首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-2 strain of Acremonium chrysogenum accumulates the beta-lactam precursor tripeptide delta-(L-alpha-amino-adipoyl)-L-cysteinyl-D-valine and has no discernible activity for three of the cephalosporin C (Ce) biosynthetic enzymes. This phenotype is consistent with a mutation either within pcbC [the isopenicillin N synthetase (IPNS)-encoding gene] or in a pathway-regulator gene. To distinguish these possibilities we have cloned and sequenced pcbC from strain N-2. There is a single C----T mutation at nt 854 within the coding sequence, changing aa 285 from proline to leucine. An IPNS-specific monoclonal antibody recognises a catalytically inactive IPNS protein in extracts of N-2 cells. These findings suggest that strain N-2 carries a simple IPNS mutation and that IPNS or its biosynthetic product isopenicillin N is involved in regulation of the later stages of the Ce biosynthetic pathway.  相似文献   

2.
Penicillium chrysogenum is an important producer of penicillin antibiotics. A key step in their biosynthesis is the oxidative cyclization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N by the enzyme isopenicillin N synthase (IPNS). bis-ACV, the oxidized disulfide form of ACV is, however, not a substrate for IPNS. We report here the characterization of a broad-range disulfide reductase from P. chrysogenum that efficiently reduces bis-ACV to the thiol monomer. When coupled in vitro with IPNS, it converts bis-ACV to isopenicillin N and may therefore play a role in penicillin biosynthesis. The disulfide reductase consists of two protein components, a 72-kDa NADPH-dependent reductase, containing two identical subunits, and a 12-kDa general disulfide reductant. The latter reduces disulfide bonds in low-molecular-weight compounds and in proteins. The genes coding for the reductase system were cloned and sequenced. Both possess introns. A comparative analysis of their predicted amino acid sequences showed that the 12-kDa protein shares 26 to 60% sequence identity with thioredoxins and that the 36-kDa protein subunit shares 44 to 49% sequence identity with the two known bacterial thioredoxin reductases. In addition, the P. chrysogenum NADPH-dependent reductase is able to accept thioredoxin as a substrate. These results establish that the P. chrysogenum broad-range disulfide reductase is a member of the thioredoxin family of oxidoreductases. This is the first example of the cloning of a eucaryotic thioredoxin reductase gene.  相似文献   

3.
The isopenicillin N synthetase (IPNS) gene from Streptomyces clavuligerus was isolated from an Escherichia coli plasmid library of S. clavuligerus genomic DNA fragments using a 44-mer mixed oligodeoxynucleotide probe. The nucleotide sequence of a 3-kb region of the cloned fragment from the plasmid, pBL1, was determined and analysis of the sequence showed an open reading frame that could encode a protein of 329 amino acids with an Mr of 36,917. When the S. clavuligerus DNA from pBL1 was introduced into an IPNS-deficient mutant of S. clavuligerus on the Streptomyces vector pIJ941, the recombinant plasmid was able to complement the mutation and restore IPNS activity. The protein coding region of the S. clavuligerus IPNS gene shows about 63% and 62% similarity to the Cephalosporium acremonium and Penicillium chrysogenum IPNS nucleotide sequences, respectively, and the predicted amino acid sequence of the encoded protein showed about 56% similarity to both fungal sequences.  相似文献   

4.
beta-Lactam antibiotics such as penicillins and cephalosporins are synthesized by a wide variety of microbes, including procaryotes and eucaryotes. Isopenicillin N synthetase catalyzes a key reaction in the biosynthetic pathway of penicillins and cephalosporins. The genes encoding this protein have previously been cloned from the filamentous fungi Cephalosporium acremonium and Penicillium chrysogenum and characterized. We have extended our analysis to the isopenicillin N synthetase genes from the fungus Aspergillus nidulans and the gram-positive procaryote Streptomyces lipmanii. The isopenicillin N synthetase genes from these organisms have been cloned and sequenced, and the proteins encoded by the open reading frames were expressed in Escherichia coli. Active isopenicillin N synthetase enzyme was recovered from extracts of E. coli cells prepared from cells containing each of the genes in expression vectors. The four isopenicillin N synthetase genes studied are closely related. Pairwise comparison of the DNA sequences showed between 62.5 and 75.7% identity; comparison of the predicted amino acid sequences showed between 53.9 and 80.6% identity. The close homology of the procaryotic and eucaryotic isopenicillin N synthetase genes suggests horizontal transfer of the genes during evolution.  相似文献   

5.
The pcbC gene, which encodes isopenicillin N synthase (IPNS), was subcloned from Streptomyces clavuligerus into Escherichia coli by using the pT7 series of plasmid vectors. The polymerase chain reaction was used to introduce an NdeI site at the translation initiation codon of pcbC, allowing the gene to be inserted behind an E. coli type of ribosome binding site. This construction directed high-level expression of IPNS, but the IPNS was in an inactive form in inclusion bodies. Active IPNS was recovered by solubilizing and renaturing the protein.  相似文献   

6.
The pcbC gene, which encodes isopenicillin N synthase (IPNS), was subcloned from Streptomyces clavuligerus into Escherichia coli by using the pT7 series of plasmid vectors. The polymerase chain reaction was used to introduce an NdeI site at the translation initiation codon of pcbC, allowing the gene to be inserted behind an E. coli type of ribosome binding site. This construction directed high-level expression of IPNS, but the IPNS was in an inactive form in inclusion bodies. Active IPNS was recovered by solubilizing and renaturing the protein.  相似文献   

7.
Summary The genes coding for isopenicillin N synthase (IPNS) in Streptomyces jumonjinensis and S. lipmanii were isolated from recombinant phage lambda libraries using the S. clavuligerus IPNS gene as a heterologous probe. The S. jumonjinensis IPNS gene has an open reading frame coding for 329 amino acids, identical in size to that of the previously cloned S. clavuligerus IPNS gene. A partial nucleotide sequence was also determined for the S. lipmanii IPNS gene. Comparison of the predicted amino acid sequences of all three streptomycete IPNS proteins shows that they exhibit more than 70% similarity, close to that found in comparisons among fungal IPNS proteins and significantly greater than that found, approximately 60%, between Streptomyces and fungal IPNS proteins. We conclude that procaryotic and eucaryotic IPNS genes are subgroups of a single family of microbial IPNS genes. Hybridization probes prepared from IPNS genes of the above streptomycete species were used to detect analogous genes in eight other strains that included both penicillin and cephalosporin producers and non-producers. Each producer strain responded with all three probes implying the presence of an IPNS gene. Surprisingly, several non-producer strains also responded with one or two of the probes. Our results suggest that IPNS-related genes may be more prevalent in Streptomyces than previously believed.  相似文献   

8.
A recent report (Patino et al., (1989) FEMS Microbiol. Lett. 58, 139-144) described the low level expression, in Escherichia coli, of the Isopenicillin N Synthase (IPNS) gene from Cephalosporium acremonium under the control of strong promoters. We report here our work on the expression of the IPNS gene. Plasmids containing the IPNS gene under the control of the trp or trc promoters directed synthesis of high levels of active IPNS in E. coli. Constitutive and inductive high level IPNS expression systems have been developed. Importantly, the expression vectors do not encode beta-lactamase so IPNS activity can be determined directly by biological assays. Analysis by nmr verified that the IPNS produced from these expression systems catalysed the conversion of delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (LLD-ACV) to isopenicillin N in high yield.  相似文献   

9.
Evolutionary distances between bacterial and fungal isopenicillin N synthetase (IPNS) genes have been compared to distances between the corresponding 5S rRNA genes. The presence of sequences homologous to the IPNS gene has been examined in DNAs from representative prokaryotic organisms and Ascomycotina. The results of both analyses strongly support two different events of horizontal transfer of the IPNS gene from bacteria to filamentous fungi. This is the first example of such a type of transfer from prokaryotes to eukaryotes.  相似文献   

10.
The conversion of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N is dependent upon the catalytic action of isopenicillin N synthase (IPNS), an important enzyme in the penicillin and cephalosporin biosynthetic pathway. Recent catalytic investigations on the conserved glutamine-230 in the bacterial Streptomyces jumonjinensis IPNS and the corresponding glutamine-234 in the fungal Cephalosporium acremonium IPNS showed contrasting results whereby the former was suggested to be essential for IPNS activity whereas the latter was found not to be so. In order to unravel these conflicting results, we report the site-directed mutagenesis investigation on the corresponding glutamine-230 in a third IPNS isozyme, which is the bacterial Streptomyces clavuligerus IPNS (scIPNS). IPNS enzymatic assays showed that catalytic activity of the mutant Q230L scIPNS was reduced but not eliminated. Moreover, the solubility of the mutant enzyme was also markedly reduced. Hence, we can conclude that glutamine-230 in scIPNS is not essential for catalysis and correspondingly in all IPNS.  相似文献   

11.
12.
Genomic clones containing an Aspergillus nidulans isopenicillin N synthetase (IPNS) gene have been identified by heterologous hybridization with a Cephalosporium acremonium DNA probe. The open reading frame encodes a 331 amino acid polypeptide with extensive homology with the genes of other beta-lactam-producing fungi. The gene product has been overexpressed in Escherichia coli and shown to have activity of IPNS. This represents the first evidence at the molecular level that the biosynthesis of penicillins in A. nidulans occurs by the same pathway as in other beta-lactam-producing microorganisms. Comparison of available nucleotide sequences from IPNS genes suggests a horizontal transmission of the gene between the prokaryotic beta-lactam producers of the genus Streptomyces and the filamentous fungi.  相似文献   

13.
A T7 promoter-based vector was used to express the isopenicillin N synthase (IPNS) genes of Flavobacterium sp. 12,154 and Streptomyces jumonjinensis in Escherichia coli. Most of the IPNS synthesized at 37 degrees C, and representing some 22% and 51% of the total cell protein respectively, occurred in an insoluble, enzymatically inactive form. Active IPNS was recovered in a rapid and simple two-step procedure in which the insoluble material was first denatured in 5 M urea and then refolded by passing the solubilized IPNS through a G-25 Sephadex sizing column. Further chromatography on DEAE-Sepharose resulted in highly active IPNS preparations. This procedure was found to be well suited for scaling up to produce large amounts of IPNS.  相似文献   

14.
15.
Deacetoxycephalosporin C (DAOC), a precursor of cephalosporins excreted by Cephalosporium and Streptomyces species, has been produced in Penicillium chrysogenum transformed with DNA containing a hybrid penicillin N expandase gene (cefEh) and a hybrid isopenicillin N epimerase gene (cefDh). DAOC from a P. chrysogenum transformant was identified by ultraviolet light (UV), high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and mass spectrum analyses. P. chrysogenum transformed with DNA containing cefEh without cefDh did not produce DAOC. Untransformed P. chrysogenum produced penicillin V (phenoxymethylpenicillin) but not DAOC. Transformants also produced penicillin V but, in general, less than untransformed P. chrysogenum. The cefEh and cefDh genes were constructed by replacing the open reading frame (ORF) of cloned P. chrysogenum pcbC and penDE genes with the ORF of the Streptomyces clavuligerus expandase gene, cefE, and the ORF of the Streptomyces lipmanii epimerase gene, cefD, respectively. Analyses of representative transformants suggested that production of DAOC occurred via cefEh and cefDh genes stably integrated in the P. chrysogenum genome. DNA from untransformed P. chrysogenum did not hybridize to cefE or cefD gene probes.  相似文献   

16.
Isopenicillin N synthase (IPNS), a non-heme iron oxidase central to penicillin and cephalosporin biosynthesis, catalyzes an energetically demanding chemical transformation to produce isopenicillin N from the tripeptide delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-valine (ACV). We describe the synthesis of two cyclopropyl-containing tripeptide analogues, delta-(l-alpha-aminoadipoyl)-l-cysteinyl-beta-methyl-d-cyclopropylglycine and delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-cyclopropylglycine, designed as probes for the mechanism of IPNS. We have solved the X-ray crystal structures of these substrates in complex with IPNS and propose a revised mechanism for the IPNS-mediated turnover of these compounds. Relative to the previously determined IPNS-Fe(II)-ACV structure, key differences exist in substrate orientation and water occupancy, which allow for an explanation of the differences in reactivity of these substrates.  相似文献   

17.
F Jiang  J Peisach  L J Ming  L Que  V J Chen 《Biochemistry》1991,30(48):11437-11445
Electron spin echo envelope modulation spectroscopy (ESEEM) was used to study the active site structure of isopenicillin N synthase (IPNS) from Cephalosporium acremonium with Cu(II) as a spectroscopic probe. Fourier transform of the stimulated electron spin-echo envelope for the Cu(II)-substituted enzyme, Cu(II)IPNS, revealed two nearly magnetically equivalent, equatorially coordinated His imidazoles. The superhyperfine coupling constant, Aiso, for the remote 14N of each imidazole was 1.65 MHz. The binding of substrate to the enzyme altered the magnetic coupling so that Aiso is 1.30 MHz for one nitrogen and 2.16 MHz for the other. From a comparison of the ESEEM of Cu(II)IPNS in D2O and H2O, it is suggested that water is a ligand of Cu(II) and this is displaced upon the addition of substrate.  相似文献   

18.
Isopenicillin N synthase (IPNS) catalyses cyclization of δ-(l-α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) to isopenicillin N (IPN), the central step in penicillin biosynthesis. Previous studies have shown that IPNS turns over a wide range of substrate analogues in which the valine residue of its natural substrate is replaced with other amino acids. IPNS accepts and oxidizes numerous substrates that bear hydrocarbon sidechains in this position, however the enzyme is less tolerant of analogues presenting polar functionality in place of the valinyl isopropyl group. We report a new ACV analogue δ-(l-α-aminoadipoyl)-l-cysteinyl-d-methionine (ACM), which incorporates a thioether in place of the valinyl sidechain. ACM has been synthesized using solution phase methods and crystallized with IPNS. A crystal structure has been elucidated for the IPNS:Fe(II):ACM complex at 1.40? resolution. This structure reveals that ACM binds in the IPNS active site such that the sulfur atom of the methionine thioether binds to iron in the oxygen binding site at a distance of 2.57?. The sulfur of the cysteinyl thiolate sits 2.36? from the metal.  相似文献   

19.
Isopenicillin N synthase (IPNS) catalyses cyclization of δ-(l-α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) to isopenicillin N (IPN), the central step in penicillin biosynthesis. Previous studies have shown that IPNS turns over a wide range of substrate analogues in which the valine residue of its natural substrate is replaced with other amino acids. IPNS accepts and oxidizes numerous substrates that bear hydrocarbon sidechains in this position, however the enzyme is less tolerant of analogues presenting polar functionality in place of the valinyl isopropyl group. We report a new ACV analogue δ-(l-α-aminoadipoyl)-l-cysteinyl-d-methionine (ACM), which incorporates a thioether in place of the valinyl sidechain. ACM has been synthesized using solution phase methods and crystallized with IPNS. A crystal structure has been elucidated for the IPNS:Fe(II):ACM complex at 1.40 Å resolution. This structure reveals that ACM binds in the IPNS active site such that the sulfur atom of the methionine thioether binds to iron in the oxygen binding site at a distance of 2.57 Å. The sulfur of the cysteinyl thiolate sits 2.36 Å from the metal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号