首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Inhibition of polypeptide chain initiation in rabbit reticulocyte lysate by phosphorylation of eukaryotic initiation factor-2(alpha) results, secondarily, in the enzymatic deacylation of Met-tRNAf on the 48 S initiation complexes that accumulate. We have prepared an antibody to a highly purified preparation of the major Met-tRNAf deacylase activity on rabbit reticulocyte ribosomes, termed deacylase II. Antibody, but not similarly purified normal IgG, completely neutralizes the activity of Met-tRNAf deacylase II and has no effect on Met-tRNAf deacylase I, a separate, minor, reticulocyte activity with the same substrate specificity but very different physical and enzymatic properties, strongly suggesting that deacylase I and II are distinct proteins. We partially purified Met-tRNAf deacylase activities from rabbit liver, myocardium and bone marrow ribosomes and found them to be similar to each other and to reticulocyte deacylase I in their enzymatic properties and insensitivity to anti-deacylase II, suggesting that deacylase I may be a general form of this enzyme, present in many cells, while deacylase II may be induced specifically during erythroid differentiation. Addition of the antibody to reticulocyte lysate incubated in the absence of hemin or presence of hemin plus 0.1 microgram/ml poly(I X C) did not reverse the inhibition of protein synthesis but did reduce the rate of turnover/utilization of Met-tRNAf and increase the level of Met-tRNAf bound to 48 S initiation complexes, demonstrating that the deacylase does not directly inhibit protein synthesis under these conditions but does mediate the deacylation, loss, and thus greater than expected turnover of Met-tRNAf in the 48 S complexes that accumulate.  相似文献   

2.
T Wagner  P B Sigler  M Gross 《FEBS letters》1989,250(2):147-152
ApUpG, the oligoribonucleotide homologous to the initiation codon, as well as the tetranucleotides ApUpGpA and ApUpGpG block initiation of protein synthesis in the rabbit reticulocyte lysate. These oligonucleotides are recognized as translational initiation sites by the ribosomes, leading to a very large accumulation of complete, but inactive, 80 S initiation complexes, containing methionylated initiator tRNA and ApUpG in a 1:1 stoichiometry. ApUpG appears to inhibit by competing with endogenous globin mRNA for 80 S ribosomal couples, since the inhibition of protein synthesis by ApUpG can be largely relieved by increasing the globin mRNA. The 80 S · Met-tRNAiMet · ApUpG complexes are not formed in the absence of hemin, demonstrating that their formation requires the active recycling of eukaryotic initiation factor 2. In addition the trinucleotide correctly directs the Met-tRNAiMet into the ribosomal donor site, since the methionyl residue is puromycin-reactive.  相似文献   

3.
Vaccinia viral core inhibits protein synthesis in reticulocyte lysates. In partial reactions using micrococcal nuclease treated reticulocyte lysates, the viral core inhibits Met-tRNAf binding to 40S ribosomes in response to physiological mRNAs such as globin mRNA, cowpea mosaic viral RNA, and brome mosaic viral RNA but not in response to a trinucleotide codon, AUG. The core has also no effect on Met-tRNAf binding to 40S ribosomes in a partial reaction using partially purified peptide chain initiation factors and AUG codon.The present observation of preferential inhibition by vaccinia viral core of Met-tRNAf·40S initiation complex formation with physiological mRNAs and not with an artificial mRNA such as AUG codon, suggests that the viral core inhibits some step(s) in peptide chain initiation involved in the recognition of structural feature(s) unique to physiological mRNAs.  相似文献   

4.
Inactivation of protein synthesis in the reticulocyte lysate system, which occurs when the system is incubated at 42 °C, was prevented by a high concentration KCl extract of the ribosomes. The KCl extract also supported protein synthesis at 42 °C by KCl-washed ribosomes. Three factor fractions (IF.15, IF.2, and IF.25) were separated from the extract and characterized in partial reactions of initiation. The factor IF.2 could prevent the inactivation of the factor IF.15-promoted protein synthesis by the washed ribosomes at 42 °C. IF.2 also overcame the decrease in IF.15-promoted 40S subunit-Met-tRNAf complex at 42 °C. The protective activity of IF.2 was inactivated by N-ethylmaleimide. The activities of IF.15 and IF.2 were little affected by heating the factors at 42 °C. However, prewarming of KCl-washed ribosomes at 42 °C caused decreased protein synthesis in subsequent incubation at 34 °C with unwarmed factors. These results suggest that some components other than the initiation factors may be inactivated at 42 °C, which is prevented by IF.2 in the course of protein synthesis.  相似文献   

5.
The trinucleotide codon, AUG, promotes the combination of reticulocyte 40S and 60S native ribosomal subunits as well as recombination of those derived by dissociation factor. This interaction is inhibited by hemin deficiency or the hemin-controlled repressor and results in the loss of methionine from ribosomal bound met-tRNAf. The locus of inhibition among the partial reactions of peptide chain initiation is between met-tRNAf and initiation codon binding to the 40S ribosomal subunit and peptide bond formation.  相似文献   

6.
The phosphorylation of eukaryotic initiation factor (eIF) 2 alpha that occurs when rabbit reticulocyte lysate is incubated in the absence of hemin or with poly(I.C) causes inhibition of polypeptide chain initiation by preventing a separate factor (termed RF) from promoting the exchange of GTP for GDP on eIF-2. When lysate was incubated in the presence of hemin and [14C] eIF-2 or [alpha-32P]GTP, we observed binding of eIF-2 and GDP or GTP to 60 S ribosomal subunits that was slightly greater than that bound to 40 S subunits and little binding to 80 S ribosomes. When incubation was in the absence of hemin or in the presence of hemin plus 0.1 microgram/ml poly(I.C), eIF-2 and GDP binding to 60 S subunits was increased 1.5- to 2-fold, that bound to 80 S ribosomes was almost as great as that bound to 60 S subunits, and that bound to 40 S subunits was unchanged. Our data indicate that about 40% of the eIF-2 that becomes bound to 60 S subunits and 80 S ribosomes in the absence of hemin or with poly(I.C) is eIF-2(alpha-P) and suggest that the eIF-2 and GDP bound is probably in the form of a binary complex. The accumulation of eIF-2.GDP on 60 S subunits occurs before binding of Met-tRNAf to 40 S subunits becomes reduced and before protein synthesis becomes inhibited. The rate of turnover of GDP (presumably eIF-2.GDP) on 60 S subunits and 80 S ribosomes in the absence of hemin is reduced to less than 10% the control rate, because the dissociation of eIF-2.GDP is inhibited. Additional RF increases the turnover of eIF-2.GDP on 60 S subunits and 80 S ribosomes to near the control rate by promoting dissociation of eIF-2.GDP but not eIF-2(alpha-P).GDP. Our findings suggest that eIF-2.GTP binding to and eIF-2.GDP release from 60 S subunits may normally occur and serve to promote subunit joining. The phosphorylation of eIF-2 alpha inhibits polypeptide chain initiation by preventing dissociation of eIF-2.GDP from either free 60 S subunits (thus inhibiting subunit joining directly) or the 60 S subunit component of an 80 S initiation complex (thereby blocking elongation and resulting in the dissociation of the 80 S complex).  相似文献   

7.
A nonhemin-regulated translational repressor protein has been purified partially from the postribosomal supernatant fraction of Friend leukemia cells grown in the absence of dimethylsulfoxide. This repressor inhibits protein synthesis in lysates from rabbit reticulocytes or Friend leukemia cells and in a fractionated system using Artemia salina ribosomes, reticulocyte mRNA, and soluble components from reticulocytes. In contrast, the hemin-controlled repressor from reticulocytes does not inhibit protein synthesis in lysates from Friend leukemia cells. The repressor from Friend leukemia cells has no effect on poly(U)-directed synthesis of polyphenylalanine using reticulocyte ribosomes nor on the extension and release of nascent globin chains that were initiated in intact reticulocytes. It does not block completion of peptides on ribosomes isolated from reticulocytes incubated with NaF nor does it inhibit initiation factor-dependent formation of methionylpuromycin, but it inhibits globin mRNA-dependent methionylvaline synthesis. The Friend leukemia cell repressor promotes peptide synthesis-dependent breakdown of polysomes in reticulocyte lysates that appears to involve inhibition of ribosome reattachment to mRNA during peptide chain initiation. It is concluded that the Friend leukemia cell repressor blocks peptide initiation at a point between the addition of methionyl-tRNAfMet to the ribosomal initiation complex and the NaF-sensitive reaction.  相似文献   

8.
The effect of bacteriocin (cloacin DF13) treatment of Escherichia coli ribosomes on initiation of protein synthesis has been studied in detail. In agreement with our previous findings [Baan et al. (1976) Proc. Natl Acad. Sci. U.S.A. 73, 702--706] it is shown that 70-S initiation complexes can be formed with cloacin-treated ribosomes, but that the initiation factor IF-1 does not function properly. The following pleiotropic effects of this factor have been studied: (a) the acceleration of ribosomal subunit exchange with 70-S couples; (b) the stimulation of the IF-3-mediated dissociation of 70-S ribosomes; (c) the stimulation of 30-S initiation complex formation; (d) the enhancement of the rate of release of IF-2 from 70-S initiation complexes. The effects (a) and (b) are virtually abolished after cleavage of 16-S rRNA. The effect (d) is only partially reduced whereas effect (c) seems to be unimpaired. It is concluded that 70-S initiation complex formation with cloacin-treated ribosomes suffers from improper functioning of IF-1 in the generation of active subunits from 70-S tight couples. This is the only effect on initiation. It can be compensated for by adding more IF-3. The data provide functional evidence that 16-S rRNA is involved in ribosomal subunit interaction.  相似文献   

9.
Monoclonal and polyclonal antibodies against eukaryotic protein synthesis initiation factor eIF-3 were produced and used to determine the factor concentration and its association with ribosomes in rabbit reticulocyte and HeLa cell lysates. In rabbit reticulocyte lysate we found 3-5 micrograms eIF-3 per mg total protein and in HeLa cell lysate 8-15 micrograms eIF-3 per mg total protein. The initiation factor eIF-3 was found both associated with 40 S ribosomal subunits and free in the post-ribosomal supernatant. However, no eIF-3 could be detected on mono- or polyribosomes.  相似文献   

10.
An initiation factor from rabbit reticulocytes can overcome the block in initiation of protein synthesis occurring in reticulocyte lysates when exogenous hemin is not present, or when double-stranded RNA is added. This factor has been identified with IF-MP, an initiation factor capable of forming ternary complexes with GTP and methionyl-tRNAF. Initiation factor IF-M3 by itself is unable to overcome the block in initiation, but appears to stimulate this activity of IF-MP. IF-MP binds to single-stranded R17 RNA as well as to double-stranded RNA, while IF-M3 only binds to double-stranded RNA. The protein synthetic activity of IF-MP is sensitive to N-ethylmaleimide, but its ability to bind RNA is resistant.  相似文献   

11.
A protein synthesis initiation inhibitor, TDI has been partially purified from the reticulocyte cell-supernatant. TDI inhibits the dissociation of the ternary complex, Met-tRNAf·EIF-1·GTP and also Met-tRNAf binding to 40S ribosomes. TDI inhibition requires Mg++ and the inhibition is also observed when GTP is replaced by a non-hydrolyzable analog, GMP-PNP.  相似文献   

12.
Initiation factor IF-3 is required for the binding of fMet-tRNA to 70S ribosomes directed by AUG, poly (U,G), f2RNA and T4 late RNA as well as for the binding of acPhe-tRNA directed by poly (U). In contrast, IF-3 is not required for the binding of the initiator aminoacyl-tRNAs to isolated 30S subunits directed by the synthetic messengers, but is required for maximal formation of initiation complexes with natural messengers. These data indicate that with synthetic messengers the sole function of IF-3 is to dissociate the 70S ribosomes into subunits, whereas with natural messengers IF-3 is required not only for dissociation of the ribosomes but also for the binding of the messenger to the 30S subunit.  相似文献   

13.
Summary The control of protein synthesis by hemin in rabbit reticulocytes or lysates is mediated by the formation of a high molecular weight protein inhibitor of polypeptide chain initiation termed the hemin-controlled translational repressor (HCR). HCR becomes activated in the absence of hemin from a presynthesized precursor (prorepressor) in a manner that is still unclear but appears to involve a series of discrete conformational changes in a single protein. At a very early stage of activation, HCR (reversible) can be inactivated by hemin, at a somewhat later stage (intermediate HCR) it can still be inactivated in a GTP-dependent reaction by a soluble lysate protein termed the supernatant factor, and after more than several hours of warming, HCR (irreversible) can no longer be inactivated. Formation of HCR involves no detectable change in molecular size but may involve, directly or indirectly, disulfide bond formation or interchange, since activation occurs very rapidly in the presence of such sulfhydryl reagents as N-ethylmaleimide. Once activated, HCR (all three forms) acts by phosphorylating the 35,000 Mr () subunit of eIF-2, the initiation factor that mediates binding of Met-tRNAf to 40 s ribosomal subunits. The protein kinase action of HCR is relatively specific for eIF-2, although HCR also autophosphorylates a 90–100,000 Mr component of itself. While most of the protein synthsized by rabbit reticulocytes is globin, the synthesis, at low levels, of other reticulocyte proteins is also reduced by HCR, consistent with its action on eIF-2, a factor that acts in initiation before mRNA is bound. At present, the mechanism by which phosphorylation of eIF-2 by HCR causes inhibition of polypeptide chain initiation is only partially understood. There is general agreement that the binding of Met-tRNAf to 40 s ribosomal subunits is reduced, perhaps due to impaired interaction of eIF-2-P with other ribosomal protein components. There is also evidence that HCR causes the accumulation of 48 s intermediate initiation complexes, containing a 40 s ribosomal subunit, mRNA, and tRNAf met that is largely deacylated. This suggests that the joining of 48 s complexes with 60 s subunits to form 80 s initiation complexes is also blocked and results in the deacylation of subunit-bound Met-tRNAf. Additional work will be required to delineate the precise molecular mechanisms by which HCR becomes activated in the absence of hemin and how the phosphorylation of eIF-2 interrupts the process of polypeptide chain initiation.Abbreviations HCR hemin-controlled translational repressor - eIF eukaryotic initiation factor  相似文献   

14.
Cyclic AMP and a variety of purines are able to overcome the inhibition of the initiation of protein synthesis caused by incubation of the lysate in the absence of added hemin or with double-stranded RNA or oxidised glutathione. These three inhibitions show similar kinetics and are each accompanied by the disappearance of a complex between the 40S ribosomal subunits and met-tRNAf. A translational repressor has been implicated in the inhibition seen in the absence of hemin and we suggest that the link between these three inhibitions is the accumulation of this repressor.  相似文献   

15.
The possible role of Met-tRNAf deacylase in the regulation of protein synthesis in rabbit reticulocyte lysate by the hemin-controlled translational repressor (HCR) or the double-stranded RNA-activated inhibitor (dsI) has been examined. Inhibition of protein synthesis by either HCR or dsI is associated with a marked increase in the steady state level of 48 S initiation complexes, containing a 40 S ribosomal subunit, globin mRNA, and a reduced level of Met-tRNAf, suggesting that the rate of 60 S subunit addition may be inhibited and that subunit-bound Met-tRNAf may become deacylated by Met-tRNAf deacylase. The addition of highly purified Met-tRNAf deacylase to lysate samples incubated with HCR or dsI reduces the [35S]Met-tRNAf labeling of 48 S complexes to even a lower level but has no effect on the high level of [35S]Met-tRNAf associated with 43 S complexes in the plus hemin control. The effect of added deacylase on the labeling of 48 S complexes with [35S]Met-tRNAf can be overcome by adding eIF-5 or a soluble reticulocyte protein that has been termed the reversing factor, but not by the addition of eIF-2. Added deacylase has no effect on the level of mRNA in 48 S complexes or the labeling of these complexes with [35S]fMet-tRNAf. When lysate samples were labeled with Met-tRNAf, purified from wheat germ or yeast, and doubly labeled with 32P at the 5' end and [35S]methionine aminoacylation, HCR reduced the level of 32P and 35S-labeled tRNAMetf in 48 S complexes to a similar degree, suggesting that once it has become deacylated, tRNAMetf dissociates from the 40 S subunit.  相似文献   

16.
1. Studies on the function of initiation factor 1 (IF-1) in the formation of 30 S initiation complexes have been carried out. IF-1 appears to prevent the dissociation of initiation factor 2 (IF-2) from the 30 S initiation complex. The factor has no effect on either the initial binding of IF-2 nor does it increase the amount of IF-2 dependent fMet-tRNA and GTP bound to the 30 S subunit. Bound fMet-tRNA remains stable to sucrose gradient centrifugation even in the absence of IF-1. 2. It is postulated that the presence of IF-2 on the 30 S complex is necessary so that at the time of junction with the 50 S subunit to form a 70 S complex, the 70 S-dependent GTPase activity of IF-2 can hydrolyze GTP. This hydrolysis provides a means by which GTP can be removed to facilitate formation of a 70 S initiation complex active in peptidyl transfer. In support of this postulate, it was observed that 30 S initiation complexes formed in the absence of IF-1 could be depleted of their complexes were still able to accept 50 S subunits to form 70 S complexes which could still donate fMet-tRNA into peptide linkages. These results indicate that 30 S complexes lacking GTP do not require IF-2 for formation of active 70 S complexes. 3. IF-1, which is required to prevent dissociation of IF-2 from the 30 S initiation complex, is also required for release of IF-2 from ribosomes following 70 S initiation complex formation. The mechanisms of the release of IF-2 has been studied in greater detail. Evidence is presented which rules out the presence of a stable IF-2 GDP complex on the surface of the 70 S ribosome following GTP hydrolysis and of any exchange reactions between IF-1 and guanine nucleotides necessary for effecting the release of IF-2. IF-2 remains on the 70 S initiation complexes after release of guanine nucleotides and can be liberated solely by addition of IF-1.  相似文献   

17.
Initiation factor IF-3 is required for the poly (U)-directed binding of N-acetyl-Phe-tRNA to 70S ribosomes as well as for the binding of fMet-tRNA directed by poly (U,G), AUG, and bacteriophage f2 RNA. The formation of the 70S initiation complex is dependent upon IF-2 and is stimulated by IF-1. The requirement for IF-3 is not alleviated by high concentrations of the synthetic templates.  相似文献   

18.
Recent reports have suggested that the hemin-controlled translational repressor (HCR) which mediates the hemin control of protein synthesis in reticulocyte lysates, acts as a specific protein kinase, phosphorylating a subunit of the Met-tRNAf binding factor (IF-1). We have found that crude and highly purified HCR can phosphorylate a 38,000 molecular weight component of IF-1, but that crude prorepressor (the precursor of HCR), which is not inhibitory, does not phosphorylate this component. Prolonged warming of the prorepressor induces the formation of the inhibitor and the protein kinase that phosphorylates the 38,000 molecular weight protein, and the formation of both is blocked by hemin. In addition, a brief incubation of the prorepressor with N-ethylmaleimide, which produces maximal inhibitory activity within 5 minutes, also induces formation of the protein kinase. These findings suggest that HCR and the protein kinase are the same protein and provide additional support for the concept that HCR controls protein synthesis by phosphorylating the Met-tRNAf binding factor.  相似文献   

19.
This paper shows that reticuloeyte lysates contain 40 S/Met-tRNAf complexes which are intermediates in the initiation of protein synthesis before the involvement of messenger RNA. More than one third of the native 40 S subunits in the lysate exist as these complexes during periods of linear protein synthesis, but less than a tenth are associated with mRNA.The 40 S/Met-tRNAf complexes disappear in some situations in which initiation is inhibited (by double-stranded RNA, oxidized glutathione, or in the absence of added haemin), but persist in the presence of other inhibitors (e.g. aurintricarboxylate or poly(I)). Inhibitors of chain elongation had little effect on the amount of these complexes.The Met-tRNAf in the 40 S complexes appears to exchange readily with free Met-tRNAf; when lysates were preincubated with sparsomycin or diphtheria toxin and then incubated with [35S]Met-tRNAf, the native 40 S subunits were the only ribosomal particles labelled. This experimental system was used to examine whether 40 S/Met-tRNAf complexes could interact with mRNA; various mRNAs were added shortly after or at the same time as the [35S]Met-tRNAf. This resulted in a conversion of the 40 S/Met-tRNAf complexes into 80 S complexes, which appeared to be true initiation complexes since they were capable of translating the first two codons of the added mRNA. The mRNA-dependent formation of these 80 S complexes was completely inhibited by 0.1 mM-aurintricarboxylate, but the association of Met-tRNAf with the 40 S subunits was not prevented.The 40 S/Met-tRNAf complexes also participated in initiation on endogenous mRNA, and it was shown that the Met-tRNAf in this complex was used in preference to free Met-tRNAf in this process.We propose that the first step in the initiation of protein synthesis in the reticuloeyte lysate is the formation of a 40 S/Met-tRNAf complex. In the second stage the complex binds mRNA at the correct initiation site and, after joining with a 60 S subunit, an 80 S/Met-tRNAf/mRNA initiation complex is formed.  相似文献   

20.
When a reticulocyte lysate, supplemented with hemin, was warmed at 42 °C, its protein-synthesizing activity was greatly decreased. This was accompanied by the reduced formation of the 40 S·Met-tRNAf initiation complex. This complex preformed at 34 °C, however, was stable and combined with added globin mRNA and the 60 S ribosomal subunit to form the 80 S complex at the elevated temperature. When the ribosome-free supernatant fraction of lysates was warmed at 42 °C with hemin and then added to the fresh lysate system, it inhibited protein synthesis by decreasing the formation of the 40 S complex. This decrease in protein synthesis by warmed lysates or warmed supernatant could be overcome by high concentrations of GTP and cyclic AMP. This effect of GTP and cyclic AMP was antagonized by ATP. The results indicate that the inactivation of protein synthesis by the lysate warmed at 42 °C is due to the formation of an inhibitor in the supernatant. The ribosomal KCl extract prepared from the lysate that had been warmed at 34 °C and then incubated at this temperature for protein synthesis supported protein synthesis by the KCl-washed ribosome at both 34 and 42 °C. On the contrary, the extract from lysates that had been warmed at 42 °C and then incubated at 34 °C could not support protein synthesis at 42 °C, although it was almost equally as promotive as the control extract in supporting protein synthesis at 34 °C. The results indicate that the factor which can protect protein synthesis against inactivation at 42 °C is itself inactivated in lysates warmed at 42 °C. However, the activity of this extract to support formation of the ternary complex with Met-tRNAf and GTP was not reduced. Native 40 S ribosomal subunits isolated from lysates that had been warmed at 42 °C and then incubated for protein synthesis indicated that the quantity of subunits of density 1.40 g/cm3 in a CsCl density gradient were decreased while those of density 1.49 g/cm3 were increased. The factor-promoted binding of Met-tRNAf to the 40 S subunit of lower density from the warmed and unwarmed lysates was equal, suggesting that the ribosomal subunit was not inactivated. These results were discussed in terms of the action of the inhibitor formed in the supernatant at 42 °C, which may inactivate a ribosomal factor essential for protein synthesis initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号