首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Autophagy is an evolutionarily conserved cell survival pathway that enables cells to recoup ATP and other critical biosynthetic molecules during nutrient deprivation or exposure to hypoxia, which are hallmarks of the tumour microenvironment. Autophagy has been implicated as a potential mechanism of resistance to anticancer agents as it can promote cell survival in the face of stress induced by chemotherapeutic agents by breaking down cellular components to generate alternative sources of energy. Disruption of autophagy with chloroquine (CQ) induces the accumulation of ubiquitin‐conjugated proteins in a manner similar to the proteasome inhibitor bortezomib (BZ). However, CQ‐induced protein accumulation occurs at a slower rate and is localized to lysosomes in contrast to BZ, which stimulates rapid buildup of ubiquitinated proteins and aggresome formation in the cytosol. The histone deacetylase (HDAC) inhibitor vorinostat (VOR) blocked BZ‐induced aggresome formation, but promoted CQ‐mediated ubiquitinated protein accumulation. Disruption of autophagy with CQ strongly enhanced VOR‐mediated apoptosis in colon cancer cells. Accordingly, knockdown of the essential autophagy gene Atg7 also sensitized cells to VOR‐induced apoptosis. Knockdown of HDAC6 greatly enhanced BZ‐induced apoptosis, but only marginally sensitized cells to CQ. Subsequent studies determined that the CQ/VOR combination promoted a large increase in superoxide generation that was required for ubiquitinated protein accumulation and cell death. Finally, treatment with the CQ/VOR combination significantly reduced tumour burden and induced apoptosis in a colon cancer xenograft model. Collectively, our results establish that inhibition of autophagy with CQ induces ubiquitinated protein accumulation and VOR potentiates CQ‐mediated aggregate formation, superoxide generation and apoptosis.  相似文献   

2.
3.
Toxin B (TcdB) is a major pathogenic factor of Clostridum difficile. However, the mechanism by which TcdB exerts its cytotoxic action in host cells is still not completely known. Herein, we report for the first time that TcdB induced autophagic cell death in cultured human colonocytes. The induction of autophagy was demonstrated by the increased levels of LC3‐II, formation of LC3+ autophagosomes, accumulation of acidic vesicular organelles and reduced levels of the autophagic substrate p62/SQSTM1. TcdB‐induced autophagy was also accompanied by the repression of phosphoinositide 3‐kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) complex 1 activity. Functionally, pharmacological inhibition of autophagy by wortmannin or chloroquine or knockdown of autophagy‐related genes Beclin 1, Atg5 and Atg7 attenuated TcdB‐induced cell death in colonocytes. Genetic ablation of Atg5, a gene required for autophagosome formation, also mitigated the cytotoxic effect of TcdB. In conclusion, our study demonstrated that autophagy serves as a pro‐death mechanism mediating the cytotoxic action of TcdB in colonocytes. This discovery suggested that blockade of autophagy might be a novel therapeutic strategy for C. difficile infection.  相似文献   

4.
Corilagin is a component of Phyllanthus urinaria extract and has been found of possessing anti‐inflammatory, anti‐oxidative, and anti‐tumour properties in clinic treatments. However, the underlying mechanisms in anti‐cancer particularly of its induction of cell death in human breast cancer remain undefined. Our research found that corilagin‐induced apoptotic and autophagic cell death depending on reactive oxygen species (ROS) in human breast cancer cell, and it occurred in human breast cancer cell (MCF‐7) only comparing with normal cells. The expression of procaspase‐8, procaspase‐3, PARP, Bcl‐2 and procaspase‐9 was down‐regulated while caspase‐8, cleaved PARP, caspase‐9 and Bax were up‐regulated after corilagin treatment, indicating apoptosis mediated by extrinsic and mitochondrial pathways occurred in MCF‐7 cell. Meanwhile, autophagy mediated by suppressing Akt/mTOR/p70S6K pathway was detected with an increase in autophagic vacuoles and LC3‐II conversion. More significantly, inhibition of autophagy by chloroquine diphosphate salt (CQ) remarkably enhanced apoptosis, while the caspase inhibitor z‐VAD‐fmk failed in affecting autophagy, suggesting that corilagin‐induced autophagy functioned as a survival mechanism in MCF‐7 cells. In addition, corilagin induced intracellular reactive oxygen species (ROS) generation, when reduced by ROS scavenger NAC, apoptosis and autophagy were both down‐regulated. Nevertheless, in SK‐BR3 cell which expressed RIP3, necroptosis inhibitor Nec‐1 could not alleviate cell death induced by corilagin, indicating necroptosis was not triggered. Subcutaneous tumour growth in nude mice was attenuated by corilagin, consisting with the results in vitro. These results imply that corilagin inhibits cancer cell proliferation through inducing apoptosis and autophagy which regulated by ROS release.  相似文献   

5.
Autophagy as well as apoptosis is an emerging target for cancer therapy. Wogonin, a flavonoid compound derived from the traditional Chinese medicine of Huang‐Qin, has anticancer activity in many cancer cells including human nasopharyngeal carcinoma (NPC). However, the involvement of autophagy in the wogonin‐induced apoptosis of NPC cells was still uninvestigated. In this study, we found wogonin‐induced autophagy had interference on the process of apoptosis. Wogonin‐induced autophagy formation evidenced by LC3 I/II cleavage, acridine orange (AO)‐stained vacuoles and the autophagosome/autolysosome images of TEM analysis. Activation of autophagy with rapamycin resulted in increased wogonin‐mediated autophagy via inhibition of mTOR/P70S6K pathway. The functional relevance of autophagy in the antitumor activity was investigated by annexin V‐positive stained cells and PARP cleavage. Induction of autophagy by rapamycin ameliorated the wogonin‐mediated apoptosis, whereas inhibition of autophagy by 3‐methyladenine (3‐MA) or bafilomycin A1 increased the apoptotic effect. Interestingly, this study also found, in addition the mTOR/P70S6K pathway, wogonin also inhibited Raf/ERK pathway, a variety of Akt pathways. Inactivation of PI3K/Akt by their inhibitors significantly induced apoptosis and markedly sensitized the NPC cells to wogonin‐induced apoptosis. This anticancer effect of Akt was further confirmed by SH6, a specific inhibitor of Akt. Importantly, inactivation of its downstream molecule ERK by PD98059, a MEK inhibitor, also induced apoptosis. This study indicated wogonin‐induced both autophagy and apoptosis through a variety of Akt pathways and suggested modulation of autophagy might provide profoundly the potential therapeutic effect. J. Cell. Biochem. 113: 3476–3485, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Bortezomib is a novel proteasome inhibitor that has promising antitumor activity against various cancer cells. We have assessed its antitumor activity in non-small cell lung cancer (NSCLC) A549 and H157 cells in vitro where it inhibited cell growth and induced apoptosis, which was associated with cytochrome c release and caspase-3 activation. Bortezomib upregulated autophagic-related proteins, the Atg12–Atg5 complex and LC3-II, which indicated autophagy had occurred. The combination of bortezomib with autophagic inhibitor 3-methyladenine or chloroquine significantly enhanced suppression of cell growth and apoptosis induced by bortezomib in A549 and H157 cells. Our study indicated that inhibition of both proteasome and autophagy has great potential for NSCLC treatment.  相似文献   

7.
目的:探讨不同浓度组蛋白去乙酰化酶抑制剂TSA对结肠癌HT29细胞的增殖、凋亡和自噬影响及其机制研究。方法:取对数生长期人结肠癌HT29细胞,采用MTT法检测不同浓度TSA处理对其细胞活力影响,并根据IC50值确定适宜给药浓度;采用流式细胞术检测不同浓度TSA处理后结肠癌HT29细胞的凋亡情况;Western blot验证空白对照组与TSA给药处理组中凋亡标志蛋白Ku70、acetrl-Ku70、Caspase3、Bax、Bcl-2和自噬标志蛋白LC3和Beclin1的表达。结果:MTT法实验结果表明TSA对结肠癌HT29细胞具有时间和浓度依赖性抑制作用,根据IC50=1.12μM,本研究中TSA的给药浓度为0.5μM和1μM;流式细胞凋亡检测结果表明TSA能够显著促进结肠癌HT29细胞凋亡,且其促凋亡作用存在浓度依赖性;此外,Western blot检测结果证实,与空白对照组相比,TSA给药处理可显著上调上述细胞中acetrl-Ku70以及促凋亡蛋白Caspase3、Bax和自噬标志蛋白LC3和Beclin1的表达,下调抗凋亡蛋白Bcl-2的表达(P<0.05)。结论:组蛋白去乙酰化酶抑制剂(TSA)的体外抗结肠癌细胞的增殖、促进细胞凋亡和自噬作用与其上调Ku70蛋白乙酰化密切相关,有望成为临床潜在抗癌靶点。  相似文献   

8.
《Autophagy》2013,9(8):1066-1077
Cetuximab is an epidermal growth factor receptor (EGFR)-blocking antibody that is approved to treat several types of solid cancers in patients. We recently showed that cetuximab can induce autophagy in cancer cells by both inhibiting the class I phosphatidylinositol 3-kinase (PtdIns3K)/Akt/mammalian target of rapamycin (mTOR) pathway and activating the class III PtdIns3K (hVps34)/beclin 1 pathway. In the current study, we investigated the relationship between cetuximab-induced autophagy and apoptosis and the biological roles of autophagy in cetuximab-mediated cancer therapy. We found that cetuximab induced autophagy in cancer cells that show strong or weak induction of apoptosis after cetuximab treatment but not in those that show only cytostatic growth inhibition. Inhibition of cetuximab-induced apoptosis by a caspase inhibitor prevented the induction of autophagy. Conversely, inhibition of cetuximab-induced autophagy by silencing the expression of autophagy-related genes (Atg) or treating the cancer cells with lysosomal inhibitors enhanced the cetuximab-induced apoptosis, suggesting that autophagy was a protective cellular response to cetuximab treatment. On the other hand, cotreatment of cancer cells with cetuximab and the mTOR inhibitor rapamycin resulted in an Atg-dependent and lysosomal inhibition-sensitive death of cancer cells that show only growth inhibition or weak apoptosis after cetuximab treatment, indicating that cell death may be achieved by activating the autophagy pathway in these cells. Together, our findings may guide the development of novel clinical strategies for sensitizing cancer cells to EGFR-targeted therapy.  相似文献   

9.
Our previous studies have demonstrated the oxidative stress properties of sodium ascorbate (SAA) and its benzaldehyde derivative (SBA) on cancer cell lines, but the molecular mechanisms mediating their cytotoxicity remain unclear. In this study, we treated human colon cancer HT‐29 cells with SAA and SBA, and found a significant exposure time‐dependent increase of cytotoxicity in both treatments, with a higher cytotoxicity for 24 h with SAA (IC50 = 5 mM) than SBA (IC50 = 10 mM). A short‐term treatment of cells with 10 mM SAA for 2 h revealed a destabilization of the lysosomes and subsequent induction of cell death, whereas 10 mM SBA triggered a remarkable production of reactive oxidative species, phosphorylation of survival kinase AKT, expression of cyclin kinase‐dependent inhibitor p21, and induction of transient growth arrest. The crucial role of p21 mediating this cytotoxicity was confirmed by isogenic derivatives of the human colon carcinoma HCT116 cell lines (p21+/+ and p21?/?), and immunoprecipitation studies with p21 antibody. The SAA cytotoxicity was blocked by co‐incubation with catalase, whereas the SBA cytotoxicity and its subsequent growth arrest were abolished by N‐acetyl‐L‐cysteine (NAC), but was not affected by PI3K phosphorylation inhibitor LY294002, or catalase, suggesting two separated oxidative stress pathways were mediated by these two ascorbates. In addition, neither active caspase 3 nor apoptotic bodies but autophagic vacuoles associated with increased LC3‐II were found in SBA‐treated HT‐29 cells; implicating that SBA induced AKT phosphorylation‐autophagy and p21‐growth arrest in colon cancer HT‐29 cells through an NAC‐inhibitable oxidative stress pathway. J. Cell. Biochem. 111: 412–424, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.

Background

Current chemotherapeutic agents based on apoptosis induction are lacking in desired efficacy. Therefore, there is continuous effort to bring about new dimension in control and gradual eradication of cancer by means of ever evolving therapeutic strategies. Various forms of PCD are being increasingly implicated in anti-cancer therapy and the complex interplay among them is vital for the ultimate fate of proliferating cells. We elaborated and illustrated the underlying mechanism of the most potent Andrographolide analogue (AG–4) mediated action that involved the induction of dual modes of cell death—apoptosis and autophagy in human leukemic U937 cells.

Principal Findings

AG–4 induced cytotoxicity was associated with redox imbalance and apoptosis which involved mitochondrial depolarisation, altered apoptotic protein expressions, activation of the caspase cascade leading to cell cycle arrest. Incubation with caspase inhibitor Z-VAD-fmk or Bax siRNA decreased cytotoxic efficacy of AG–4 emphasising critical roles of caspase and Bax. In addition, AG–4 induced autophagy as evident from LC3-II accumulation, increased Atg protein expressions and autophagosome formation. Pre-treatment with 3-MA or Atg 5 siRNA suppressed the cytotoxic effect of AG–4 implying the pro-death role of autophagy. Furthermore, incubation with Z-VAD-fmk or Bax siRNA subdued AG–4 induced autophagy and pre-treatment with 3-MA or Atg 5 siRNA curbed AG–4 induced apoptosis—implying that apoptosis and autophagy acted as partners in the context of AG–4 mediated action. AG–4 also inhibited PI3K/Akt/mTOR pathway. Inhibition of mTOR or Akt augmented AG–4 induced apoptosis and autophagy signifying its crucial role in its mechanism of action.

Conclusions

Thus, these findings prove the dual ability of AG–4 to induce apoptosis and autophagy which provide a new perspective to it as a potential molecule targeting PCD for future cancer therapeutics.  相似文献   

11.

Background

Apoptosis and autophagy are known to play important roles in cancer development. It has been reported that HVJ-E induces apoptosis in cancer cells, thereby inhibiting the development of tumors. To define the mechanism by which HVJ-E induces cell death, we examined whether HVJ-E activates autophagic and apoptotic signaling pathways in HeLa cells.

Methods

Cells were treated with chloroquine (CQ) and rapamycin to determine whether autophagy is involved in HVJ-E-induced apoptosis. Treatment with the ERK inhibitor, U0126, was used to determine whether autophagy and apoptosis are mediated by the ERK pathway. Activators of the PI3K/Akt/mTOR/p70S6K pathway, 740 Y-P and SC79, were used to characterize its role in HVJ-E-induced autophagy. siRNA against Atg3 was used to knock down the protein and determine whether it plays a role in HVJ-E-induced apoptosis in HeLa cells.

Results

We found that HVJ-E infection inhibited cell viability and induced apoptosis through the mitochondrial pathway, as evidenced by the expression of caspase proteins. This process was promoted by rapamycin treatment and inhibited by CQ treatment. HVJ-E-induced autophagy was further blocked by 740 Y-P, SC79, and U0126, indicating that both the ERK- and the PI3K/Akt/mTOR/p70S6K-pathways were involved. Finally, autophagy-mediated apoptosis induced by HVJ-E was inhibited by siRNA-mediated Atg3 knockdown.

Conclusion

In HeLa cells, HVJ-E infection triggered autophagy through the PI3K/Akt/mTOR/p70S6K pathway in an ERK1/2-dependent manner, and the induction of autophagy promoted apoptosis in an Atg3-dependent manner.
  相似文献   

12.
Extensive studies have revealed that berberine, a small molecule derived from Coptidis rhizoma (Huanglian in Chinese) and many other plants, has strong anti‐tumor properties. To better understand berberine‐induced cell death and its underlying mechanisms in cancer, we examined autophagy and apoptosis in the human hepatic carcinoma cell lines HepG2 and MHCC97‐L. The results of this study indicate that berberine can induce both autophagy and apoptosis in hepatocellular carcinoma cells. Berberine‐induced cell death in human hepatic carcinoma cells was diminished in the presence of the cell death inhibitor 3‐methyladenine, or following interference with the essential autophagy gene Atg5. Mechanistic studies showed that berberine may activate mitochondrial apoptosis in HepG2 and MHCC97‐L cells by increasing Bax expression, the formation of permeable transition pores, cytochrome C release to cytosol, and subsequent activation of the caspases 3 and 9 execution pathway. Berberine may also induce autophagic cell death in HepG2 and MHCC97‐L cells through activation of Beclin‐1 and inhibition of the mTOR‐signaling pathway by suppressing the activity of Akt and up‐regulating P38 MAPK signaling. This is the first study to describe the role of Beclin‐1 activation and mTOR inhibition in berberine‐induced autophagic cell death. These results further demonstrate the potential of berberine as a therapeutic agent in the emerging list of cancer therapies with novel mechanisms. J. Cell. Biochem. 111: 1426–1436, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
Abstract. Objective: Two types of interferons (IFNs), type I (IFN‐α/β) and type III (IFN‐λs), utilize distinct receptor complexes to induce similar signalling and biological activities, including recently demonstrated for IFN‐λs antitumour activity. However, ability of type III IFNs to regulate cell population growth remains largely uncharacterized.Materials and methods: Intact and modified human colorectal adenocarcinoma HT29 cells were used to study regulation of apoptosis by IFN‐λs. Results and Conclusions: We report that the IFN‐λR1 chain of the type III IFN receptor complex possesses an intrinsic ability to trigger apoptosis in cells. Signalling induced through the intracellular domain of IFN‐λR1 resulted in G1/G0 phase cell cycle arrest, phosphatidylserine surfacing and chromosomal DNA fragmentation. Caspase‐3, caspase‐8 and caspase‐9 were activated; however, pancaspase inhibitor Z‐VAD‐FMK did not prevent apoptosis. In addition, the extent of apoptosis correlated with the level of receptor expression and was associated with prolonged IFN‐λ signalling. We also demonstrated that the ability to trigger apoptosis is a unique intrinsic function of all IFN receptors. However, more robust apoptosis was induced by signalling through type III IFN receptor than through type I or type II (IFN‐γ) receptors, suggesting higher cytotoxic potential of type III IFNs. In addition, we observed that IFN‐γ treatment sensitized HT29 cells to IFN‐λ‐mediated apoptosis. These results provide evidence that type III IFNs, alone or in combination with other stimuli, have the potential to induce apoptosis.  相似文献   

15.
The two major intracellular protein degradation systems, the ubiquitin-proteasome system (UPS) and autophagy, work collaboratively in many biological processes including development, apoptosis, aging, and countering oxidative injuries. We report here that, in human retinal pigment epithelial cells (RPE), ARPE-19 cells, proteasome inhibitors, clasto-lactacystinβ-lactone (LA) or epoxomicin (Epo), at non-lethal doses, increased the protein levels of autophagy-specific genes Atg5 and Atg7 and enhanced the conversion of microtubule-associated protein light chain (LC3) from LC3-I to its lipidative form, LC3-II, which was enhanced by co-addition of the saturated concentration of Bafilomycin A1 (Baf). Detection of co-localization for LC3 staining and labeled-lysosome further confirmed autophagic flux induced by LA or Epo. LA or Epo reduced the phosphorylation of the protein kinase B (Akt), a downstream target of phosphatidylinositol-3-kinases (PI3K), and mammalian target of rapamycin (mTOR) in ARPE-19 cells; by contrast, the induced changes of autophagy substrate, p62, showed biphasic pattern. The autophagy inhibitor, Baf, attenuated the reduction in oxidative injury conferred by treatment with low doses of LA and Epo in ARPE-19 cells exposed to menadione (VK3) or 4-hydroxynonenal (4-HNE). Knockdown of Atg7 with siRNA in ARPE-19 cells reduced the protective effects of LA or Epo against VK3. Overall, our results suggest that treatment with low levels of proteasome inhibitors confers resistance to oxidative injury by a pathway involving inhibition of the PI3K-Akt-mTOR pathway and activation of autophagy.  相似文献   

16.
Plumbagin (PL), an active naphthoquinone compound, has been demonstrated to be a potential anticancer agent. However, the underlying anticancer mechanism is not fully understood. In this study, the human hepatocellular carcinoma (HCC) SMMC-7721 cell line was studied in an in vitro model. The cell proliferation was inhibited by PL in a dose- and time-dependent manner. Electron microscopy, acridine orange staining, and immunofluorescence were used to evaluate autophagosome formation and LC3 protein expression in PL-treated SMMC-7721 cells. Real-time polymerase chain reaction and Western blot showed that PL treatment suppressed the expression of apoptosis and autophagy factors (LC3, Beclin1, Atg7, and Atg5), which are associated with tumor apoptosis and autophagy in SMMC-7721 cells. In the study of in vitro tumor nude mouse models, PL can inhibit tumor growth. Cell apoptosis and autophagy of the transplanted tumors were evaluated by hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot. In addition, in the in vivo studies of HCC cells, we found that pretreatment with the autophagy inhibitor 3-methyladenine blocked the formation of apoptosis induced by PL. In contrast, administration of the apoptosis inhibitor Z-VAD did not affect PL-induced autophagy. Taken together, our findings strongly suggest that PL is a promising drug with significant antitumor activity in HCC.  相似文献   

17.

Objectives

Coroglaucigenin (CGN), a natural product isolated from Calotropis gigantean by our research group, has been identified as a potential anti‐cancer agent. However, the molecular mechanisms involved remain poorly understood.

Materials and methods

Cell viability and cell proliferation were detected by MTT and BrdU assays. Flow cytometry, SA‐β‐gal assay, western blotting and immunofluorescence were performed to determine CGN‐induced apoptosis, senescence and autophagy. Western blotting, siRNA transfection and coimmunoprecipitation were carried out to investigate the mechanisms of CGN‐induced senescence and autophagy. The anti‐tumour activities of combination therapy with CGN and chloroquine were observed in mice tumour models.

Results

We demonstrated that CGN inhibits the proliferation of colorectal cancer cells both in vitro and in vivo. We showed that the inhibition of cell proliferation by CGN is independent of apoptosis, but is associated with cell‐cycle arrest and senescence in colorectal cancer cells. Notably, CGN induces protective autophagy that attenuates CGN‐mediated cell proliferation. Functional studies revealed that CGN disrupts the association of Hsp90 with both CDK4 and Akt, leading to CDK4 degradation and Akt dephosphorylation, eventually resulting in senescence and autophagy, respectively. Combination therapy with CGN and chloroquine resulted in enhanced anti‐tumour effects in vivo.

Conclusions

Our results demonstrate that CGN induces senescence and autophagy in colorectal cancer cells and indicate that combining it with an autophagy inhibitor may be a novel strategy suitable for CGN‐mediated anti‐cancer therapy.
  相似文献   

18.
Song KS  Kim JS  Yun EJ  Kim YR  Seo KS  Park JH  Jung YJ  Park JI  Kweon GR  Yoon WH  Lim K  Hwang BD 《Autophagy》2008,4(5):650-658
Rottlerin is widely used as a protein kinase C-delta inhibitor. Recently, several reports have shown the possible apoptosis-inducing effect of rottlerin in some cancer cell lines. Here we report that rottlerin induces not only apoptosis but also autophagy via a PKC-delta-independent pathway in HT1080 human fibrosarcoma cells. Rottlerin treatment induced a dose- and time-dependent inhibition of cell growth, and cytoplasmic vacuolations were markedly shown. These vacuoles were identified as acidic autolysosomes by electron microscopy, acidic vesicular organelle (AVO) staining and transfection of green fluorescent protein-LC3. The LC3-II protein level also increased after treatment with rottlerin. Prolonged exposure to rottlerin eventually caused apoptosis via loss of mitochondrial membrane potential and translocation of AIF from mitochondria to the nucleus. However, the activities of caspase-3, -8 and -9 were not changed, and PARP did not show signs of cleavage. Interestingly, the pretreatment of cells with a specific inhibitor of autophagy (3-methyladenine) accelerated rottlerin-induced apoptosis as revealed by an analysis of the subdiploid fraction and TUNEL assay. Nevertheless, the knockdown of PKC-delta by RNA interference neither affected cell growth nor acidic vacuole formation. Similarly, rottlerin-induced cell death was not prevented by PKC-delta overexpression. Taken together, these findings suggest that rottlerin induces early autophagy and late apoptosis in a PKC-delta-independent manner, and the rottlerin-induced early autophagy may act as a survival mechanism against late apoptosis in HT1080 human fibrosarcoma cells.  相似文献   

19.
Autophagy follows a lysosomal degradation pathway in which a cell digests its own components. It is highly regulated by a limited number of autophagy‐related genes (Atg) and the proteins they encode, that are crucial for cells to undergo the process via modulating autophagsome formation. Recently, accumulating evidence has revealed the core molecular machinery of autophagy; however, intricate relationships between autophagy and cancer remain an enigma. Several studies have shown that Atgs can play an important role in carcinogenesis, by which Atgs may modulate a series of oncogenic and tumour suppressive pathways, implicating microRNA (miRNA) involvement. In this review, we will present the key role of Atgs in deciding the fate of cancer cells, discuss some representative Atgs and their proteins such as ULK, Beclin‐1, and Atg8/LC3‐Atg4, which can also be regulated by miRNAs. Thus, Atgs can be considered to be targets for cancer treatment, which may illuminate the future of cancer therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号