首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rat inner medullary collecting duct (IMCD) secretes substantial amounts of H+. However, carbonic anhydrase (CA), a concomitant of H+ secretion, has been generally reported absent in this segment. To reexamine this problem, we investigated CA and the morphological phenotypes of cells comprising the IMCD by CA histochemistry, using a modified Hansson technique with light and electron microscopy. Throughout the medulla, tubule cells exhibit histochemical CA activity. In the initial third of the inner medulla, a small proportion have features of intercalated cells and demonstrate some degree of CA activity. However, the majority population in the early portions of the IMCD appears to consist of principal cells. These also show CA staining of widely variable intensity, both among and within cells. A third cell type, previously called "IMCD cells", appears in the middle portion of the IMCD and is the only cell type present near the papilla tip. In contrast to previous reports, these "IMCD cells" have histochemical CA staining, also of highly variable intensity. These results demonstrate that stainable carbonic anhydrase to support acidification is present throughout the rat IMCD, both in intercalated cells and in some cells clearly not of this type. Therefore, the presence of CA is not specific for the intercalated cell type and suggests that other cell types may participate in acid secretion in IMCD.  相似文献   

2.
3.
We hypothesized that nitric oxide synthase (NOS) isoforms may be regulated by dynamin (DNM) in the inner medullary collecting duct (IMCD). The aims of this study were to determine which DNM isoforms (DNM1, DNM2, DNM3) are expressed in renal IMCDs, whether DNM interacts with NOS, whether a high-salt diet alters the interaction of DNM and NOS, and whether DNM activates NO production. DNM2 and DNM3 are highly expressed in the rat IMCD, while DNM1 is localized outside of the IMCD. We found that DNM1 interacts with NOS1α, NOS1β, and NOS3 in the inner medulla of male Sprague-Dawley rats on a 0.4% salt diet. DNM2 interacts with NOS1α, while DNM3 interacts with both NOS1α and NOS1β. DNM2 and DNM3 do not interact with NOS3 in the rat inner medulla. We did not observe any change in the DNM/NOS interactions with rats on a 4% salt diet after 7 days. Furthermore, NOS1α interacts with DNM2 in mIMCD3 and COS7 cells transfected with NOS1α and DNM2-GFP constructs and the NOS1 reductase domain is necessary for the interaction. Finally, COS7 cells expressing NOS1α or NOS1α/DNM2-GFP had significantly higher nitrite production compared with DNM2-GFP only. Nitrite production was blocked by the DNM inhibitor dynasore or the dominant negative DNM2K44A. Ionomycin stimulation further increased nitrite production in the NOS1α/DNM2-GFP cells compared with NOS1α only. In conclusion, DNM and NOS1 interact in the rat renal IMCD and this interaction leads to increased NO production, which may influence NO production in the renal medulla.  相似文献   

4.
5.
Previous work from our laboratory has demonstrated that the inner medullary collecting duct (IMCD) expresses a large amount of nitric oxide synthase (NOS) activity. The present study was designed to characterize the transport of NOS substrate, L-arginine, in a suspension of bulk-isolated IMCD cells from the Sprague-Dawley rat kidney. Biochemical transport studies demonstrated an L-arginine transport system in IMCD cells that was saturable and Na(+) independent (n = 6). L-Arginine uptake by IMCD cells was inhibited by the cationic amino acids L-lysine, L-homoarginine, and L-ornithine (10 mmol/l each) and unaffected by the neutral amino acids L-leucine, L-serine, and L-glutamine. Both L-ornithine (n = 6) and L-lysine (n = 6) inhibited NOS enzymatic activity in a dose-dependent manner in IMCD cells, supporting the important role of L-arginine transport for NO production by this tubular segment. Furthermore, RT-PCR of microdissected IMCD confirmed the presence of cationic amino acid transporter CAT1 mRNA, whereas CAT2A, CAT2B, and CAT3 were not detected. These results indicate that L-arginine uptake by IMCD cells occurs via system y(+), is encoded by CAT1, and may participate in the regulation of NO production in this renal segment.  相似文献   

6.
7.
8.
9.
10.
11.
19-Nordeoxycorticosterone (19-nor-Doc), a potent mineralocorticoid, was found to be synthesized by the isolated rat kidney perfused by an adrenal precursor (19-oxo-Doc). To determine if this bioconversion is a function of renal tubular cells, various adrenal precursors of 19-nor-Doc were added separately to rat kidney inner medullary collecting duct cells culture media at a concentration of 10 nM. While 4.6% +/- 1.0% of 19-oxo-Doc (n = 3) and 14.4% +/- 1.4% of 19-oic-Doc (n = 3) were converted to 19-nor-Doc after 24 hours of incubation, Doc, and 19-OH-Doc were not converted. This represents further evidence that Doc has to be metabolized to 19-oxo-Doc or 19-oic-Doc (19-carboxy-Doc) before it can be converted by the kidney inner medullary collecting duct cells to 19-nor-Doc.  相似文献   

12.
Abstract. The distal inner medullary collecting duct (IMCD) is critical in the urinary concentrating process, in part because it is the site of vasopressin (AVP)-regulated permeability to urea. The purpose of these experiments was to develop a cell culture model of the IMCD on permeable structure and to characterize the responsiveness to AVP. Rat IMCD cells were grown to confluence on collagen-coated Millipore filters glued onto plastic rings. To assess the time required to achieve confluence, the transepithelial resistance was measured periodically and was found to be stable after 2 weeks, at a maximal value of 595 ± 22 ω cm2. In separate monolayers the effect of AVP on inulin and urea permeability was determined. While inulin permeability was unchanged after AVP, urea permeability increased from 6.0 ± 0–4 to peak values of 16.0 ± 3–8(10nM),23.1 ± 3–9(1 μM)and28 1 ± 4–9(10μM) X 10-6cms-1 ( n = 24). In 10 other monolayers, after the addition of 1 mM 8-Br-cAMP, urea permeability increased from 5.1 ±0–3 to 8.1 ± 1–6 times 10-6 cm s-1 and, after 8-Br-cAMP +3-isobutyl-l-methylxanthine, to 12.2 ± 0–7 times 10-6 cms-1. We conclude that rat IMCD cells grown in culture exhibit the characteristics of a 'tight' epithelium. Inulin and urea permeability are not different in the absence of AVP, consistent with high resistance junctional complexes. Furthermore, IMCD cells retain the capacity for AVP-regulated urea permeability, a characteristic feature of this nephron segment in vivo.  相似文献   

13.
The distal inner medullary collecting duct (IMCD) is critical in the urinary concentrating process, in part because it is the site of vasopressin (AVP)-regulated permeability to urea. The purpose of these experiments was to develop a cell culture model of the IMCD on permeable structure and to characterize the responsiveness to AVP. Rat IMCD cells were grown to confluence on collagen-coated Millipore filters glued onto plastic rings. To assess the time required to achieve confluence, the transepithelial resistance was measured periodically and was found to be stable after 2 weeks, at a maximal value of 595 +/- 22 omega cm2. In separate monolayers the effect of AVP on inulin and urea permeability was determined. While inulin permeability was unchanged after AVP, urea permeability increased from 6.0 +/- 0.4 to peak values of 16.0 +/- 3.8 (10 nM), 23.1 +/- 3.9 (1 microM) and 28.1 +/- 4.9 (10 microM) x 10(-6) cm s-1 (n = 24). In 10 other monolayers, after the addition of 1 mM 8-Br-cAMP, urea permeability increased from 5.1 +/- 0.3 to 8.1 +/- 1.6 x 10(-6) cm s-1 and, after 8-Br-cAMP + 3-isobutyl-1-methylxanthine, to 12.2 +/- 0.7 x 10(-6) cm s-1. We conclude that rat IMCD cells grown in culture exhibit the characteristics of a 'tight' epithelium. Inulin and urea permeability are not different in the absence of AVP, consistent with high resistance junctional complexes. Furthermore, IMCD cells retain the capacity for AVP-regulated urea permeability, a characteristic feature of this nephron segment in vivo.  相似文献   

14.
Summary Antidiuretic hormone (ADH) induces an aggregation of intramembranous particles (IMP) into discrete clusters in the luminal plasma membrane of rat renal papillary collecting duct cells (Harmanci et al. 1978). The correlation between an elevated dose of ADH, increased urine osmolality, and greater IMP cluster frequency has led to speculation that the water permeability of the luminal plasma membrane is reflected by the IMP cluster density (Harmanci et al. 1980). The present study indirectly evaluated this water permeability by quantitating collecting duct IMP cluster frequency from freeze fracture replicas in two regions of the renal papilla, at its base and at its tip, in antidiuretic and in water diuretic rats. During antidiuresis there was a high frequency of IMP clusters (189/100 m2 of luminal plasma membrane) in cells from the papilla base but not at the papilla tip (9.0/100 m2). During water diuresis there were few IMP clusters in either cells from the papilla base (5.9/100 m2) or at the papilla tip (1.4/100 m2). Most significantly these results suggest that the water permeability of the terminal portion of the inner medullary collecting duct of antidiuretic rats is significantly lower than that of the collecting duct epithelium higher in the papilla.Preliminary findings of this study were presented at the Second International Congress of Cell Biology, West Berlin 1980  相似文献   

15.
16.
Summary Regulation of urea transport by vasopressin in inner medullary collecting duct (IMCD) cells is thought to be important for the urinary concentrating mechanism. Isolated tubule perfusion studies suggest the existence of a saturable urea carrier. We have measured14C-urea efflux in IMCD cells which were freshly isolated and grown in primary culture. Cells were isolated from rat papilla by collagenase digestion and hypotonic shock. In suspended cells,14C-urea efflux (J urea from loaded cells was exponential with time constant 59±3 sec (sem,n=6, 23°C).J urea had an activation energy of 4.1 kcal/mole and was inhibited 42±7% by 0.25mm phloretin and 30–40% by the high affinity urea analogues dimethylurea and phenylurea.J urea was increased 40–60% by addition of vasopressin (10–8 m) or 8-bromo-cAMP (1mm); stimulatedJ urea was inhibited 55±8% by the kinase A inhibitor H-8. Phorbol esters and epidermal growth factor did not alterJ urea. IMCD cells grown in primary culture were homogeneous in appearance with>fivefold stimulation of cAMP by vasopressin. The exponential time constant for urea efflux was 610±20 sec (n=3).J urea was not altered by vasopressin, cAMP or phloretin. Another function of in vivo IMCD cells, vasopressin-dependent formation of endosomes containing water channels, was absent in the cultured cells. These results demonstrate presence of a urea transporter on suspended IMCD cells which is activated by cAMP and inhibited by phloretin and urea analogues. The urea transporter and its regulation by cAMP, and cAMP-dependent apical membrane endocytosis, are lost after growth in primary culture.  相似文献   

17.
Arginine vasopressin (AVP) causes increase in intracellular Ca(2+) concentration with an oscillatory pattern. Ca(2+) mobilization is required for AVP-stimulated apical exocytosis in inner medullary collecting duct (IMCD). The mechanistic basis of these Ca(2+) oscillations was investigated by confocal fluorescence microscopy and flash photolysis of caged molecules in perfused IMCD. Photorelease of caged cAMP and direct activation of ryanodine receptors (RyRs) by photorelease of caged cyclic ADP-ribose (cADPR) both mimicked the AVP-induced Ca(2+) oscillations. Preincubation of IMCD with 100 μM 8-bromo-cADPR (a competitive inhibitor of cADPR) delayed the onset and attenuated the magnitude of AVP-induced Ca(2+) oscillations. These observations indicate that the cADPR/RyR pathway is capable of supporting Ca(2+) oscillations and endogenous cADPR plays a major role in the AVP-induced Ca(2+) oscillations in IMCD. In contrast, photorelease of caged inositol 1,4,5-trisphosphate (IP(3)) induced Ca(2+) release but did not maintain sustained Ca(2+) oscillations. Removal of extracellular Ca(2+) halted ongoing AVP-mediated Ca(2+) oscillation, suggesting that it requires extracellular Ca(2+) entry. AVP-induced Ca(2+) oscillation was unaffected by nifedipine. Intracellular Ca(2+) store depletion induced by 20 μM thapsigargin in Ca(2+)-free medium triggered store-operated Ca(2+) entry (SOCE) in IMCD, which was attenuated by 1 μM GdCl(3) and 50 μM SKF-96365. After incubation of IMCD with 1 nM AVP in Ca(2+)-free medium, application of extracellular Ca(2+) also triggered Ca(2+) influx, which was sensitive to GdCl(3) and SKF-96365. In summary, our observations are consistent with the notion that AVP-induced Ca(2+) oscillations in IMCD are mediated by the interplay of Ca(2+) release from RyRs and a Ca(2+) influx mechanism involving nonselective cation channels that resembles SOCE.  相似文献   

18.
Calpain-mediated AQP2 proteolysis in inner medullary collecting duct   总被引:2,自引:0,他引:2  
Vitamin D-elicited hypercalcemia/hypercalciuria is associated with polyuria in humans and in animal models. In rats, dihydrotachysterol (DHT) induces AQP2 water channel downregulation despite unaltered AQP2 mRNA expression and thus we investigated the mechanism of AQP2 degradation. Incubation of AQP2-containing inner medullary collecting duct (IMCD) endosomes with Ca(2+) or calpain elicited AQP2 proteolysis, an effect abolished by leupeptin. This endogenous, Ca(2+)-sensitive protease activity exhibited a different proteolytic digest pattern from trypsin, which also degraded AQP2 in vitro. IMCDs contain abundant micro-calpain protein and functional calpain proteolytic activity as demonstrated by immunohistochemistry, immunoblotting, and gel zymography. Furthermore, by small particle flow cytometry we demonstrated that micro-calpain colocalizes with apical IMCD endosomes. DHT does not appear to elicit general proteolysis, however, in addition to AQP2 degradation, DHT treatment also diminished micro-calpain and calpastatin expression although whether these changes contributed to the AQP2 instability remains unclear. Together, these data show for the first time that AQP2 is a substrate for calpain-mediated proteolysis and that furthermore, micro-calpain, like AQP2, is both highly expressed in renal inner medulla and localized to apical IMCD endosomes.  相似文献   

19.
Summary Rats were given a lithium-containing diet (40 mmol/kg) to Study the effect of lithium on the structure of collecting ducts from the inner stripe of the outer medulla. The results show that there is a significant increase in the volume density of collecting ducts already after one week on this diet. The volume density of both intercalated and principal cells increases, whereas the volume density of mitochondria in the cytoplasm increases in the intercalated cells only. The increased volume of both principal and intercalated cells seems to be part of a general hyperplasia and hyperactivity of the collecting duct, which may in some way be related to the effects of lithium on vasopressinmediated water transport. The specific changes in the intercalated cells may be a consequence of the effects of lithium on distal nephron potassium and hydrogen ion transport in the distal nephron.  相似文献   

20.
Adenosine triphosphate (ATP) and endothelin (ET)-1 inhibit vasopressin-stimulated water reabsorption in the inner medullary collecting duct (IMCD). Because both ATP and ET-1 are released by the IMCD and can act in an autocrine manner to regulate IMCD water transport, we sought to determine whether these factors can modulate the other's production. To begin such studies, the effect of ATP on IMCD ET-1 production was examined. ATP caused a dose-dependent inhibition of ET-1 release and inhibited ET-1 mRNA levels in primary cultures of rat IMCD cells. This effect was first evident after 4 hrs of exposure to ATP and persisted for at least 24 hrs. The 50% inhibitory concentration for ATP inhibition of ET-1 production was approximately 1 microM, and the maximal response was observed at 25-100 microM. ATP acted, at least in part, through the P2Y2 receptor because its effect was mimicked by UTP, but not by the P2X agonist, alpha,beta-methylene-ATP. N-methyl-L-arginine, or indomethacin, did not block the ATP inhibitory effect. In summary, these data demonstrate that ATP inhibits IMCD ET-1 protein and mRNA accumulation, that this is mediated via P2Y receptors, and that the ATP effect is independent of cyclooxygenase or nitric oxide synthase metabolites. These findings suggest that although ATP and ET-1 both antagonize vasopressin action in the IMCD, they may have a complex interaction that ultimately determines the degree to which they each participate in modulating collecting duct function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号