共查询到20条相似文献,搜索用时 0 毫秒
1.
Antonella Muscella Luca Giulio Cossa Carla Vetrugno Giovanna Antonaci Santo Marsigliante 《Journal of cellular physiology》2019,234(4):4409-4417
Malignant pleural mesothelioma (MPM) is an aggressive malignant tumor in which cisplatin therapy is commonly used, although its effectiveness is limited. It follows that research efforts dedicated to identify promising combinations that can synergistically kill cancer cells are needed. Because we recently demonstrated that ADP inhibits the proliferation of ZL55 cells, an MPM-derived cell line obtained from bioptic samples of asbestos-exposed patients. Our objective in this study was to investigate the hypothesis that ADP also potentiates the cytotoxic activity of cisplatin. Results show that in ZL55 cells ADP enhanced (a) the cytotoxicity of cisplatin by 12-fold, (b) the restraint of cell clonogenic potential cisplatin-mediated, and (c) the number of apoptotic cells. Cisplatin, but not ADP, caused caspases activation; nevertheless, poly(ADP-ribose) polymerase-1 was not only cleaved in cisplatin-treated cells but also in cells treated with ADP alone. Furthermore, ADP, but not cisplatin, decreased mTOR and 6SK phosphorylations. Both ADP and cisplatin increased p53 protein, but ADP was also able to enhance p53 messenger RNA. P53 silencing resulted in a very large decrement of cell death induced by ADP or by cisplatin and reverted ADP effects on mTOR/S6K phosphorylation, suggesting that activated p53 may act as a negative regulator of mTOR. Consistently, the inhibition of mTOR by rapamycin also sensitized cells to cisplatin, and the effects of cisplatin plus rapamycin were identical to those obtained with cisplatin plus ADP. These findings suggest that the combination of ADP and cisplatin may be a promising strategy for the clinical treatment of cisplatin-resistant MPM. 相似文献
2.
Qi‐Zhu Tang Li‐Hua Zhu Lang Wang Chen Liu Zhou‐Yan Bian Hongliang Li 《Journal of cellular biochemistry》2010,109(6):1158-1171
Breviscapine is a mixture of flavonoid glycosides extracted from the Chinese herbs. Previous studies have shown that breviscapine possesses comprehensive pharmacological functions. However, very little is known about whether breviscapine have protective role on cardiac hypertrophy. The aim of the present study was to determine whether breviscapine attenuates cardiac hypertrophy induced by angiotensin II (Ang II) in cultured neonatal rat cardiac myocytes in vitro and pressure‐overload‐induced cardiac hypertrophy in mice in vivo. Our data demonstrated that breviscapine (2.5–15 µM) dose‐dependently blocked cardiac hypertrophy induced by Ang II (1 µM) in vitro. The results further revealed that breviscapine (50 mg/kg/day) prevented cardiac hypertrophy induced by aortic banding as assessed by heart weight/body weight and lung weight/body weight ratios, echocardiographic parameters, and gene expression of hypertrophic markers. The inhibitory effect of breviscapine on cardiac hypertrophy is mediated by disrupting PKC‐α‐dependent ERK1/2 and PI3K/AKT signaling. Further studies showed that breviscapine inhibited inflammation by blocking NF‐κB signaling, and attenuated fibrosis and collagen synthesis through abrogating Smad2/3 signaling. Therefore, these findings indicate that breviscapine, which is a potentially safe and inexpensive therapy for clinical use, has protective potential in targeting cardiac hypertrophy and fibrosis through suppression of PKC‐α‐dependent signaling. J. Cell. Biochem. 109: 1158–1171, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
3.
Reduction of protein kinase C α (PKC‐α) promote apoptosis via down‐regulation of Dicer in bladder cancer 下载免费PDF全文
Zhenming Jiang Chuize Kong Zhe Zhang Yuyan Zhu Yuxi Zhang Xi Chen 《Journal of cellular and molecular medicine》2015,19(5):1085-1093
In clinic, we examined the expression of protein kinase C (PKC)‐α and Dicer in the samples of bladder cancer patients, and found that the two proteins have a line correlation. Our study confirmed this correlation existing by clearing the decreasing expression of Dicer after the PKC‐α knockdown. Treatment of bladder cancer cell lines (T24, 5637) with the PKC‐α or Dicer knockdown and the PKC inhibitors (Calphostin C and Gö 6976) can promote the apoptosis. Inhibition of PKC can increase the activities of caspase‐3 and PARP, however, decrease the expression of Dicer. And knockdown of the PKC‐α or Dicer can also activate the caspase‐3 or the PARP. Considering the reduction of PKC‐α can induce the Dicer down‐regulation, we make the conclusion that the reduction of PKC‐α can promote the apoptosis via the down‐regulation of Dicer in bladder cancer. 相似文献
4.
5.
Pannexin3 inhibits TNF‐α‐induced inflammatory response by suppressing NF‐κB signalling pathway in human dental pulp cells 下载免费PDF全文
Fangfang Song Hualing Sun Yake Wang Hongye Yang Liyuan Huang Dongjie Fu Jing Gan Cui Huang 《Journal of cellular and molecular medicine》2017,21(3):444-455
Human dental pulp cells (HDPCs) play a crucial role in dental pulp inflammation. Pannexin 3 (Panx3), a member of Panxs (Pannexins), has been recently found to be involved in inflammation. However, the mechanism of Panx3 in human dental pulp inflammation remains unclear. In this study, the role of Panx3 in inflammatory response was firstly explored, and its potential mechanism was proposed. Immunohistochemical staining showed that Panx3 levels were diminished in inflamed human and rat dental pulp tissues. In vitro, Panx3 expression was significantly down‐regulated in HDPCs following a TNF‐α challenge in a concentration‐dependent way, which reached the lowest level at 10 ng/ml of TNF‐α. Such decrease could be reversed by MG132, a proteasome inhibitor. Unlike MG132, BAY 11‐7082, a NF‐κB inhibitor, even reinforced the inhibitory effect of TNF‐α. Quantitative real‐time PCR (qRT‐PCR) and enzyme‐linked immunosorbent assay (ELISA) were used to investigate the role of Panx3 in inflammatory response of HDPCs. TNF‐α‐induced pro‐inflammatory cytokines, interleukin (IL)‐1β and IL‐6, were significantly lessened when Panx3 was overexpressed in HDPCs. Conversely, Panx3 knockdown exacerbated the expression of pro‐inflammatory cytokines. Moreover, Western blot, dual‐luciferase reporter assay, immunofluorescence staining, qRT‐PCR and ELISA results showed that Panx3 participated in dental pulp inflammation in a NF‐κB‐dependent manner. These findings suggested that Panx3 has a defensive role in dental pulp inflammation, serving as a potential target to be exploited for the intervention of human dental pulp inflammation. 相似文献
6.
7.
Ann L Cornish Caroline E Sutton Joanne O'Donnell Louise H Cengia Andrew W Roberts Ian P Wicks Kingston H G Mills Ben A Croker 《EMBO reports》2010,11(8):640-646
Reports describing the effect of interferon‐γ (IFNγ) on interleukin‐1β (IL‐1β) production are conflicting. We resolve this controversy by showing that IFNγ potentiates IL‐1β release from human cells, but transiently inhibits the production of IL‐1β from mouse cells. Release from this inhibition is dependent on suppressor of cytokine signalling 1. IL‐1β and Th17 cells are pathogenic in mouse models for autoimmune disease, which use Mycobacterium tuberculosis (MTB), in which IFNγ and IFNβ are anti‐inflammatory. We observed that these cytokines suppress IL‐1β production in response to MTB, resulting in a reduced number of IL‐17‐producing cells. In human cells, IFNγ increased IL‐1β production, and this might explain why IFNγ is detrimental for multiple sclerosis. In mice, IFNγ decreased IL‐1β and subsequently IL‐17, indicating that the adaptive immune response can provide a systemic, but transient, signal to limit inflammation. 相似文献
8.
Qingchun Lei Huan Gu Lei Li Tingting Wu Wentao Xie Meizhang Li Ninghui Zhao 《Journal of cellular and molecular medicine》2020,24(1):530-538
As a malignant tumour of the central nervous system, glioma exhibits high incidence and poor prognosis. Although TNIP1 and the TNF‐α/NF‐κB axis play key roles in immune diseases and inflammatory responses, their relationship and role in glioma remain unknown. Here, we revealed high levels of TNIP1 and TNF‐α/NF‐κB in glioma tissue. Glioma cell proliferation was activated with TNF‐α treatment and showed extreme sensitivity to the TNF receptor antagonist. Furthermore, loss of TNIP1 disbanded the A20 complex responsible for IκB degradation and NF‐κB nucleus translocation, and consequently erased TNFα‐induced glioma cell proliferation. Thus, our investigation uncovered a vital function of the TNIP1‐mediated TNF‐α/NF‐κB axis in glioma cell proliferation and provides novel insight into glioma pathology and diagnosis. 相似文献
9.
10.
Mitochondrial PKC‐ε deficiency promotes I/R‐mediated myocardial injury via GSK3β‐dependent mitochondrial permeability transition pore opening 下载免费PDF全文
Gang Zhao Yong Cheng Ting Wu Bing Wu You‐en Zhang 《Journal of cellular and molecular medicine》2017,21(9):2009-2021
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2?/?) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2?/? mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2?/? mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2?/? mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (?Ψm) was reduced in ALDH2?/? mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2?/? mice following I/R stress. 相似文献
11.
12.
Estrogen‐related receptor alpha triggers the proliferation and migration of human non‐small cell lung cancer via interleukin‐6 下载免费PDF全文
Human non‐small cell lung cancer (NSCLC) is one of the leading causes of cancer deaths worldwide. Estrogenic signals have been suggested to be important for the growth and metastasis of NSCLC cells. Our present data showed that estrogen‐related receptor alpha (ERRα), while not ERRβ or ERRγ, was significantly elevated in NSCLC cell lines as compared with that in normal bronchial epithelial cell line BEAS‐2B. The expression of ERRα in clinical NSCLC tissues was significantly greater than that in their matched normal adjacent tissues. Over expression of ERRα can trigger the proliferation, migration, and invasion of NSCLC cells, while si‐ERRα or ERRα inhibitor showed opposite effects. ERRα can increase the mRNA and protein expression of IL‐6, while not IL‐8, IL‐10, IL‐22, VEGF, TGF‐β, or TNF‐α, in NSCLC cells. Silence of IL‐6 attenuated ERRα induced proliferation and cell invasion. Furthermore, our data revealed the inhibition of NF‐κB, while not ERK1/2 or PI3K/Akt, abolished ERRα induced production of IL‐6. This might be due to that overexpression of ERRα can increase the expression and nuclear translocation of p65 in NSCLC cells. Collectively, our data showed that activation of NF‐κB/IL‐6 is involved in ERRα induced migration and invasion of NSCLC cells. It suggested that ERRα might be a potential target for NSCLC treatment. 相似文献
13.
A protective role of ciglitazone in ox‐LDL‐induced rat microvascular endothelial cells via modulating PPARγ‐dependent AMPK/eNOS pathway 下载免费PDF全文
Lei Xu Shijun Wang Bingyu Li Aijun Sun Yunzeng Zou Junbo Ge 《Journal of cellular and molecular medicine》2015,19(1):92-102
Thiazolidinediones, the antidiabetic agents such as ciglitazone, has been proved to be effective in limiting atherosclerotic events. However, the underlying mechanism remains elucidative. Ox‐LDL receptor‐1 (LOX‐1) plays a central role in ox‐LDL‐mediated atherosclerosis via endothelial nitric oxide synthase (eNOS) uncoupling and nitric oxide reduction. Therefore, we tested the hypothesis that ciglitazone, the PPARγ agonist, protected endothelial cells against ox‐LDL through regulating eNOS activity and LOX‐1 signalling. In the present study, rat microvascular endothelial cells (RMVECs) were stimulated by ox‐LDL. The impact of ciglitazone on cell apoptosis and angiogenesis, eNOS expression and phosphorylation, nitric oxide synthesis and related AMPK, Akt and VEGF signalling pathway were observed. Our data showed that both eNOS and Akt phosphorylation, VEGF expression and nitric oxide production were significantly decreased, RMVECs ageing and apoptosis increased after ox‐LDL induction for 24 hrs, all of which were effectively reversed by ciglitazone pre‐treatment. Meanwhile, phosphorylation of AMP‐activated protein kinase (AMPK) was suppressed by ox‐LDL, which was also prevented by ciglitazone. Of interest, AMPK inhibition abolished ciglitazone‐mediated eNOS function, nitric oxide synthesis and angiogenesis, and increased RMVECs ageing and apoptosis. Further experiments showed that inhibition of PPARγ significantly suppressed AMPK phosphorylation, eNOS expression and nitric oxide production. Ciglitazone‐mediated angiogenesis and reduced cell ageing and apoptosis were reversed. Furthermore, LOX‐1 protein expression in RMVECs was suppressed by ciglitazone, but re‐enhanced by blocking PPARγ or AMPK. Ox‐LDL‐induced suppression of eNOS and nitric oxide synthesis were largely prevented by silencing LOX‐1. Collectively, these data demonstrate that ciglitazone‐mediated PPARγ activation suppresses LOX‐1 and moderates AMPK/eNOS pathway, which contributes to endothelial cell survival and function preservation. 相似文献
14.
Ming Gao Wen Dong Meiru Hu Ming Yu Liang Guo Lu Qian Ning Guo Lun Song 《Journal of cellular biochemistry》2010,109(6):1264-1273
Arsenite (As(III)), an effective chemotherapeutic agent for the acute promyelocytic leukemia (APL) and multiple myeloma (MM), might be also a promise for the therapy of other cancers, including the solid tumors. However, the molecular bases of arsenite‐induced cytotoxicity in the tumor cells have not been fully defined. In this study, we have disclosed that arsenite effectively induces the apoptotic response in the HepG2 human hepatoma cells by triggering GADD45α induction and the subsequent activation of JNKs/AP‐1 cell death pathway. However, signaling events relating to GADD45α/JNKs/AP‐1 pathway activation have not been observed in HL7702 human diploid hepatic cells under the same arsenite exposure condition. Our results thus have illustrated the selective pro‐apoptotic role of arsenite in the hepatoma cells by activating GADD45α‐dependent cell death pathway whereas with little effect on the normal hepatic cells. The approaches to up‐regulate GADD45α levels might be helpful in improving the chemotherapeutic action of arsenite on certain solid tumors including hepatoma. J. Cell. Biochem. 109: 1264–1273, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
15.
16.
Xiaohui Yu Baoyin Jia Faqiang Wang Xiuxiu Lv Xuemei Peng Yiyang Wang Hongmei Li Yanping Wang Daxiang Lu Huadong Wang 《Journal of cellular and molecular medicine》2014,18(2):263-273
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation. 相似文献
17.
Endogenous hormone 2‐methoxyestradiol suppresses venous hypertension‐induced angiogenesis through up‐ and down‐regulating p53 and id‐1 下载免费PDF全文
Jie Yuan Chunjie Yang Zehan Wu Jianping Song Wei Zhu Ying Mao Liang Chen 《Journal of cellular and molecular medicine》2018,22(2):957-967
Brain arteriovenous malformations (AVMs) which associate with angiogenesis due to local hypertension, chronic cerebral ischaemia and tissue hypoxia usually lead to haemorrhage, however, the therapeutic medicine for the disease is still lacking. 2‐methoxyestradiol (2‐ME) has been shown effective in the anti‐angiogenic treatment. This study was conducted to examine whether and how 2‐ME could improve the vascular malformations. Intracranial venous hypertension (VH) model produced in adult male Sprague‐Dawley rats and culture of human umbilical vein endothelial cells (HUVECs) at the anoxia condition were used to induce in vivo and in vitro angiogenesis, respectively. Lentiviral vectors of ID‐1 and p53 genes and of their siRNA were intracranially injected into rats and transfected into HUVECs to overexpress and down‐regulate these molecules. 2‐ME treatment not only reduced the in vivo progression of brain tissue angiogenesis in the intracranial VH rats and the in vitro increases in microvasculature formation, cellular migration and HIF‐1α expression induced by anoxia in HUVECs but also reversed the up‐regulation of ID‐1 and down‐regulation of p53 in both the in vivo and in vitro angiogenesis models. All of the anti‐angiogenesis effects of 2‐ME observed in VH rats and anoxic HUVECs were abrogated by ID‐1 overexpression and p53 knockdown. Our data collectively suggest that 2‐ME treatment inhibits hypoxia/anoxia‐induced angiogenesis dependently on ID‐1 down‐regulation and p53 up‐regulation, providing a potential alternative medical treatment for un‐ruptured AVM patients. 相似文献
18.
19.
20.
Recent evidence implicates a central role for PI3K signalling in mediating cell survival during the process of neuronal differentiation. Although PI3K activity is stimulated by a wide range of growth factors and cytokines in different cell lines and tissues, activation of this pathway by insulin‐like growth factor I (IGF‐I) most likely represents the main survival signal during neuronal differentiation. IGF‐I is highly expressed during development of the central nervous system, and thus is a critical factor for the development and maturation of the cerebellum. Upon ligand binding, the IGF‐I receptor phosphorylates tyrosine residues in SHC and insulin receptor substrates (IRSs) initiating two main signalling cascades, the MAP kinase and the phosphatidylinositol 3‐kinase (PI3K) pathways. Activated PI3K is composed of a catalytic subunit (p110α or β) associated with one of a large family of regulatory subunits (p85α, p85β, p55γ, p55α, and p50α). To evaluate the contributions of these various regulatory subunits to neuronal differentiation, we have used antibodies specific for each of the PI3K subunits. Using these antisera, we now demonstrate that PI3K subunits are differentially regulated in cerebellar development, and that the expression level of the p55γ regulatory subunit reaches a maximum during postnatal development, decreasing thereafter to low levels in the adult cerebellum. Furthermore, our studies reveal that the distribution of the various PI3K regulatory subunits varies during development of the cerebellum. Interestingly, p55γ is expressed in both glial and neuronal cells; moreover, in Purkinje neurones, this subunit colocalises with the IGF‐IR. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 39–50, 2001 相似文献