首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virus-induced gene silencing (VIGS) is an attractive method for assaying gene function in species that are resistant to conventional genetic approaches. However, VIGS has been shown to be effective in only a few, closely related plant species. Tobacco rattle virus (TRV), a bipartite RNA virus, has a wide host range and so in principle could serve as an efficient vector for VIGS in a diverse array of plant species. Here we show that a vector based on TRV sequences is effective at silencing the endogenous phytoene desaturase (PapsPDS) gene in Papaver somniferum (opium poppy). We show that this vector does not compromise the growth or reproduction of poppy and the plants did not display viral symptoms. The silencing of PapsPDS resulted in a significant reduction in PapsPDS mRNA and a concomitant photobleached phenotype. The ability to rapidly assay gene function in P. somniferum will be valuable in manipulation of the opiate pathway in this pharmaceutically important species. We suggest that our vacuum infiltration method used to deliver TRV-based vectors into poppy is a promising approach for expanding VIGS to diverse angiosperm species in which traditional delivery methods fail to induce VIGS. Furthermore, these studies demonstrate the utility of TRV-VIGS for probing gene function in a basal eudicot species that is phylogenetically distant from model plant species.  相似文献   

2.
病毒诱导的基因沉默技术及其在植物中的研究进展   总被引:1,自引:0,他引:1  
病毒诱导的基因沉默(virus-induced gene silencing,VIGS)是近年来发现的一种转录后基因沉默现象,是植物抵抗病毒侵染的一种自然机制。现已被开发为快速鉴定植物基因功能的一种反向遗传学新技术。与传统的植物转基因技术相比,VIGS无需构建转基因植株,而且具有操作简便、获得表型快速等优点,目前已广泛应用于与植物抗病、逆境胁迫、细胞信号转导以及生长发育等相关基因功能的研究。该文就VIGS技术的作用机理、主要操作规程、在植物基因功能研究方面的应用以及存在的问题进行综述。  相似文献   

3.
An Arabidopsis thaliana L. DNA containing the tRNA(TrpUGG) gene was isolated and altered to encode the amber suppressor tRNA(TrpUAG) or the ochre suppressor tRNA(TrpUAA). These DNAs were electroporated into carrot protoplasts and tRNA expression was demonstrated by the translational suppression of amber and ochre nonsense mutations in the chloramphenicol acetyltransferase (CAT) reporter gene. DNAs encoding tRNA(TrpUAG) and tRNA(TrpUAA) nonsense suppressor tRNAs caused suppression of their cognate nonsense codons in CAT mRNAs, with the tRNA(TrpUAG) gene exhibiting the greater suppression under optimal conditions for expression of CAT. The development of these translational suppressors which function in plant cells facilitates the study of plant tRNA gene expression and will make possible the manipulation of plant protein structure and function.  相似文献   

4.
Previous studies indicated that the lethal leaf spot 1 lesion mimic locus of maize ( ZmLls1 ) encodes a novel cell protective function in plants. Here we show that the accelerated cell death 1 ( acd1 ) locus of Arabidopsis thaliana corresponds to gene At3g44880 on chromosome 3. Proof that the Acd1 gene is an orthologue of ZmLls1 is provided by in vivo complementation of the acd1 mutant by the ZmLls1 gene. The Atlls1 lesion mimic phenotype was delayed in a chlorophyll a oxygenase (CAO) mutant chlorina1 background which is deficient in chlorophyll b synthesis. The interpretation that the cell protective function of LLS1 is linked with the removal of a phototoxic chlorophyll intermediate is supported by the recent report that the maize Lls1 gene encodes pheophorbide a oxygenase (PaO). Western blot analysis demonstrates that the LLS1 protein is present constitutively in all photosynthetic plant tissues. A transient increase in Lls1 gene expression by about 50-fold upon physical wounding of maize leaves indicates that the function of Lls1 is regulated in response to stress. We show that the LLS1 protein is also present at low levels in non-photosynthetic tissues including etiolated leaves suggesting that the ability to degrade chlorophyll exists in a standby mode in plant cells.  相似文献   

5.
Plant evolution: AGC kinases tell the auxin tale   总被引:1,自引:0,他引:1  
The signaling molecule auxin is a central regulator of plant development, which instructs tissue and organ patterning, and couples environmental stimuli to developmental responses. Here, we discuss the function of PINOID (PID) and the phototropins, members of the plant specific AGCVIII protein kinases, and their role in triggering and regulating development by controlling PIN-FORMED (PIN) auxin transporter-generated auxin gradients and maxima. We propose that the AGCVIII kinase gene family evolved from an ancestral phototropin gene, and that the co-evolution of PID-like and PIN gene families marks the transition of plants from water to land. We hypothesize that the PID-like kinases function in parallel to, or downstream of, the phototropins to orient plant development by establishing the direction of polar auxin transport.  相似文献   

6.
7.
8.
9.
10.
Characterization of the rice (Oryza sativa) actin gene family   总被引:11,自引:0,他引:11  
  相似文献   

11.
The sequencing of the Arabidopsis plant genome is providing a fuller understanding of the number and types of plant genes. However, in most cases we do not know which genes are responsible for specific metabolic and signal transduction pathways. Analysis of gene function is also often confounded by the presence of multiple isoforms of the gene of interest. Recent advances in PCR-based reverse genetic techniques have allowed the search for plants carrying T-DNA insertions in any gene of interest. Here we report preliminary screening results from an ordered population of nearly 60,470 independently derived T-DNA lines. Degenerate PCR primers were used on large DNA pools (n = 2,025 T-DNA lines) to screen for more than one gene family member at a time. Methods are presented that facilitated the identification and isolation of isoform-specific mutants in almost all members of the Arabidopsis H(+)-proton ATPase gene family. Multiple mutant alleles were found for several isoforms.  相似文献   

12.
Members of the class 1 knotted-like homeobox (KNOX) gene family are important regulators of shoot apical meristem development in angiosperms. To determine whether they function similarly in seedless plants, three KNOX genes (two class 1 genes and one class 2 gene) from the fern Ceratopteris richardii were characterized. Expression of both class 1 genes was detected in the shoot apical cell, leaf primordia, marginal part of the leaves, and vascular bundles by in situ hybridization, a pattern that closely resembles that of class 1 KNOX genes in angiosperms with compound leaves. The fern class 2 gene was expressed in all sporophyte tissues examined, which is characteristic of class 2 gene expression in angiosperms. All three CRKNOX genes were not detected in gametophyte tissues by RNA gel blot analysis. Arabidopsis plants overexpressing the fern class 1 genes resembled plants that overexpress seed plant class 1 KNOX genes in leaf morphology. Ectopic expression of the class 2 gene in Arabidopsis did not result in any unusual phenotypes. Taken together with phylogenetic analysis, our results suggest that (a) the class 1 and 2 KNOX genes diverged prior to the divergence of fern and seed plant lineages, (b) the class 1 KNOX genes function similarly in seed plant and fern sporophyte meristem development despite their differences in structure, (c) KNOX gene expression is not required for the development of the fern gametophyte, and (d) the sporophyte and gametophyte meristems of ferns are not regulated by the same developmental mechanisms at the molecular level.  相似文献   

13.
14.
The review is devoted to the problem of metal-binding proteins (metallothioneins) in plant objects. The chronology of studies, dealt with search of metallothionein-like proteins in plant tissues is described. Data about the structure and function of metallothioneins, the features of metallothioneins-like gene expression in plants is shown. The role of metallothioneins as stress proteins, which are involved in formation of plant reaction on the influence of different stress factors, is discussed.  相似文献   

15.
Jumonji C (JmjC) domain proteins are histone lysine demethylases that require ferrous iron and alpha-ketoglutarate (or α-KG) as cofactors in the oxidative demethylation reaction. In plants, α-KG is produced by isocitrate dehydrogenases (ICDHs) in different metabolic pathways. It remains unclear whether fluctuation of α-KG levels affects JmjC demethylase activity and epigenetic regulation of plant gene expression. In this work, we studied the impact of loss of function of the cytosolic ICDH (cICDH) gene on the function of histone demethylases in Arabidopsis thaliana. Loss of cICDH resulted in increases of overall histone H3 lysine 4 trimethylation (H3K4me3) and enhanced mutation defects of the H3K4me3 demethylase gene JMJ14. Genetic analysis suggested that the cICDH mutation may affect the activity of other demethylases, including JMJ15 and JMJ18 that function redundantly with JMJ14 in the plant thermosensory response. Furthermore, we show that mutation of JMJ14 affected both the gene activation and repression programs of the plant thermosensory response and that JMJ14 and JMJ15 repressed a set of genes that are likely to play negative roles in the process. The results provide evidence that histone H3K4 demethylases are involved in the plant response to elevated ambient temperature.

Histone H3K4me3 demethylases JMJ14, JMJ15, and JMJ18 function redundantly in the plant thermosensory response, which is affected by mutation of the cytosolic isocitrate dehydrogenase gene.  相似文献   

16.
Li W  Jiang G  Huang B  Jin Y 《IUBMB life》2005,57(3):173-179
Small nucleolar RNAs (snoRNAs) are a kind of noncoding RNAs, and the vast majority of snoRNAs are involved in site-specific modifications of rRNAs. A novel box C/D snoRNA called snoR124 was found inOryza sativa, and it can direct 2'-O-ribose methylation of spliceosomal small nuclear RNAs (snRNAs). The snoRNA has two antisense elements, and the results of primer extensions at different dNTP concentrations provide evidence that snoR124 guide 2'-O-methylations of the C76 residue in the U4 snRNA and the T91 residue in the U5 snRNA. In addition, this snoRNA is located in a snoRNA gene cluster with another 7 snoRNAs which are identified to direct ribose methylations in rRNAs. This is consistent with the opinion that the snoRNA gene organization in plant is mainly gene cluster. The snoR124 is the first example of a snoRNA that directs modifications of RNAs other than rRNAs in plant; it will avail to get more insights into the function of snoRNAs in plant.  相似文献   

17.
Large amount of disease-specific protein(SP) accumulated in the rice plant cells infected by rice grassy stunt virus(RGSV). It was deduced that the protein was encoded by NS6 gene on genomic vRNA6 and thus referred to as NS6 protein.But its function is unknown. In an effort to prove the above deduction and to elucidate the function of NS6 protein of RGSV, we constructed a bacterial expression plasmid pGTNS6 producing a fusion protein of glutathione S-transferase (GST) and NS6 protein, and a plant expression vector pCBTNSv6 containing NS6 gene. A recombinant plasmid pTNSv 6 containing the coding region of NS6 gene and the non-coding region at its 5' terminus, cloned by RT-PCR from purified RNAs of Shaxian isolate of RGSV, was used as the start point. Western blot analysis showed that the fusion protein reacted strongly with antisera raised against RGSV-SP, which served as evidence of the deduction.EHA105 of Agrobacterium tumefasciens containing pCBTNSv6 has been obtained and the transformation of rice is underway.  相似文献   

18.
Characterization of a novel carotenoid cleavage dioxygenase from plants   总被引:27,自引:0,他引:27  
The plant hormone abscisic acid is derived from the oxidative cleavage of a carotenoid precursor. Enzymes that catalyze this carotenoid cleavage reaction, nine-cis epoxy-carotenoid dioxygenases, have been identified in several plant species. Similar proteins, whose functions are not yet known, are present in diverse organisms. A putative cleavage enzyme from Arabidopsis thaliana contains several highly conserved motifs found in other carotenoid cleavage enzymes. However, the overall homology with known abscisic acid biosynthetic enzymes is low. To determine the biochemical function of this protein, it was expressed in Escherichia coli and used for in vitro assays. The recombinant protein was able to cleave a variety of carotenoids at the 9-10 and 9'-10' positions. In most instances, the enzyme cleaves the substrate symmetrically to produce a C(14) dialdehyde and two C(13) products, which vary depending on the carotenoid substrate. Based upon sequence similarity, orthologs of this gene are present throughout the plant kingdom. A similar protein in beans catalyzes the same reaction in vitro. The characterization of these activities offers the potential to synthesize a variety of interesting, natural products and is the first step in determining the function of this gene family in plants.  相似文献   

19.
Virus-induced gene silencing (VIGS) is a rapid and robust method for determining and studying the function of plant genes or expressed sequence tags (ESTs). However, only a few plant species are amenable to VIGS. There is a need for a systematic study to identify VIGS-efficient plant species and to determine the extent of homology required between the heterologous genes and their endogenous orthologs for silencing. Two approaches were used. First, the extent of phytoene desaturase (PDS) gene silencing was studied in various Solanaceous plant species using Nicotiana benthamiana NbPDS sequences. In the second approach, PDS sequences from a wide range of plant species were used to silence the PDS gene in N. benthamiana. The results showed that tobacco rattle virus (TRV)-mediated VIGS can be performed in a wide range of Solanaceous plant species and that heterologous gene sequences from far-related plant species can be used to silence their respective orthologs in the VIGS-efficient plant N. benthamiana. A correlation was not always found between gene silencing efficiency and percentage homology of the heterologous gene sequence with the endogenous gene sequence. It was concluded that a 21-nucleotide stretch of 100% identity between the heterologous and endogenous gene sequences is not absolutely required for gene silencing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号