首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of spectrin was demonstrated in chick osteoclasts by Western blotting and light and electron microscopic immunolocalization. Additionally, screening of a chick osteoclast cDNA library revealed the presence of α-spectrin. Light microscope level immunocytochemical staining of osteoclasts in situ revealed spectrin staining throughout the cytoplasm with heavier staining found at the marrow-facing cell margin and around the nuclei. Confocal microscopy of isolated osteoclasts plated onto a glass substrate showed that spectrin encircled the organelle-rich cell center. Nuclei and cytoplasmic inclusions were also stained and the plasma membrane was stained in a nonuniform, patchy distribution corresponding to regions of apparent membrane ruffling. Ultracytochemical localization showed spectrin to be found at the plasma membrane and distributed throughout the cytoplasm with especially intense staining of the nuclear membrane and filaments within the nuclear compartment. J. Cell. Biochem. 71:204–215, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Lutein, a member of the xanthophyll family of carotenoids, suppressed IL-1-induced osteoclast differentiation and bone resorption. The survival of mature osteoclasts was also suppressed by lutein in cultures. When lutein was added to the cultures of osteoblasts, lutein enhanced the formation of mineralized bone nodules by elevating BMP2 expression and inhibiting sclerostin expression. Lutein may be beneficial for bone health.  相似文献   

3.
A randomized, double‐blind, sham‐controlled, feasibility and dosing study was undertaken to determine if a common pulsing electromagnetic field (PEMF) treatment could moderate the substantial osteopenia that occurs after forearm disuse. Ninety‐nine subjects were randomized into four groups after a distal radius fracture, or carpal surgery requiring immobilization in a cast. Active or identical sham PEMF transducers were worn on the distal forearm for 1, 2, or 4 h/day for 8 weeks starting after cast removal (“baseline”) when bone density continues to decline. Bone mineral density (BMD) and bone geometry were measured in the distal forearm by dual energy X‐ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) at entry (“baseline”) and 8, 16, and 24 weeks later. Significant average BMD losses after baseline were observed in the affected forearm at all time points (5–7% distally and 3–4% for the radius/ulna shaft). However, after adjusting for age, gender, and baseline BMD there was no evidence of a positive effect of active versus sham PEMF treatment on bone loss by DXA or pQCT for subjects completing all visits (n = 82, ~20 per group) and for an intent‐to‐treat analysis (n = 99). Regardless of PEMF exposure, serum bone‐specific alkaline phosphatase (BSAP) was normal at baseline and 8 weeks, while serum c‐terminal collagen teleopeptide (CTX‐1) was markedly elevated at baseline and less so at 8 weeks. Although there was substantial variability in disuse osteopenia, these results suggested that the particular PEMF waveform and durations applied did not affect the continuing substantial disuse bone loss in these subjects. Bioelectromagnetics 32:273–282, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
To examine whether the bone mineral density (BMD) decreases uniformly with aging in any spongy bones, the authors investigated age-related changes of BMD in the calcaneus, talus, and scaphoid bone. After the ordinary dissection by medical students was finished, calcanei, tali, and scaphoid bones were resected from the subjects, and BMDs were measured by dual-energy X-ray absorptiometry. Their BMDs seemed to decrease gradually with aging in the calcanei, tali, and scaphoid bones. It was found that there were statistically significant relationships between age and BMD in the men’s and women’s scaphoid bones, women’s tali, and women’s calcanei, but not in the men’s tali and calcanei. It should be noted that there were significant relationships between age and BMD in both men’s and women’s scaphoid bones. In regard to relationship in BMD between the bones of the upper and lower limbs in individuals, it was found that the relationship between the calcaneus and talus was higher than that between the calcaneus and scaphoid bone. This suggests that there is a higher relationship in BMD between the two tarsal bones compared with that between the tarsal and carpal bones.  相似文献   

5.
We performed a comparative study of bone mechanical properties in the radii of chimpanzees (Pan troglodytes), humans (Homo sapiens), and Japanese macaques (Macaca fuscata) using peripheral quantitative computed tomography. We investigated: (1)cortical bone area relative to the total periosteal area (PrA); (2) trabecular bone area relative to PrA; (3) cortical bone density; and (4) trabecular bone density. The cortical bone area index for chimpanzees was almost the same as that of Japanese macaques, whereas the equivalent value in humans was about the two-fifths that of the others. Values for the other three properties were constant among these three catarrhine species. Chimpanzees do not particularly resemble humans, but are more similar to digitigrade macaques in terms of bone properties. The constant trabecular bone area index and trabecular density value in these species may suggest that a certain amount of trabecular bone (20–30% of total bone area at the distal 4% level of the forearm) is necessary to achieve normal bone turnover. The physiological metabolism of bone, including cortical bone density, might be conserved in these catarrhines. Electronic Publication  相似文献   

6.
Osteoporosis has become a growing health concern in developed countries and an extensive area of research in skeletal biology. Despite numerous paleopathological studies of bone mass, few studies have measured bone quality in past populations. In order to examine age- and sex-related changes in one aspect of bone quality in the past, a study was made of trabecular bone architecture in a British medieval skeletal sample. X-ray images of 5-mm-thick coronal lumbar vertebral bone sections were taken from a total of 54 adult individuals divided into three age categories (18-29, 30-49, and 50+ years), and examined using image analysis to evaluate parameters related to trabecular bone structure and connectivity. Significant age-related changes in trabecular bone structure (trabecular bone volume (BV/TV), trabecular number (Tb.N), trabecular separation (Tb.Sp), and anisotropic ratio (Tb.An)) were observed to occur primarily by middle age with significant differences between the youngest and two older age groups. Neither sex showed continuing change in trabecular structure between the middle and old age groups. Age-related changes in bone connectivity (number of nodes (N.Nd) and node-to-node strut length (Nd.Nd)) similarly indicated a change in bone connectivity only between the youngest and two older age groups. However, females showed no statistical differences among the age groups in bone connectivity. These patterns of trabecular bone loss and fragility contrast with those generally found in modern populations that typically report continuing loss of bone structure and connectivity between middle and old age, and suggest greater loss in females. The patterns of bone loss in the archaeological samples must be interpreted cautiously. We speculate that while nutritional factors may have initiated some bone loss in both sexes, physical activity could have conserved bone architecture in old age in both sexes, and reproductive factors such as high parity and extended periods of lactation could have played a key role in female bone maintenance in this historic population. The study of qualitative elements (such as trabecular architecture) is vital if we are to understand bone maintenance and fragility in the past.  相似文献   

7.
8.
《Organogenesis》2013,9(4):114-124
The biology of fracture healing is better understood than ever before, with advancements such as the locking screw leading to more predictable and less eventful osseous healing. However, at times one’s intrinsic biological response, and even concurrent surgical stabilization, is inadequate. In hopes of facilitating osseous union, bone grafts, bone substitutes and orthobiologics are being relied on more than ever before. The osteoinductive, osteoconductive and osteogenic properties of these substrates have been elucidated in the basic science literature and validated in clinical orthopaedic practice. Furthermore, an industry built around these items is more successful and in demand than ever before. This review provides a comprehensive overview of the basic science, clinical utility and economics of bone grafts, bone substitutes and orthobiologics.  相似文献   

9.
During endochondral bone development, bone‐forming osteoblasts have to colonize the regions of cartilage that will be replaced by bone. In adulthood, bone remodeling and repair require osteogenic cells to reach the sites that need to be rebuilt, as a prerequisite for skeletal health. A failure of osteoblasts to reach the sites in need of bone formation may contribute to impaired fracture repair. Conversely, stimulation of osteogenic cell recruitment may be a promising osteo‐anabolic strategy to improve bone formation in low bone mass disorders such as osteoporosis and in bone regeneration applications. Yet, still relatively little is known about the cellular and molecular mechanisms controlling osteogenic cell recruitment to sites of bone formation. In vitro, several secreted growth factors have been shown to induce osteogenic cell migration. Recent studies have started to shed light on the role of such chemotactic signals in the regulation of osteoblast recruitment during bone remodeling. Moreover, trafficking of osteogenic cells during endochondral bone development and repair was visualized in vivo by lineage tracing, revealing that the capacity of osteoblast lineage cells to move into new bone centers is largely confined to undifferentiated osteoprogenitors, and coupled to angiogenic invasion of the bone‐modeling cartilage intermediate. It is well known that the presence of blood vessels is absolutely required for bone formation, and that a close spatial and temporal relationship exists between osteogenesis and angiogenesis. Studies using genetically modified mouse models have identified some of the molecular constituents of this osteogenic–angiogenic coupling. This article reviews the current knowledge on the process of osteoblast lineage cell recruitment to sites of active bone formation in skeletal development, remodeling, and repair, considering the role of chemo‐attractants for osteogenic cells and the interplay between osteogenesis and angiogenesis in the control of bone formation. Birth Defects Research (Part C) 99:170–191, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Bone remodeling is a process of continuous resorption and formation/mineralization carried out by osteoclasts and osteoblasts, which, along with osteocytes, comprise the bone multicellular unit (BMU). A key component of the BMU is the bone remodeling compartment (BRC), isolated from the marrow by a canopy of osteoblast-like lining cells. Although much progress has been made regarding the cytokine-dependent and hormonal regulation of bone remodeling, less attention has been placed on the role of extracellular pH (pH(e)). Osteoclastic bone resorption occurs at acidic pH(e). Furthermore, osteoclasts can be regarded as epithelial-like cells, due to their polarized structure and ability to form a seal against bone, isolating the lacunar space. The major ecto-phosphatases of osteoclasts and osteoblasts, acid and alkaline phosphatases, both have ATPase activity with pH optima several units different from neutrality. Furthermore, osteoclasts and osteoblasts express plasma membrane purinergic P2 receptors that, upon activation by ATP, accelerate bone osteoclast resorption and impair osteoblast mineralization. We hypothesize that these ecto-phosphatases help regulate [ATP](e) and localized pH(e) at the sites of bone resorption and mineralization by pH-dependent ATP hydrolysis coupled with P2Y-dependent regulation of osteoclast and osteoblast function. Furthermore, osteoclast cellular HCO3(-), formed as a product of lacunar V-ATPase H(+) secretion, is secreted into the BRC, which could elevate BRC pH(e), in turn affecting osteoblast function. We will review the existing data addressing regulation of BRC pH(e), present a hypothesis regarding its regulation, and discuss the hypothesis in the context of the function of proteins that regulate pH(e).  相似文献   

11.
Traumatic lesions are commonly found in the archeological record and have potential to provide insight into the lives of past populations. This paper examines patterns of long bone fractures in the British medieval population of St. Helen-on-the-Walls from York (approximately 1100–1550) in an effort to determine patterns of healing and evidence for treatment. Long bones were macroscopically and radiologically examined. Clinical data were used to assess whether a fracture had successfully or unsuccessfully healed. The results indicate that fractures of the radius and ulna were most common. Males displayed more fractures than women. Most fractures were healed, well aligned, and without substantial deformity. Lack of evidence for deformity in bones likely to be severely affected by fracture implied that immobilization and possibly reduction was practiced on even the poorest residents of the medieval city. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Bone morphogenetic proteins (BMPs) have demonstrated effectiveness as bone regeneration agents whether delivered as recombinant proteins or via gene therapy. Current gene therapy approaches use vectors expressing single BMPs. In contrast, multiple BMPs are coordinately expressed during bone development and fracture healing. Furthermore, BMPs likely exist in vivo as heterodimeric molecules having enhanced biological activity. In the present study, we test the hypothesis that gene therapy-based bone regeneration can be enhanced by expressing combinations of BMPs. For in vitro studies, mesenchymal cell lines were transduced with individual adenoviruses containing BMP2, 4, or 7 cDNA under control of a CMV promoter (AdBMP2, 4, 7) or virus combinations. Significantly, combined transduction with AdBMP2 plus AdBMP7 or AdBMP4 plus AdBMP7 resulted in a synergistic stimulation of osteoblast differentiation. This synergy is best explained by formation of BMP2/7 and 4/7 heterodimers. To test in vivo biological activity, fibroblasts were transduced with specific virus combinations and implanted into C57BL6 mice. Consistent with in vitro results, strong synergy was observed using combined AdBMP2/BMP7 treatment, which induced twofold to threefold more bone than would be predicted based on the activity of individual AdBMPs. These studies show that dramatic enhancement of osteogenesis can be achieved using gene therapy to express specific combinations of interacting regenerative molecules.  相似文献   

13.
It has been demonstrated in clinical and experimental studies that subarticular trabecular bone responds to mechanical loads transmitted across joints through changes in mass and structural organization. We investigated differences in mass, volume, and density of subarticular trabecular bone of the humeral and femoral head in Hylobates syndactylus, Colobus guereza, and Papio cynocephalus. Our hypothesis was that variations in trabecular properties between taxa may reflect differences in mechanical loading associated with different locomotor repertoires. A nondestructive method for measuring trabecular properties using optical luminance data measured from radiographs was developed. We also examined the relationship between internal trabecular properties and the external size and surface area of the humeral and femoral heads in these taxa. Our results suggest that internal and external articular structure are relatively independent of each other and may be adapted to different aspects of the mechanical environment. Differences in trabecular mass between taxa appear to correspond to differences in the magnitudes of mechanical loads borne by the joint, whereas aritcular volume and surface area are related primarily to differences in joint mobility. Because of the apparent physiological “de-coupling” of articular mass and volume, variations in articular density (mass/volume) are difficult to interpret in isolation. Comparisons of internal and external articular structure may provide new ways to reconstruct the locomotor/positional behavior of extinct taxa. © 1994 Wiley-Liss, Inc.  相似文献   

14.
《Journal of morphology》2017,278(5):621-628
Two successive mechanisms have been described in perichondral ossification: (1) in static osteogenesis, mesenchymal cells differentiate into stationary osteoblasts oriented randomly, which differentiate into osteocytes in the same site; (2) in dynamic osteogenesis, mesenchymal cells differentiate into osteoblasts that are all oriented in the same direction and move back as they secrete collagen fibers. This study is aimed at testing the hypothesis that the ontogenetic sequence static then dynamic osteogenesis observed in the chicken and in the rabbit is homologous and was acquired by the last common ancestor of amniotes or at a more inclusive node. For this we analyze the developmental patterns of Pleurodeles (Caudata, Amphibia) and those of the lizard Pogona (Squamata, Lepidosauria). We processed Pleurodeles larvae and Pogona embryos, prepared thin and ultrathin sections of appendicular bones, and analyzed them using light and transmission electron microscopy. We show that static osteogenesis does not precede dynamic osteogenesis in periosteal ossification of Pleurodeles and Pogona . Therefore, the null hypothesis is rejected and according to the parsimony method the ontogenetic sequence observed in the chicken and in the rabbit are convergent. In Pleurodeles and Pogona dynamic osteogenesis occur without a previous rigid mineralized framework, whereas in the chicken and in the rabbit dynamic osteogenesis seems to take place over a mineralized support whether bone (in perichondral ossification) or calcified cartilage (in endochondral ossification). Interestingly, in typical dynamic osteogenesis, osteoblasts show an axis (basal nucleus—distal endoplasmic reticulum) perpendicular to the front of secreted unmineralized bone matrix, whereas in Pleurodeles and Pogona this axis is parallel to the bone matrix.  相似文献   

15.
Skeletal tissue homeostasis is maintained via the balance of osteoclastic bone resorption and osteoblastic bone formation. Autophagy and apoptosis are essential for the maintenance of homeostasis and normal development in cells and tissues. We found that Bax-interacting factor 1 (Bif-1/Endophillin B1/SH3GLB1), involving in autophagy and apoptosis, was upregulated during osteoclastogenesis. Furthermore, mature osteoclasts expressed Bif-1 in the cytosol, particularly the perinuclear regions and podosome, suggesting that Bif-1 regulates osteoclastic bone resorption. Bif-1-deficient (Bif-1 −/−) mice showed increased trabecular bone volume and trabecular number. Histological analyses indicated that the osteoclast numbers increased in Bif-1 −/− mice. Consistent with the in vivo results, osteoclastogenesis induced by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) was accelerated in Bif-1 −/− mice without affecting RANKL-induced activation of RANK downstream signals, such as NF-κB and mitogen-activated protein kinases (MAPKs), CD115/RANK expression in osteoclast precursors, osteoclastic bone-resorbing activity and the survival rate. Unexpectedly, both the bone formation rate and osteoblast surface substantially increased in Bif-1 −/− mice. Treatment with β-glycerophosphate (β-GP) and ascorbic acid (A.A) enhanced osteoblastic differentiation and mineralization in Bif-1 −/− mice. Finally, bone marrow cells from Bif-1 −/− mice showed a significantly higher colony-forming efficacy by the treatment with or without β-GP and A.A than cells from wild-type (WT) mice, suggesting that cells from Bif-1 −/− mice had higher clonogenicity and self-renewal activity than those from WT mice. In summary, Bif-1 might regulate bone homeostasis by controlling the differentiation and function of both osteoclasts and osteoblasts (235 words).  相似文献   

16.
The effects of calcitonin, parathyroid hormone, and prostaglandin E2 on cyclic AMP production were studied in osteoclast-rich cultures derived from medullary bone of laying hens and from the long bones of newborn rats. Cyclic AMP was assayed biochemically in replicate cultures, and furthermore, changes in cytoplasmic fluorescence were sought by indirect immunofluorescence with rabbit anti-cyclic AMP and FITC-labelled goat anti-rabbit IgG. Treatment of rat osteoclasts with calcitonin increased cyclic AMP formation as measured biochemically, and this was confirmed by the immunofluorescence method. No such increase took place in chick osteoclasts. Prostaglandin E2 increased cyclic AMP production in both rat and chick osteoclasts as determined by both methods. Since the immunofluorescence method failed to detect a response to parathyroid hormone either in chick or rat osteoclasts, its variable biochemical effects were concluded to be due to actions on contaminating osteoblasts in the cultures. Thus it has been possible with a combined biochemical and immunocytochemical approach to define the cyclic AMP responses to the calcium-regulating hormones in rat and chick osteoclasts. The failure of calcitonin to increase cyclic AMP in chick osteoclasts identifies a need to investigate the nature of calcitonin action on avian osteoclasts, which may contribute to understanding of its actions on mammalian cells.  相似文献   

17.

Introduction

The aim of this study was to determine the factors, including markers of bone resorption and bone formation, which determine catabolic and anabolic periarticular bone changes in patients with rheumatoid arthritis (RA).

Methods

Forty RA patients received high-resolution peripheral quantitative computed tomography (HR-pQCT) analysis of the metacarpophalangeal joints II and III of the dominantly affected hand at two sequential time points (baseline, one year follow-up). Erosion counts and scores as well as osteophyte counts and scores were recorded. Simultaneously, serum markers of bone resorption (C-terminal telopeptide of type I collagen (CTX I), tartrate-resistant acid phosphatase 5b (TRAP5b)), bone formation (bone alkaline phosphatase (BAP), osteocalcin (OC)) and calcium homeostasis (parathyroid hormone (PTH), 25-hydroxyvitamin D3 (Vit D)) were assessed. Bone biomarkers were correlated to imaging data by partial correlation adjusting for various demographic and disease-specific parameters. Additionally, imaging data were analyzed by mixed linear model regression.

Results

Partial correlation analysis showed that TRAP5b levels correlate significantly with bone erosions, whereas BAP levels correlate with osteophytes at both time points. In the mixed linear model with erosions as the dependent variable, disease duration (P <0.001) was the key determinant for these catabolic bone changes. In contrast, BAP (P = 0.001) as well as age (P = 0.018), but not disease duration (P = 0.762), were the main determinants for the anabolic changes (osteophytes) of the periarticular bone in patients with RA.

Conclusions

This study shows that structural bone changes assessed with HR-pQCT are accompanied by alterations in systemic markers of bone resorption and bone formation. Besides, it can be shown that bone erosions in RA patients depend on disease duration, whereas osteophytes are associated with age as well as serum level of BAP. Therefore, these data not only suggest that different variables are involved in formation of bone erosions and osteophytes in RA patients, but also that periarticular bone changes correlate with alterations in systemic markers of bone metabolism, pointing out BAP as an important parameter.  相似文献   

18.
19.
Patterns of variation in bone size and shape provide crucial data for reconstructing hominin paleobiology, including ecogeographic adaptation, life history, and functional morphology. Measures of bone strength, including robusticity (diaphyseal thickness relative to length) and cross-sectional geometric properties such as moments of area, are particularly useful for inferring behavior because bone tissue adapts to its mechanical environment. Particularly during skeletal growth, exercise-induced strains can stimulate periosteal modeling so that, to some extent, bone thickness reflects individual behavior. Thus, patterns of skeletal robusticity have been used to identify gender-based activity differences, temporal shifts in mobility, and changing subsistence strategies. Although there is no doubt that mechanical loading leaves its mark on the skeleton, less is known about whether individuals differ in their skeletal responses to exercise. For example, the potential effects of hormones or growth factors on bone-strain interactions are largely unexplored. If the hormonal background can increase or decrease the effects of exercise on skeletal robusticity, then the same mechanical loads might cause different degrees of bone response in different individuals. Here I focus on the role of the hormone estrogen in modulating exercise-induced changes in human bone thickness.  相似文献   

20.
The current study investigated the effects of 0.4 T rotary non-uniform magnetic field (RMF) exposure on bone density in ovariectomized (OVX) rats. Results showed that many bone indexes are significantly elevated after RMF exposure compared to the control OVX group and confirmed mechanistic evidence that strong magnetic field (MF) exposure could effectively increase bone density and might be used to treat osteoporosis. Synergy of daily RMF exposure (30 min a day for 30 days using an 8 Hz rotary 0.4 T MF) with calcium supplement tended to increase the indexes of thigh bone density, energy absorption, maximum load, maximum flexibility, and elastic deformation as compared to those of untreated OVX control group. Results also revealed that the indexes of alkaline phosphatase (ALP), serum phosphate, and serum calcium were higher in rats exposed to RMF with calcium than in the untreated OVX control group. Changes in bone mineral density (BMD) and bone mineral content (BMC) were observed in rats for three months including the first month RMF exposure. Bone density in rats exposed each day for 60 min increased during 1-month exposure and continued to increase during the post-exposure period. Furthermore, bone density and calcium content in rats exposed for 90 min daily decreased initially in the exposure month; however, ratio of increase was well above the control values by the end of the post-exposure period suggesting possible window and delayed effects. The study indicated that RMF exposure to both male and OVX female rats for 120 min a day over 15 day period should effectively promote increase of bone calcium contents (BCC) and bone-specific alkaline phosphatase (BAP) in rats thigh bone as well as a corresponding decrease in deoxypyridinoline crosslinks (DPD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号