首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KRE6 (YPR159W) encodes a Golgi membrane protein required for normal beta-1,6-glucan levels in the cell wall. A functional Kre6p is necessary for cell wall protein accumulation in response to changing metabolic conditions. The product of the SED1 (YDR077W) gene is a stress-induced GPI-cell wall protein. Successful incorporation of HA-tagged Sed1p into the cell wall involves KRE6. The double-mutant sed1 kre6 has a reduced growth rate, increased flocculation and increased sensitivity to Zymolyase. A similar phenotype is found in mutants defective in glycosyl-phosphatidyl-insositol (GPI) anchor assembly. These findings support the theory that Kre6p could function as a transglucosylase that allows the incorporation of proteins with a GPI anchor into the cell wall.  相似文献   

2.
It has been proposed that synthesis of beta-1,6-glucan, one of Saccharomyces cerevisiae cell wall components, is initiated by a uridine diphosphate (UDP)-glucose-dependent reaction in the lumen of the endoplasmic reticulum (ER). Because this sugar nucleotide is not synthesized in the lumen of the ER, we have examined whether or not UDP-glucose can be transported across the ER membrane. We have detected transport of this sugar nucleotide into the ER in vivo and into ER-containing microsomes in vitro. Experiments with ER-containing microsomes showed that transport of UDP-glucose was temperature dependent and saturable with an apparent Km of 46 microM and a Vmax of 200 pmol/mg protein/3 min. Transport was substrate specific because UDP-N-acetylglucosamine did not enter these vesicles. Demonstration of UDP-glucose transport into the ER lumen in vivo was accomplished by functional expression of Schizosaccharomyces pombe UDP-glucose:glycoprotein glucosyltransferase (GT) in S. cerevisiae, which is devoid of this activity. Monoglucosylated protein-linked oligosaccharides were detected in alg6 or alg5 mutant cells, which transfer Man9GlcNAc2 to protein; glucosylation was dependent on the inhibition of glucosidase II or the disruption of the gene encoding this enzyme. Although S. cerevisiae lacks GT, it contains Kre5p, a protein with significant homology and the same size and subcellular location as GT. Deletion mutants, kre5Delta, lack cell wall beta-1,6 glucan and grow very slowly. Expression of S. pombe GT in kre5Delta mutants did not complement the slow-growth phenotype, indicating that both proteins have different functions in spite of their similarities.  相似文献   

3.
In Candida albicans wild-type cells, the beta1, 6-glucanase-extractable glycosylphosphatidylinositol (GPI)-dependent cell wall proteins (CWPs) account for about 88% of all covalently linked CWPs. Approximately 90% of these GPI-CWPs, including Als1p and Als3p, are attached via beta1,6-glucan to beta1,3-glucan. The remaining GPI-CWPs are linked through beta1,6-glucan to chitin. The beta1,6-glucanase-resistant protein fraction is small and consists of Pir-related CWPs, which are attached to beta1,3-glucan through an alkali-labile linkage. Immunogold labelling and Western analysis, using an antiserum directed against Saccharomyces cerevisiae Pir2p/Hsp150, point to the localization of at least two differentially expressed Pir2 homologues in the cell wall of C. albicans. In mnn9Delta and pmt1Delta mutant strains, which are defective in N- and O-glycosylation of proteins respectively, we observed enhanced chitin levels together with an increased coupling of GPI-CWPs through beta1,6-glucan to chitin. In these cells, the level of Pir-CWPs was slightly upregulated. A slightly increased incorporation of Pir proteins was also observed in a beta1, 6-glucan-deficient hemizygous kre6Delta mutant. Taken together, these observations show that C. albicans follows the same basic rules as S. cerevisiae in constructing a cell wall and indicate that a cell wall salvage mechanism is activated when Candida cells are confronted with cell wall weakening.  相似文献   

4.
The yeast KRE9 gene encodes a 30-kDa secretory pathway protein involved in the synthesis of cell wall (1-->6)-beta-glucan. Disruption of KRE9 leads to serious growth impairment and an altered cell wall containing less than 20% of the wild-type amount of (1-->6)-beta-glucan. Analysis of the glucan material remaining in a kre9 delta null mutant indicated a polymer with a reduced average molecular mass. kre9 delta null mutants also displayed several additional cell-wall-related phenotypes, including an aberrant multiply budded morphology, a mating defect, and a failure to form projections in the presence of alpha-factor. Double mutants were generated by crossing kre9 delta strains with strains harboring a null mutation in the KRE1, KRE6, or KRE11 gene, and each of these double mutants was found to be inviable in the SEY6210 background. Similar crosses with null mutations in the KRE5 and SKN1 genes indicated that these double mutants were no more severely affected than kre5 delta or kre9 delta single mutants alone. Antibodies were generated against Kre9p and detected an O glycoprotein of approximately 55 to 60 kDa found in the extracellular medium of a strain overproducing Kre9p.  相似文献   

5.
J. L. Brown  Z. Kossaczka  B. Jiang    H. Bussey 《Genetics》1993,133(4):837-849
Recessive mutations leading to killer resistance identify the KRE9, KRE10 and KRE11 genes. Mutations in both the KRE9 and KRE11 genes lead to reduced levels of (1 -> 6)-β-glucan in the yeast cell wall. The KRE11 gene encodes a putative 63-kD cytoplasmic protein, and disruption of the KRE11 locus leads to a 50% reduced level of cell wall (1 -> 6)-glucan. Structural analysis of the (1 -> 6)-β-glucan remaining in a kre11 mutant indicates a polymer smaller in size than wild type, but containing a similar proportion of (1 -> 6)- and (1 -> 3)-linkages. Genetic interactions among cells harboring mutations at the KRE11, KRE6 and KRE1 loci indicate lethality of kre11 kre6 double mutants and that kre11 is epistatic to kre1, with both gene products required to produce the mature glucan polymer at wild-type levels. Analysis of these KRE genes should extend knowledge of the β-glucan biosynthetic pathway, and of cell wall synthesis in yeast.  相似文献   

6.
The cell adhesion protein alpha-agglutinin is bound to the outer surface of the Saccharomyces cerevisiae cell wall and mediates cell- cell contact in mating. alpha-Agglutinin is modified by addition of a glycosyl phosphatidylinositol (GPI) anchor as it traverses the secretory pathway. The presence of a GPI anchor is essential for cross- linking into the wall, but the fatty acid and inositol components of the anchor are lost before cell wall association (Lu, C.-F., J. Kurjan, and P. N. Lipke, 1994. A pathway for cell wall anchorage of Saccharomyces cerevisiae alpha-agglutinin. Mol. Cell. Biol. 14:4825- 4833). Cell wall association of alpha-agglutinin was accompanied by an increase in size and a gain in reactivity to antibodies directed against beta 1,6-glucan. Several kre mutants, which have defects in synthesis of cell wall beta 1,6-glucan, had reduced molecular size of cell wall alpha-agglutinin. These findings demonstrate that the cell wall form of alpha-agglutinin is covalently associated with beta 1,6- glucan. The alpha-agglutinin biosynthetic precursors did not react with antibody to beta 1,6-glucan, and the sizes of these forms were unaffected in kre mutants. A COOH-terminal truncated form of alpha- agglutinin, which is not GPI anchored and is secreted into the medium, did not react with the anti-beta 1,6-glucan. We propose that extracellular cross-linkage to beta 1,6-glucan mediates covalent association of alpha-agglutinin with the cell wall in a manner that is dependent on prior addition of a GPI anchor to alpha-agglutinin.  相似文献   

7.
C Boone  A Sdicu  M Laroche    H Bussey 《Journal of bacteriology》1991,173(21):6859-6864
The KRE1 gene of Saccharomyces cerevisiae, sacKRE1, appears to be involved in the synthesis of cell wall beta-glucan. S. cerevisiae strains with mutations in the KRE1 gene produce a structurally altered cell wall (1----6)-beta-glucan, which results in resistance to K1 killer toxin. We isolated the canKRE1 gene from Candida albicans by its ability to complement a kre1 mutation in S. cerevisiae and confer sensitivity to killer toxin. Sequence analysis revealed that the predicted protein encoded by canKRE1 shares an overall structural similarity with that encoded by sacKRE1. The canKRE1 protein is composed of an N-terminal signal sequence, a central domain of 46% identity with the sacKRE1 protein, and a C-terminal hydrophobic tract. These structural and functional similarities imply that the canKRE1 gene carries out a function in C. albicans cell wall assembly similar to that observed for sacKRE1 in S. cerevisiae.  相似文献   

8.
CWH41 encodes a novel type II integral membrane N-glycoprotein located in the endoplasmic reticulum. Disruption of the CWH41 gene leads to a K1 killer toxin-resistant phenotype and a 50% reduction in the cell wall beta 1,6-glucan level. CWH41 also displays strong genetic interactions with KRE1 and KRE6, two genes known to be involved in the beta 1,6-glucan biosynthetic pathway. The cwh41 delta kre6 delta double mutant is nonviable; and the cwh41 delta kre1 delta double mutation results in strong synergistic defects, with a severely slow-growth phenotype, a 75% reduction in beta 1,6-glucan level, and the secretion of a cell wall glucomannoprotein, Cwp1p. These results provide strong genetic evidence indicating that Cwh41p plays a functional role, possibly as a new synthetic component, in the assembly of cell wall beta 1,6-glucan.  相似文献   

9.
The polysaccharide β‐1,6‐glucan is a major component of the cell wall of Cryptococcus neoformans, but its function has not been investigated in this fungal pathogen. We have identified and characterized seven genes, belonging to the KRE family, which are putatively involved in β‐1,6‐glucan synthesis. The H99 deletion mutants kre5Δ and kre6Δskn1Δ contained less cell wall β‐1,6‐glucan, grew slowly with an aberrant morphology, were highly sensitive to environmental and chemical stress and were avirulent in a mouse inhalation model of infection. These two mutants displayed alterations in cell wall chitosan and the exopolysaccharide capsule, a primary cryptococcal virulence determinant. The cell wall content of the GPI‐anchored phospholipase B1 (Plb1) enzyme, which is required for cryptococcal cell wall integrity and virulence, was reduced in kre5Δ and kre6Δskn1Δ. Our results indicate that KRE5, KRE6 and SKN1 are involved in β‐1,6‐glucan synthesis, maintenance of cell wall integrity and retention of mannoproteins and known cryptococcal virulence factors in the cell wall of C. neoformans. This study sets the stage for future investigations into the function of this abundant cell wall polymer.  相似文献   

10.
CWH41, a gene involved in the assembly of cell wall β-1,6-glucan, has recently been shown to be the structural gene for Saccharomyces cerevisiae glucosidase I that is responsible for initiating the trimming of terminal α-1,2-glucose residue in the N-glycan processing pathway. To distinguish between a direct or indirect role of Cwh41p in the biosynthesis of β-1,6-glucan, we constructed a double mutant, alg5Δ (lacking dolichol-P-glucose synthase) cwh41Δ, and found that it has the same phenotype as the alg5Δ single mutant. It contains wild-type levels of cell wall β-1,6-glucan, shows moderate underglycosylation of N-linked glycoproteins, and grows at concentrations of Calcofluor White (which interferes with cell wall assembly) that are lethal to cwh41Δ single mutant. The strong genetic interactions of CWH41 with KRE6 and KRE1, two other genes involved in the β-1,6-glucan biosynthetic pathway, disappear in the absence of dolichol-P-glucose synthase (alg5Δ). The triple mutant alg5Δcwh41Δkre6Δ is viable, whereas the double mutant cwh41Δkre6Δ in the same genetic background is not. The severe slow growth phenotype and 75% reduction in cell wall β-1,6-glucan, characteristic of the cwh41Δkre1Δ double mutant, are not observed in the triple mutant alg5Δcwh41Δkre1Δ. Kre6p, a putative Golgi glucan synthase, is unstable in cwh41Δ strains, and its overexpression renders these cells Calcofluor White resistant. These results demonstrate that the role of glucosidase I (Cwh41p) in the biosynthesis of cell wall β-1,6-glucan is indirect and that dolichol-P-glucose is not an intermediate in this pathway.  相似文献   

11.
Saccharomyces cerevisiae GSC1 (also called FKS1) and GSC2 (also called FKS2) have been identified as the genes for putative catalytic subunits of beta-1,3-glucan synthase. We have cloned three Candida albicans genes, GSC1, GSL1, and GSL2, that have significant sequence homologies with S. cerevisiae GSC1/FKS1, GSC2/FKS2, and the recently identified FKSA of Aspergillus nidulans at both nucleotide and amino acid levels. Like S. cerevisiae Gsc/Fks proteins, none of the predicted products of C. albicans GSC1, GSL1, or GSL2 displayed obvious signal sequences at their N-terminal ends, but each product possessed 10 to 16 potential transmembrane helices with a relatively long cytoplasmic domain in the middle of the protein. Northern blotting demonstrated that C. albicans GSC1 and GSL1 but not GSL2 mRNAs were expressed in the growing yeast-phase cells. Three copies of GSC1 were found in the diploid genome of C. albicans CAI4. Although we could not establish the null mutation of C. albicans GSC1, disruption of two of the three GSC1 alleles decreased both GSC1 mRNA and cell wall beta-glucan levels by about 50%. The purified C. albicans beta-1,3-glucan synthase was a 210-kDa protein as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all sequences determined with peptides obtained by lysyl endopeptidase digestion of the 210-kDa protein were found in the deduced amino acid sequence of C. albicans Gsc1p. Furthermore, the monoclonal antibody raised against the purified beta-1,3-glucan synthase specifically reacted with the 210-kDa protein and could immunoprecipitate beta-1,3-glucan synthase activity. These results demonstrate that C. albicans GSC1 is the gene for a subunit of beta-1,3-glucan synthase.  相似文献   

12.
We have previously shown that mutants in the cardiolipin (CL) pathway exhibit temperature-sensitive growth defects that are not associated with mitochondrial dysfunction. The pgs1Delta mutant, lacking the first enzyme of the CL pathway, phosphatidylglycerolphosphate synthase (Pgs1p), has a defective cell wall due to decreased beta-1,3-glucan (Zhong, Q., Gvozdenovic-Jeremic, J., Webster, P., Zhou, J., and Greenberg, M. L. (2005) Mol. Biol. Cell 16, 665-675). Disruption of KRE5, a gene involved in cell wall biogenesis, restores beta-1,3-glucan synthesis and suppresses pgs1Delta temperature sensitivity. To gain insight into the mechanisms underlying the cell wall defect in pgs1Delta, we show in the current report that pgs1Delta cells have reduced glucan synthase activity and diminished levels of Fks1p, the glucan synthase catalytic subunit. In addition, activation of Slt2p, the downstream effector of the protein kinase C (PKC)-activated cell integrity pathway, was defective in pgs1Delta. The kre5W1166X suppressor restored Slt2p activation and dramatically increased (>10-fold) mRNA levels of FKS2, the alternate catalytic subunit of glucan synthase, partially restoring glucan synthase activity. Consistent with these results, up-regulation of PKC-Slt2 signaling and overexpression of FKS1 or FKS2 alleviated sensitivity of pgs1Delta to cell wall-perturbing agents and restored growth at elevated temperature. These findings demonstrate that functional Pgs1p is essential for cell wall biogenesis and activation of the PKC-Slt2 signaling pathway.  相似文献   

13.
14.
The Saccharomyces cerevisiae RHO1 gene encodes a low-molecular-weight GTPase. One of its recently identified functions is the regulation of beta-1,3-glucan synthase, which synthesizes the main component of the fungal cell wall (J. Drgonova et al., Science 272:277-279, 1996; T. Mazur and W. Baginsky, J. Biol. Chem. 271:14604-14609, 1996; and H. Qadota et al., Science 272:279-281, 1996). From the opportunistic pathogenic fungus Candida albicans, we cloned the RHO1 gene by the PCR and cross-hybridization methods. Sequence analysis revealed that the Candida RHO1 gene has a 597-nucleotide region which encodes a putative 22.0-kDa peptide. The deduced amino acid sequence predicts that Candida albicans Rho1p is 82.9% identical to Saccharomyces Rho1p and contains all the domains conserved among Rho-type GTPases from other organisms. The Candida albicans RHO1 gene could rescue a S. cerevisiae strain containing a rho1 deletion. Furthermore, recombinant Candida albicans Rho1p could reactivate the beta-1,3-glucan synthesis activities of both C. albicans and S. cerevisiae membranes in which endogenous Rho1p had been depleted by Tergitol NP-40-NaCl treatment. Candida albicans Rho1p was copurified with the beta-1,3-glucan synthase putative catalytic subunit, Candida albicans Gsc1p, by product entrapment. Candida albicans Rho1p was shown to interact directly with Candida albicans Gsc1p in a ligand overlay assay and a cross-linking study. These results indicate that Candida albicans Rho1p acts in the same manner as Saccharomyces cerevisiae Rho1p to regulate beta-1,3-glucan synthesis.  相似文献   

15.
Yeast kre mutants define a pathway of cell wall (1----6)-beta-D-glucan synthesis, and mutants in genes KRE5 and KRE6 appear to interact early in such a pathway. We have cloned KRE5, and the sequence predicts the product to be a large, hydrophilic, secretory glycoprotein which contains the COOH-terminal endoplasmic reticulum retention signal, HDEL. Deletion of the KRE5 gene resulted in cells with aberrant morphology and extremely compromised growth. Suppressors to the KRE5 deletions arose at a frequency of 1 in 10(7) to 1 in 10(8) and permitted an analysis of deletions which were found to contain no alkali-insoluble (1----6)-beta-D-glucan. These results indicate a role for (1----6)-beta-D-glucan in normal cell growth and suggest a model for sequential assembly of (1----6)-beta-D-glucan in the yeast secretory pathway.  相似文献   

16.
KEG1/YFR042w of Saccharomyces cerevisiae is an essential gene that encodes a 200-amino acid polypeptide with four predicted transmembrane domains. The green fluorescent protein- or Myc(6)-tagged Keg1 protein showed the typical characteristics of an integral membrane protein and was found in the endoplasmic reticulum by fluorescence imaging. Immunoprecipitation from the Triton X-100-solubilized cell lysate revealed that Keg1 binds to Kre6, which has been known to participate in beta-1,6-glucan synthesis. To analyze the essential function of Keg1 in more detail, we constructed temperature-sensitive mutant alleles by error-prone polymerase chain reaction. The keg1-1 mutant cells showed a common phenotype with Deltakre6 mutant including hypersensitivity to Calcofluor white, reduced sensitivity to the K1 killer toxin, and reduced content of beta-1,6-glucan in the cell wall. These results suggest that Keg1 and Kre6 have a cooperative role in beta-1,6-glucan synthesis in S. cerevisiae.  相似文献   

17.
18.
Innate immunity depends upon recognition of surface features common to broad groups of pathogens. The glucose polymer beta-glucan has been implicated in fungal immune recognition. Fungal walls have two kinds of beta-glucan: beta-1,3-glucan and beta-1,6-glucan. Predominance of beta-1,3-glucan has led to the presumption that it is the key immunological determinant for neutrophils. Examining various beta-glucans for their ability to stimulate human neutrophils, we find that the minor cell wall component beta-1,6-glucan mediates neutrophil activity more efficiently than beta-1,3-glucan, as measured by engulfment, production of reactive oxygen species, and expression of heat shock proteins. Neutrophils rapidly ingest beads coated with beta-1,6-glucan while ignoring those coated with beta-1,3-glucan. Complement factors C3b/C3d are deposited on beta-1,6-glucan more readily than on beta-1,3-glucan. Beta-1,6-glucan is also important for efficient engulfment of the human pathogen Candida albicans. These unique stimulatory effects offer potential for directed stimulation of neutrophils in a therapeutic context.  相似文献   

19.
Septin function in Candida albicans morphogenesis   总被引:6,自引:0,他引:6       下载免费PDF全文
The septin proteins function in the formation of septa, mating projections, and spores in Saccharomyces cerevisiae, as well as in cell division and other processes in animal cells. Candida albicans septins were examined in this study for their roles in morphogenesis of this multimorphic, opportunistically pathogenic fungus, which can range from round budding yeast to elongated hyphae. C. albicans green fluorescent protein labeled septin proteins localized to a tight ring at the bud and pseudohyphae necks and as a more diffuse array in emerging germ tubes of hyphae. Deletion analysis demonstrated that the C. albicans homologs of the S. cerevisiae CDC3 and CDC12 septins are essential for viability. In contrast, the C. albicans cdc10Delta and cdc11Delta mutants were viable but displayed conditional defects in cytokinesis, localization of cell wall chitin, and bud morphology. The mutant phenotypes were not identical, however, indicating that these septins carry out distinct functions. The viable septin mutants could be stimulated to undergo hyphal morphogenesis but formed hyphae with abnormal curvature, and they differed from wild type in the selection of sites for subsequent rounds of hyphal formation. The cdc11Delta mutants were also defective for invasive growth when embedded in agar. These results further extend the known roles of the septins by demonstrating that they are essential for the proper morphogenesis of C. albicans during both budding and filamentous growth.  相似文献   

20.
A beta-1,6-glucanase was purified to apparent homogeneity from a commercial yeast digestive enzyme prepared from Streptomyces rochei by a series of column chromatographies. The molecular mass of the purified enzyme was 60 kDa by SDS-PAGE. The purified enzyme had an optimum pH range from 4.0 to 6.0 and was stable in the same pH range. The enzyme was stable under 50 degrees C but lost almost all activity at 60 degrees C. The enzyme was specific to beta-1,6-glucan and had little activity towards beta-1,3-glucan and beta-1,4-glucan. When the beta-1,6-glucan was hydrolyzed with the purified enzyme for 5 h, the reaction products contained 20% glucose, 36% gentiobiose, and 44% other oligosaccharides, suggesting that the enzyme is an endo-type glucanase. When the purified enzyme was used for the digestion of the cell wall of Saccharomyces cerevisiae, cell-wall proteins covalently bound to the cell-wall glucan were recovered as soluble forms, suggesting that this enzyme is useful for analysis of yeast-cell wall proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号