首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although non‐segmental vitiligo (NSV) results from the autoimmune destruction of melanocytes, the detailed immune mechanisms have not yet been fully elucidated. Th17 cells have been identified to be implicated in human autoimmune diseases. In this study, the frequencies of peripheral blood Th17 cells and serum levels of IL‐17A and Th17 cell‐related cytokines were examined in 45 patients with active NSV compared to 45 race‐, gender‐, and age‐matched healthy controls. Our results showed increased circulating Th17 cell frequencies and elevated serum IL‐17A, TGF‐β1, and IL‐21 levels in patients with NSV. Meanwhile, the increased Th17 cell frequencies are positively correlated with serum TGF‐β1 level, and the body surface area of lesions is positively correlated with elevated TGF‐β1 and IL‐21 levels and Th17 cell frequencies. Furthermore, positive correlation was identified between Th17 and Th1 cell frequencies in patients with NSV. These results further indicate the potential involvement of Th17 cells and the collaborative contribution of Th17 and Th1 in NSV development, and suggest that the elevated serum TGF‐β1 and IL‐21 levels could contribute to enhanced Th17 cell differentiation in NSV.  相似文献   

3.
4.
The expression levels of five secreted target interleukins (IL‐11, 15, 17B, 32, and IL23 p19 subunit) were tested with three different fusion partners in 2936E cells. When fused to the N‐terminus, human serum albumin (HSA) was found to enhance the expression of both IL‐17B and IL‐15, cytokines which did not express at measurable levels on their own. Although the crystallizable fragment of an antibody (Fc) was also an effective fusion partner for IL‐17B, Fc did not increase expression of IL‐15. Fc was superior to HSA for the expression of the p19 subunit of IL‐23, but no partner led to measurable levels of IL‐32γ secretion. Glutathione S‐transferase (GST) did not enhance the expression of any target and suppressed the production of IL‐11, a cytokine which expressed robustly both on its own and when fused to HSA or Fc. Cleavage of the fusion partner was not always possible. The use of HSA or Fc as N‐terminal fusions can be an effective technique to express difficult proteins, especially for applications in which the fusion partner need not be removed.  相似文献   

5.
Toll‐like receptors (TLRs) are an important part of the innate immune system, acting as a first line of defense against many invading pathogens. The ligand known to bind Gallus toll‐like receptor 21 (gTLR21) is the unmethylated cytosine phosphate guanine dideoxy nucleotide motif; however, the evolutionary characteristics and structural biology of gTLR21 are poorly elaborated. Our results suggest that gTLR21 is phylogenetically and evolutionarily related to the TLR11 family and is perhaps a close ortholog of the Mus TLR13. Structural biology of homology modeling of the gTLR21 ectodomain structure suggests that it has no Z‐loop like that seen in Mus TLR9. The cytosolic toll‐IL‐1 receptor region of gTLR21 contains a central 4‐stranded parallel β‐sheet (βA‐βD) surrounded by 5 α‐helices (αA‐αE) on both sides, a highly conserved structure also seen in other TLRs. Molecular docking analysis reveals that the gTLR21 ectodomain has the potential to distinguish between different ligands. Homodimer analysis results also suggest that Phe842 and Pro844 of the BB loop and Cys876 of the αC helix in gTLR21 are conserved in other cytosolic toll‐IL‐1 receptor domains of other TLRs and may contribute to the docking of homodimers. Our study on the evolutionary characteristics and structural biology of gTLR21 reveals that the molecule may have a broader role to play in innate immune system; however, further experimental validation is required to confirm our findings.  相似文献   

6.
It is recognized that IL‐18 is related to development of asthma, but role of IL‐18 in asthma remains controversial and confusing. This is largely due to lack of information on expression of IL‐18 binding protein (BP) and IL‐18 receptor (R) in asthma. In this study, we found that plasma levels of IL‐18 and IL‐18BP were elevated in asthma. The ratio between plasma concentrations of IL‐18 and IL‐18BP was 1:12.8 in asthma patients. We demonstrated that 13‐fold more monocytes, 17.5‐fold more neutrophils and 4.1‐fold more B cells express IL‐18BP than IL‐18 in asthmatic blood, suggesting that there is excessive amount of IL‐18BP to abolish actions of IL‐18 in asthma. We also discovered that more IL‐18R+ monocytes, neutrophils and B cells are located in asthmatic blood. Once injected, IL‐18 eliminated IL‐18R+ monocytes in blood, but up‐regulated expression of IL‐18R in lung macrophages of OVA‐sensitized mice. Our data clearly indicate that the role of IL‐18 in asthma is very likely to be determined by balance of IL‐18/IL‐18BP/IL‐18R expression in inflammatory cells. Therefore, IL‐18R blocking or IL‐18BP activity enhancing therapies may be useful for treatment of asthma.  相似文献   

7.
8.
Although the mechanisms by which hyperoxia promotes bronchopulmonary dysplasia are not fully defined, the inability to maintain optimal interleukin (IL)‐10 levels in response to injury secondary to hyperoxia seems to play an important role. We previously defined that hyperoxia decreased IL‐10 production and pre‐treatment with recombinant IL‐10 (rIL‐10) protected these cells from injury. The objectives of these studies were to investigate the responses of IL‐10 receptors (IL‐10Rs) and IL‐10 signalling proteins (IL‐10SPs) in hyperoxic foetal alveolar type II cells (FATIICs) with and without rIL‐10. FATIICs were isolated on embryonic day 19 and exposed to 65%‐oxygen for 24 hrs. Cells in room air were used as controls. IL‐10Rs protein and mRNA were analysed by ELISA and qRT‐PCR, respectively. IL‐10SPs were assessed by Western blot using phospho‐specific antibodies. IL‐10Rs protein and mRNA increased significantly in FATIICs during hyperoxia, but JAK1 and TYK2 phosphorylation showed the opposite pattern. To evaluate the impact of IL‐8 (shown previously to be increased) and the role of IL‐10Rs, IL‐10SPs were reanalysed in IL‐8‐added normoxic cells and in the IL‐10Rs’ siRNA‐treated hyperoxic cells. The IL‐10Rs’ siRNA‐treated hyperoxic cells and IL‐8‐added normoxic cells showed the same pattern in IL10SPs with the hyproxic cells. And pre‐treatment with rIL‐10 prior to hyperoxia exposure increased phosphorylated IL‐10SPs, compared to the rIL‐10‐untreated hyperoxic cells. These studies suggest that JAK1 and TYK2 were significantly suppressed during hyperoxia, where IL‐8 may play a role, and rIL‐10 may have an effect on reverting the suppressed JAK1 and TYK2 in FATIICs exposed to hyperoxia.  相似文献   

9.
10.
Our study was undertaken to evaluate the important role of interleukin‐6 (IL‐6) trans‐signaling in acetaminophen (AAP)‐induced liver injury. A soluble gp130 protein (sgp130Fc) exclusively inhibits IL‐6 trans‐signaling, whereas an IL‐6/soluble IL‐6 receptor (sIL‐6R) fusion protein (hyper‐IL‐6) mimics IL‐6 trans‐signaling. Using these tools, we investigated the role of IL‐6 trans‐signaling in AAP‐induced liver injury. Blockade of IL‐6 trans‐signaling during AAP‐induced liver injury remarkably increased the levels of serum aspartate aminotransferase and alanine aminotransferase; lowered the level of serum sIL‐6R; aggravated liver injury; inhibited the expression of phosphorylation of STAT3 (pSTAT3), proliferating cell nuclear antigen, vascular endothelial growth factor, and glycogen synthesis; and induced the expression of Caspase3, cytochrome P450 2E1 (CYP2E1), and hepatocyte apoptosis in the liver of mice. In summary, our study suggested that IL‐6 trans‐signaling plays important protective roles by regulating the hepatocyte proliferation and apoptosis, angiogenesis, CYP2E1 expression, and glycogen metabolism during AAP‐induced liver injury in mice.  相似文献   

11.
12.
Background:  Helicobacter pylori is a spiral‐shaped Gram‐negative microaerophilic bacterium associated with a number of gastrointestinal disorders, including gastritis, peptic ulcers, and gastric cancer. Several studies have implicated a Th17 response as a key to protective immunity against Helicobacter. Materials and Methods:  Wild type (WT) and MyD88‐deficient (MyD88?/?) mice in the C57BL/6 background were infected with H. felis for 6 and 25 weeks and colonization density and host response evaluated. Real‐time PCR was used to determine the expression of cytokines and antimicrobial peptides in the gastric tissue of mice. Results:  mRNA expression levels of the Th17 cytokines interleukin‐17A (IL‐17A) and IL‐22 were markedly up‐regulated in WT compared with MyD88?/? mice both at 6 and at 25 weeks in response to infection with H. felis, indicating that induction of Th17 responses depends on MyD88 signaling. Furthermore, reduction in the expression of Th17‐dependent intestinal antimicrobial peptide lipocalin‐2 was linked with increased bacterial burden in the absence of MyD88 signaling. Conclusion:  We provide evidence showing that MyD88‐dependent signaling is required for the host to induce a Th17 response for the control of Helicobacter infection.  相似文献   

13.
Interleukin (IL)-17 is a proinflammatory cytokine which induces differentiation and migration of neutrophils through induction of cytokines and chemokines including granulocyte-colony stimulating factor and CXCL8/IL-8. IL-17-producing CD4(+) T cells (Th17) have pivotal role in pathogenesis of autoimmune diseases. IL-17 is also involved in protective immunity against various infections. IL-17 has important role in induction of neutrophil-mediated protective immune response against extracellular bacterial or fungal pathogens such as Klebsiella pneumoniae and Candida albicans. Importance of IL-17 in protection against intracellular pathogens including Mycobacterium has also been reported. Interestingly, not only CD4(+) T cells but atypical CD4(-)CD8(-) T cells expressing T cell receptor (TCR) gammadelta produce IL-17, and IL-17 producing cells participate in both innate and acquired immune response to infections. Furthermore, neutrophil induction may not be the only mechanism of IL-17-mediated protective immunity. IL-17 seems to participate in host defense through regulation of cell-mediated immunity or induction of antimicrobial peptides such as beta-defensins. In this review, we summarize recent progress on the role of IL-17 in immune response against infections, and discuss possible application of IL-17 in prevention and treatment of infectious diseases.  相似文献   

14.
The objective of our research was to reveal the effects of shear stress on the apoptosis of cultured human umbilical vein endothelial cells (HUVECs) induced by lipopolysaccharide (LPS). A parallel-plate flow chamber was used to control the strength and duration of shear stress (SS), and apoptosis was measured by immunocytochemistry and radio-immunoassay. Some important conclusions were drawn. In the stationary state, apoptosis of HUVECs could be induced by LPS (50 microg/ml). An SS of 15 dyn/cm(2) could inhibit the apoptosis induced by LPS. However, an SS of 4 dyn/cm(2) had less effect on the same process. At the same time, the experiment demonstrated that the increase in IL-6 secretion by LPS can be inhibited by two different levels of shear stress. Moreover, the inhibition effect was more obvious under high level stress than under low level. We also found that the effect of shear stress on IL-8 was less effective than on IL-6. This research provides data for understanding the mechanism of the contribution of hemodynamic forces to atherosclerosis.  相似文献   

15.
The biosynthesis of interleukin-6 receptor (IL-6R) and gp130 in vitro was blocked using specific antisense oligonucleotides (ASO) in HepG2 liver cells and the efficacy of various ASOs was tested on the generation of IL-6-induced junB mRNA. We used three ASOs specific for the IL-6 receptor, three specific for gp130 and a control (nonsense) oligonucleotide specific for epsilon-chain of IgE (not expressing in HepG2 cells). Our data indicate that a gp130-specific ASO, g2, was the most effective blocker of IL-6-induced junB mRNA, whilst the IL-6 receptor ASOs alone were ineffective. The mechanism of gene inactivation by ASO treatment was partially elucidated by demonstration of the loss of gp130 mRNA from cells treated with ASOs showing functional efficacy. Our data may help to design antisense oligonucleotides that are effective in therapy (e.g. as anti-inflammatory agents) in the future.  相似文献   

16.
The Japanese cedar pollen (JCP) is a major allergen with respect to pollinosis in Japan. It is believed that interleukin-4 (IL-4) and interleukin-5 (IL-5) derived from lymphocytes and other cells play a pivotal role in allergic reactions. We investigated whether the JCP antigen stimulates the release of these cytokines by peripheral blood mononuclear cells (PBMCs). PBMCs from eight adults (five adults with JCP pollinosis and three adults without JCP pollinosis) were co-incubated with purified JCP antigens. IL-4 was released in response to JCP antigens in six of the eight subjects at 24 h and in three subjects at 48 h. IL-4 release at 24 h occurred in all five subjects with JCP pollinosis but in only one of the three subjects without pollinosis. IL-5 was released in response to the JCP antigen in five of the eight subjects at 24 h and 48 h, including four of the five subjects with JCP pollinosis and one of the three subjects without pollinosis. These results suggest that PBMCs were more likely to release IL-4 and IL-5 in the presence of JCP pollinosis.  相似文献   

17.
To avoid high systemic doses, strategies involving antigen‐specific delivery of cytokine via linked antibodies or antibody fragments have been used. Targeting cancer‐associated peptides presented by major histocompatibility complex (MHC) molecules (pepMHC) increases the number of potential target antigens and takes advantage of cross‐presentation on tumor stroma and in draining lymph nodes. Here, we use a soluble, high‐affinity single‐chain T cell receptor Vα‐Vβ (scTv), to deliver cytokines to intracellular tumor‐associated antigens presented as pepMHC. As typical wild‐type T cell receptors (TCRs) exhibit low affinity (Kd = 1–100 μM or more), we used an engineered TCR, m33, that binds its antigenic peptide SIYRYYGL (SIY) bound to the murine class I major histocompatability complex protein H2‐Kb (SIY/Kb) with nanomolar affinity (Kd = 30 nM). We generated constructs consisting of m33 scTv fused to murine interleukin 2 (IL‐2), interleukin 15 (IL‐15), or IL‐15/IL‐15Rα (IL‐15 linked to IL‐15Rα sushi domain, called “superfusion”). The fusions were purified with good yields and bound specifically to SIY/Kb with high affinity. Proper cytokine folding and binding were confirmed, and the fusions were capable of stimulating proliferation of cytokine‐dependent cells, both when added directly and when presented in trans, bound to cells with the target pepMHC. The m33 superfusion was particularly potent and stable and represents a promising design for targeted antitumor immunomodulation. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

18.
In the present study, we examined whether natural killer (NK) cells have direct fungicidal activity against Cryptococcus neoformans. Splenic NK cells were obtained from SCID mice and stimulated with a combination of interleukin (IL)-12 and IL-18 in flat culture plates or round tubes. They were then or at the same time cultured with the yeast cells and the number of viable yeast cells was examined. We could not detect direct fungicidal activity by NK cells under any culture condition, although they produced a large amount of IFN-gamma and exerted marked cytotoxic activity against YAC-1 cells. On the other hand, NK cells significantly potentiated the nitric oxide-mediated cryptococcocidal activity of thioglycolate-elicited peritoneal macrophages obtained from SCID mice upon stimulation with IL-12 and IL-18. The culture supernatants of NK cells stimulated with IL-12 and IL-18 provided similar results when used in place of NK cells. The induction of macrophage anticryptococcal activity by NK cells and NK cell culture supernatants were both mediated by IFN-gamma because the specific mAb almost completely abrogated such effect. Considered collectively, our results suggested that NK cells may play a regulatory role in potentiating macrophage-mediated fungicidal mechanisms in host resistance to infection with C. neoformans rather than exerting a direct killing activity against the fungal pathogen.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号