首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
It remains unclear whether the necessity of calcified mellitus induced by high inorganic phosphate (Pi) is required and the roles of autophagy plays in aldosterone (Aldo)‐enhanced vascular calcification (VC) and vascular smooth muscle cell (VSMC) osteogenic differentiation. In the present study, we found that Aldo enhanced VC both in vivo and in vitro only in the presence of high Pi, alongside with increased expression of VSMC osteogenic proteins (BMP2, Runx2 and OCN) and decreased expression of VSMC contractile proteins (α‐SMA, SM22α and smoothelin). However, these effects were blocked by mineralocorticoid receptor inhibitor, spironolactone. In addition, the stimulatory effects of Aldo on VSMC calcification were further accelerated by the autophagy inhibitor, 3‐MA, and were counteracted by the autophagy inducer, rapamycin. Moreover, inhibiting adenosine monophosphate‐activated protein kinase (AMPK) by Compound C attenuated Aldo/MR‐enhanced VC. These results suggested that Aldo facilitates high Pi‐induced VSMC osteogenic phenotypic switch and calcification through MR‐mediated signalling pathways that involve AMPK‐dependent autophagy, which provided new insights into Aldo excess‐associated VC in various settings.  相似文献   

4.
The lysosomal integral membrane protein type 2 (LIMP‐2/SCARB2) has been described as a mannose 6‐phosphate (M6P)‐independent trafficking receptor for β‐glucocerebrosidase (GC). Recently, a putative M6P residue in a crystal structure of a recombinantly expressed LIMP‐2 ectodomain has been reported. Based on surface plasmon resonance and fluorescence lifetime imaging analyses, it was suggested that the interaction of soluble LIMP‐2 with the cation‐independent M6P receptor (MPR) results in M6P‐dependent targeting of LIMP‐2 to lysosomes. As the physiological relevance of this observation was not addressed, we investigated M6P‐dependent delivery of LIMP‐2 to lysosomes in murine liver and mouse embryonic fibroblasts. We demonstrate that LIMP‐2 and GC reach lysosomes independent of the M6P pathway. In fibroblasts lacking either MPRs or the M6P‐forming N‐acetylglucosamine (GlcNAc)‐1‐phosphotransferase, LIMP‐2 still localizes to lysosomes. Immunoblot analyses also revealed comparable LIMP‐2 levels within lysosomes purified from liver of wild‐type (wt) and GlcNAc‐1‐phosphotransferase‐defective mice. Heterologous expression of the luminal domain of LIMP‐2 in wild‐type, LIMP‐2‐deficient and GlcNAc‐1‐phosphotransferase‐defective cells further established that the M6P modification is dispensable for lysosomal sorting of LIMP‐2. Finally, cathepsin Z, a known GlcNAc‐1‐phosphotransferase substrate, but not LIMP‐2, could be precipitated with M6P‐specific antibodies. These data prove M6P‐independent lysosomal sorting of LIMP‐2 and subsequently GC in vivo.   相似文献   

5.
6.
7.
8.
9.
10.
Patients with end‐stage renal disease (ESRD) have elevated circulating calcium (Ca) and phosphate (Pi), and exhibit accelerated progression of calcific aortic valve disease (CAVD). We hypothesized that matrix vesicles (MVs) initiate the calcification process in CAVD. Ca induced rat valve interstitial cells (VICs) calcification at 4.5 mM (16.4‐fold; p < 0.05) whereas Pi treatment alone had no effect. Ca (2.7 mM) and Pi (2.5 mM) synergistically induced calcium deposition (10.8‐fold; p < 0.001) in VICs. Ca treatment increased the mRNA of the osteogenic markers Msx2, Runx2, and Alpl (p < 0.01). MVs were harvested by ultracentrifugation from VICs cultured with control or calcification media (containing 2.7 mM Ca and 2.5 mM Pi) for 16 hr. Proteomics analysis revealed the marked enrichment of exosomal proteins, including CD9, CD63, LAMP‐1, and LAMP‐2 and a concomitant up‐regulation of the Annexin family of calcium‐binding proteins. Of particular note Annexin VI was shown to be enriched in calcifying VIC‐derived MVs (51.9‐fold; p < 0.05). Through bioinformatic analysis using Ingenuity Pathway Analysis (IPA), the up‐regulation of canonical signaling pathways relevant to cardiovascular function were identified in calcifying VIC‐derived MVs, including aldosterone, Rho kinase, and metal binding. Further studies using human calcified valve tissue revealed the co‐localization of Annexin VI with areas of MVs in the extracellular matrix by transmission electron microscopy (TEM). Together these findings highlight a critical role for VIC‐derived MVs in CAVD. Furthermore, we identify calcium as a key driver of aortic valve calcification, which may directly underpin the increased susceptibility of ESRD patients to accelerated development of CAVD.  相似文献   

11.
Phosphorylation of serine, threonine and tyrosine is a central mechanism for regulating the structure and function of proteins in both eukaryotes and prokaryotes. However, the action of phosphorylated proteins present in Porphyromonas gingivalis, a major periodontopathogen, is not fully understood. Here, six novel phosphoproteins that possess metabolic activities were identified, namely PGN_0004, PGN_0375, PGN_0500, PGN_0724, PGN_0733 and PGN_0880, having been separated by phosphate‐affinity chromatography. The identified proteins were detectable by immunoblotting specific to phosphorylated Ser (P‐Ser), P‐Thr, and/or P‐Tyr. These results imply that novel phosphorylated proteins might play an important role for regulation of metabolism in P. gingivalis.  相似文献   

12.
N‐cadherin‐mediated adhesion is essential for maintaining the tissue architecture and stem cell niche in the developing neocortex. N‐cadherin expression level is precisely and dynamically controlled throughout development; however, the underlying regulatory mechanisms remain largely unknown. MicroRNAs (miRNAs) play an important role in the regulation of protein expression and subcellular localisation. In this study, we show that three miRNAs belonging to the miR379–410 cluster regulate N‐cadherin expression levels in neural stem cells and migrating neurons. The overexpression of these three miRNAs in radial glial cells repressed N‐cadherin expression and increased neural stem cell differentiation and neuronal migration. This phenotype was rescued when N‐cadherin was expressed from a miRNA‐insensitive construct. Transient abrogation of the miRNAs reduced stem cell differentiation and increased cell proliferation. The overexpression of these miRNAs specifically in newborn neurons delayed migration into the cortical plate, whereas the knockdown increased migration. Collectively, our results indicate a novel role for miRNAs of the miR379–410 cluster in the fine‐tuning of N‐cadherin expression level and in the regulation of neurogenesis and neuronal migration in the developing neocortex.  相似文献   

13.
Aortic valve (AoV) calcification is common in aged populations. Its subsequent aortic stenosis has been linked with increased morbidity, but still has no effective pharmacological intervention. Our previous data show endoplasmic reticulum (ER) stress is involved in AoV calcification. Here, we investigated whether deficiency of ER stress downstream effector CCAAT/enhancer‐binding protein homology protein (CHOP) may prevent development of AoV calcification. AoV calcification was evaluated in Apoe?/? mice (n = 10) or in mice with dual deficiencies of ApoE and CHOP (Apoe?/?CHOP?/?, n = 10) fed with Western diet for 24 weeks. Histological and echocardiographic analysis showed that genetic ablation of CHOP attenuated AoV calcification, pro‐calcification signaling activation, and apoptosis in the leaflets of Apoe?/? mice. In cultured human aortic valvular interstitial cells (VIC), we found oxidized low‐density lipoprotein (oxLDL) promoted apoptosis and osteoblastic differentiation of VIC via CHOP activation. Using conditioned media (CM) from oxLDL‐treated VIC, we further identified that oxLDL triggered osteoblastic differentiation of VIC via paracrine pathway, while depletion of apoptotic bodies (ABs) in CM suppressed the effect. CM from oxLDL‐exposed CHOP‐silenced cells prevented osteoblastic differentiation of VIC, while depletion of ABs did not further enhance this protective effect. Overall, our study indicates that CHOP deficiency protects against Western diet‐induced AoV calcification in Apoe?/? mice. CHOP deficiency prevents oxLDL‐induced VIC osteoblastic differentiation via preventing VIC‐derived ABs releasing.  相似文献   

14.
15.
The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol‐3‐phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P‐binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P‐binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P‐binding site, or by a secreted PI4P‐binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P‐binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P‐binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens.  相似文献   

16.
We previously reported that sphingosine 1‐phosphate (S‐1‐P), a sphingomyelin metabolite, activates p44/p42 mitogen‐activated protein (MAP) kinase and p38 MAP kinase in aortic smooth‐muscle A10 cells. In the present study, we investigated the effect of sphingomyelin metabolites on phospholipase C‐catalyzing phosphoinositide hydrolysis induced by arginine vasopressin (AVP) in A10 cells. C2‐ceramide and sphingosine had little effect on inositol phosphate (IP) formation stimulated by AVP. S‐1‐P, which alone slightly stimulated the IPs formation, dose‐dependently amplified the AVP‐induced formation of IPs. Tumor necrosis factor‐α enhanced the AVP‐induced formation of IPs. However, S‐1‐P did not enhance the formation of IPs by NaF, a heterotrimeric GTP‐binding protein activator. Pertussis toxin inhibited the effect of S‐1‐P. PD98059, an inhibitor of the upstream kinase that activates p44/p42 MAP kinase, had little effect on the enhancement by S‐1‐P. SB203580, an inhibitor of p38 MAP kinase, suppressed the effect of S‐1‐P on the formation of IPs by AVP. SB203580 inhibited the AVP‐induced phosphorylation of p38 MAP kinase. Pertussis toxin suppressed the phosphorylation of p38 MAP kinase by S‐1‐P. These results indicate that S‐1‐P amplifies AVP‐induced phosphoinositide hydrolysis by phospholipase C through p38 MAP kinase in vascular smooth‐muscle cells. J. Cell. Biochem. 80:46–52, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

17.
18.
19.
The preparation of Ce3+‐doped Sr6AlP5O20 and Ba6AlP5O20 by a combustion method is described. Formation of compounds was confirmed by X‐ray diffraction (XRD) analysis. The photoluminescence (PL) emission spectra were observed at 355 nm when excited at 307 nm for the various concentrations. The PL emission spectra of phosphors showed strong Ce3+ emission due to the 5 d → 4f transition of Ce3+ ions. The Ce3+ emission intensity in Sr6AlP5O20:Ce phosphor was higher than that in Ba6AlP5O20:Ce and it may be useful for scintillation applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号