogaster X. Using small segments of the D. melanogaster X chromosome duplicated onto the Y chromosome, we mapped a dominant factor that causes hybrid lethality to a small 24-gene region of the D. melanogaster X. We provide evidence suggesting that it interacts with hhl(mau). The location of hhl is consistent with the emerging theme that hybrid incompatibilities in Drosophila involve heterochromatic regions and factors that interact with the heterochromatin.  相似文献   

13.
The vast majority of the >100 modifier genes of position-effect variegation (PEV) in Drosophila have been identified genetically as haplo-insufficient loci. Here, we describe pitkin(Dominant) (ptn(D)), a gain-of-function enhancer mutation of PEV. Its exceptionally strong enhancer effect is evident as elevated spreading of heterochromatin-induced gene silencing along euchromatic regions in variegating rearrangements. The ptn(D) mutation causes ectopic binding of the SU(VAR)3-9 heterochromatin protein at many euchromatic sites and, unlike other modifiers of PEV, it also affects stable position effects. Specifically, it induces silencing of white+ transgenes inserted at a wide variety of euchromatic sites. ptn(D) is associated with dominant female sterility. +/+ embryos produced by ptn(D)/+ females mated with wild-type males die at the end of embryogenesis, whereas the ptn(D)/+ sibling embryos arrest development at cleavage cycle 1-3, due to a combined effect of maternally provided mutant product and an early zygotic lethal effect of ptn(D). This is the earliest zygotic effect of a mutation so far reported in Drosophila. Germ-line mosaics show that ptn+ function is required for normal development in the female germ line. These results, together with effects on PEV and white+ transgenes, are consistent with the hypothesis that the ptn gene plays an important role in chromatin regulation during development of the female germ line and in early embryogenesis.  相似文献   

14.
Donaldson KM  Lui A  Karpen GH 《Genetics》2002,160(3):995-1009
Terminal deletions of a Drosophila minichromosome (Dp(1;f)1187) dramatically increase the position effect variegation (PEV) of a yellow(+) body-color gene located in cis. Such terminal deficiency-associated PEV (TDA-PEV) can be suppressed by the presence of a second minichromosome, a phenomenon termed "trans-suppression." We performed a screen for mutations that modify TDA-PEV and trans-suppression. Seventy suppressors and enhancers of TDA-PEV were identified, but no modifiers of trans-suppression were recovered. Secondary analyses of the effects of these mutations on different PEV types identified 10 mutations that modify only TDA-PEV and 6 mutations that modify TDA-PEV and only one other type of PEV. One mutation, a new allele of Su(var)3-9, affects all forms of PEV, including silencing associated with the insertion of a transgene into telomeric regions (TPE). This Su(var)3-9 allele is the first modifier of PEV to affect TPE and provides a unique link between different types of gene silencing in Drosophila. The remaining mutations affected multiple PEV types, indicating that general PEV modifiers impact TDA-PEV. Modifiers of TDA-PEV may identify proteins that play important roles in general heterochromatin biology, including proteins involved in telomere structure and function and the organization of chromosomes in the interphase nucleus.  相似文献   

15.
Three suppressor loci for position-effect variegation, one dominant temperature-sensitive (DTS), three Minute genes, and two recessive visible mutants (ed, tkv) have been cytogenetically localized by using duplications and deficiencies in regions 23-25 of chromosome arm 2L of Drosophila melanogaster. Two of the suppressor loci studied proved to represent haplo-abnormal genes localized in regions 23A6-23F6 and 24E2-25A1, respectively. The third one is a strong triplo-abnormal suppressor mapping in 25F4-26B9 which affects white variegation in wm4h when present in three doses. The l(2)2DTS mutation, which belongs to a group of noncomplementing dominant temperature-sensitive mutations, is localized in the 25A4-B1 region. Furthermore, two Minute genes have been localized in region 24 that are included in Df(2L)M11 and can be separated employing translocation (Y;2)P8 (24E2-4): M(2)LS2 in 24D3-4-24E2-4, and M(2)z in 24E4-5-24F5-7. A third Minute gene (M(2)S1) is localized in 25C3-8-25C9-D1. The usefulness of the isolated chromosomal rearrangements for further genetic studies of region 23-26 is discussed.  相似文献   

16.
17.
18.
Henikoff S 《Genetics》1979,93(1):105-115
A dominant eye color mutation was found associated with a third chromosome inversion broken distally at or near the karmoisin (kar) locus in 87C and proximally within centric heterochromatin. Suppressibility of the mutant phenotype by an extra Y chromosome indicated that this was an example of dominant position-effect variegation. When heterozygous with deficiencies uncovering the kar locus, this inversion chromosome was found to be lethal unless a region in 87EF was also deleted. Extra Y chromosomes rescued inversion/deletion heterozygotes, while removal of the Y chromosome from heterozygous males deficient for the region in 87EF was lethal. Thus, a variegating lethal lies near the breakpoint in 87C, and a wild-type gene that enhances its variegation lies in 87EF. Furthermore, deletion of the region in 87EF was found to strongly suppress white-mottled-4 (wm4) variegation, while deletion of another region in 87BC suppressed less strongly. These results indicate that essential genes on autosomes are sensitive to position effects, and loci that enhance variegation, as defined by deficiency mapping, are very common.  相似文献   

19.
The Notch receptor controls cell fate decisions throughout Drosophila development. Truncated, ligand-independent forms of this protein delay or block differentiation. We have previously shown that expression of the intracellular domain of the receptor under the control of the sevenless enhancer/promoter induces a rough eye phenotype in the adult fly. Analysis of the resultant cellular transformations suggested that this form of Notch acts as a constitutively activated receptor. To identify gene products that interact with Notch, a second-site mutagenesis screen was performed to isolate enhancers and suppressors of the eye phenotype caused by expression of these activated Notch molecules. We screened 137,000 mutagenized flies and recovered 290 dominant modifiers. Many new alleles of previously identified genes were isolated, as were mutations defining novel loci that may function in the Notch signaling pathway. We discuss the data with respect to known features of Notch receptor signaling and Drosophila eye development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号