首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrolysis of endogenous phosphatidyl ethanolamine and lecithin in rat liver mitochondria has been studied by using mitochondria from rats injected with ethanolamine-1,2-(14)C or choline-1,2-(14)C. A phospholipase A-like enzyme has been demonstrated, which catalyzes the hydrolysis of one fatty acid ester linkage in phosphatidyl ethanolamine and lecithin. Phosphatidyl ethanolamine is hydrolyzed in preference to lecithin and the main reaction products are free fatty acids and lysophosphatidyl ethanolamine. The further breakdown of lysophospholipids appears to be limited in mitochondria, which indicates that lysophospholipase activity is mainly located extramitochondrially. The enzymic system is greatly stimulated by calcium ions, and also slightly by magnesium ions, while EDTA inhibits it almost completely. These findings are discussed in relation to previous observations on the effect of calcium and of EDTA on the functions of mitochondria. The possible function of the mitochondrial phospholipase for the formation of phospholipids with special fatty acids at the alpha- and -position is discussed.  相似文献   

2.
Myofibrillar, mitochondrial, and microsomal fractions were prepared from normal and dystrophic mouse limb muscle by differential centrifugation and analyzed for phospholipids and cholesterol. Fatty acids and aldehydes of neutral lipids and of phospholipids from whole muscle and particulate fractions were also determined. Normal microsomes contained more lecithin and less total ethanolamine phospholipids and cardiolipin than mitochondria. The myofibrils had an intermediate phospholipid composition, but their cholesterol-phospholipid ratio was smaller than that of the other two fractions. Except for an increased percentage of phosphatidalethanolamine in the dystrophic mitochondria, only the composition of the dystrophic microsomes differed from normal by containing less lecithin but more total ethanolamine phospholipid, phosphatidalethanolamine, sphingomyelin, and cholesterol. No significant differences were found in the fatty acid composition of neutral lipid extracts from normal and dystrophic preparations, but there was a significant decrease in the percentage of 22:6 in phospholipids from both dystrophic whole muscle and microsomes (-25% and -37%, respectively), whereas the 20:4 content was unaltered. By contrast, the percentages of 18:0 and total fatty aldehyde increased significantly. Phospholipid extracts from all dystrophic samples showed a significant decrease in 16:0 and an increase in 18:1 as compared with the normal.  相似文献   

3.
4.
Carnitine palmitoyltransferase 1 (CPT1) catalyzes the first step in long-chain fatty acid import into mitochondria, and it is believed to be rate limiting for β-oxidation of fatty acids. However, in muscle, other proteins may collaborate with CPT1. Fatty acid translocase/CD36 (FAT/CD36) may interact with CPT1 and contribute to fatty acid import into mitochondria in muscle. Here, we demonstrate that another membrane-bound fatty acid binding protein, fatty acid transport protein 1 (FATP1), collaborates with CPT1 for fatty acid import into mitochondria. Overexpression of FATP1 using adenovirus in L6E9 myotubes increased both fatty acid oxidation and palmitate esterification into triacylglycerides. Moreover, immunocytochemistry assays in transfected L6E9 myotubes showed that FATP1 was present in mitochondria and coimmunoprecipitated with CPT1 in L6E9 myotubes and rat skeletal muscle in vivo. The cooverexpression of FATP1 and CPT1 also enhanced mitochondrial fatty acid oxidation, similar to the cooverexpression of FAT/CD36 and CPT1. However, etomoxir, an irreversible inhibitor of CPT1, blocked all these effects. These data reveal that FATP1, like FAT/CD36, is associated with mitochondria and has a role in mitochondrial oxidation of fatty acids.  相似文献   

5.
Recent studies found that the plasma membrane fatty acid transport protein CD36 also resides in mitochondrial membranes in cardiac and skeletal muscle. Pharmacological studies suggest that CD36 may play an essential role in mitochondrial fatty acid oxidation. We isolated cardiac and skeletal muscle mitochondria from wild type and CD36 knock-out mice. There were no differences between wild type and CD36 knock-out mice in mitochondrial respiration with palmitoyl-CoA, palmitoyl-carnitine or glutamate as substrate. We investigated a potential alternative role for CD36 in mitochondria, i.e. the export of fatty acids generated in the matrix. Palmitate export was not different between wild type and CD36 knock-out mice. Taken together, CD36 does not appear to play an essential role in mitochondrial uptake of fatty acids or export of fatty acid anions.  相似文献   

6.
Phaseolus vulgaris mitochondria incubated in sucrose swell rapidly upon the addition of phospholipase A. Bovine serum albumin inhibits the swelling. The release of free fatty acids as a result of phospholipase A action on the mitochondria is detected only in the presence of bovine serum albumin, which promotes the hydrolysis of both mitochondrial phospholipids and purified lecithin. Either free fatty acid or lysolecithin is able to initiate an extensive mitochondrial swelling in sucrose. It is suggested that phospholipase A-induced swelling results from the release of lysophosphatides plus free fatty acids and their subsequent detergent action on the membranes rather than phospholipid loss per se.  相似文献   

7.
The lipolytic activities of mitochondrial and microsomal fractions ('microsomes') isolated from foetal, suckling and adult rat liver were compared. The catabolism of endogenous phospholipids was followed by measuring the loss of phospholipids and the appearance of non-esterified fatty acids and lysophosphatides. The rate of mitochondrial phospholipid catabolism does not change significantly during development, but the rate of lipolysis of microsomal phospholipids increases 3-fold during development. Balance studies showed that, in mitochondria and microsomes of foetal, suckling and adult rat liver, fatty acid formation is greatly in excess of the fatty acids that can be accounted for by measuring phospholipid disappearance and lysophosphatide appearance. The hypothesis that this excess fatty acid formation resulted from the lipolysis of mitochondrial and microsomal triacylglycerols were tested and confirmed by preliminary experiments. Mitochondria and microsomes isolated from all developmental ages investigated had phospholipases with A1 and A2 activities. The degree of unsaturation of the fatty acids derived from the phospholipids of mitochondria did not vary significantly during development.  相似文献   

8.
The role of lysolecithin acyltransferase activities in biliary lecithin formation was investigated, using livers perfused in the presence of labeled palmitoyl-lysolecithin and albumin, overloaded or not with linoleic acid. At the end of liver perfusion, the lecithins extracted from microsomes, mitochondria and plasma membranes displayed the same specific activity. Double-labeled lysolecithin was used to prove that labeled lecithins were synthesized by lysolecithin acylation. In the absence or presence of a linoleic acid overload, the level of lysolecithin incorporation into linoleyl and arachidonyl containing lecithin was identical. Hence fatty acids did not influence phosphatidylcholine synthesis by the acylation pathway. In vitro the rate of linoleyl lecithin synthesis was the same in plasma membranes, mitochondria and microsomes provided the linoleyl-CoA concentration was lower than 30 microM. Taurocholate was essential to the excretion of lecithin synthesized from lysolecithin and stimulated its synthesis. The specific activities of the two lecithin molecular species excreted in bile (linoleyl and arachidonyl) were not significantly different. These results enabled us to evaluate the contribution of the lysolecithin pathway to the synthesis of lecithin in liver and bile: this contribution in bile was less than 2% under the perfusion conditions used.  相似文献   

9.
The interactions of 1-5 mM valproic acid with the hepatic fatty acid oxidation are here described. Valproic acid was not substrate for hepatic peroxisomal fatty acid oxidation. Its activation outside the mitochondrial matrix compartment was poor when compared to that of octanoic acid, a fatty acid containing the same number of carbones. Valproic acid did not inhibit the fatty acyl-CoA oxidase nor the cyanide-insensitive acyl-CoA oxidation. Valproic acid inhibited the mitochondrial oxidations of both long-chain monocarboxylyl-CoAs and omega-hydroxymonocarboxylyl-CoAs. Valproic acid prevented the oxidation by coupled mitochondria of decanoic and 10-hydroxydecanoic acids. Both butyric and 4-hydroxybutyric acids were oxidized by coupled mitochondria. These activities were abolished by preincubating the enzyme source with valproic acid. Administration to rats of 0.5% (w/w)- or 1% (w/w)-valproate containing diets were efficient in producing increased liver peroxisomal population and beta-oxidation. Preliminary investigations on the effects of valproic acid on mitochondrial fatty acid oxidation as a function of the animal used for the experiments pointed out an association of the protection of the mitochondrial process against the toxicity of the drug with enhanced carnitine acyltransferase and acyl-CoA hydrolase activities.  相似文献   

10.
The effects of an essential fatty acid deficient diet were investigated on the phospholipid fatty acids of several membrane fractions of the rat anterior pituitary, the secretion of which is known to be partly dependent on the membrane phospholipidic constituents. In standard dietary conditions, arachidonic acid (20:4n-6) and its elongation product, adrenic acid (22:4n-6), were the two main polyunsaturated fatty acids in all fractions studied. In rats deprived of EFA for 6 weeks after weaning, the levels of both 20:4n-6 and 22:4n-6 were not changed in microsomal + plasma membrane and nuclear fractions, whereas they were decreased in heavy mitochondrial and light mitochondrial fractions. The present data suggest a mechanism of compensation between membrane fractions which may preferentially preserve 20:4n-6 and 22:4n-6 in discrete membrane fractions.  相似文献   

11.
Hepatic metabolism of long-chain fatty acids were studied in young male rats fed a semisynthetic diet containing 20% (w/w) partially hydrogenated fish oil (PHFO)2, with or without 2% (w/w) linoleic acid. The enzymic activities involved in the formation and breakdown of long-chain acyl-CoA were both increased in the animals fed the semisynthetic diet, compared to pellet-fed control animals. Thus, the specific palmitoyl-CoA synthetase activity increased slightly in both the mitochondrial (1.4-fold) and the microsomal (1.6-fold) fractions. In the peroxisome-enriched fraction the activity was increased (about 2.6-fold) only on addition of linoleic acid to the diet. The data are consistent with an increased catabolism of long-chain fatty acids by a peroxisomal and a mitochondrial pathway. Thus, the total carnitine palmitoyltransferase activity increased 2-fold in the mitochondrial fraction, and was partly prevented by added linoleic acid. Peroxisomal beta-oxidation activity was also increased (about 7-fold) in livers of PHFO-fed rats, but did not change when linoleic acid was added. The PHFO-fed rats also revealed elevated capacity for hydrolysis of palmitoyl-CoA in both the mitochondrial (2.4-fold) and the cytosolic (2.0-fold) fractions and the latter was almost completely and selectively prevented by added linoleic acid. The s values of mitochondria and peroxisomes varied with the dietary regime, and some of the observed changes in the specific activities of the fatty acid metabolizing enzymes with multiple subcellular localization can be explained as an effect of changes in the s values of the organelles. Thus, the s value of mitochondria increased 1.8-fold as a result of PHFO feeding, but was fully prevented by linoleic acid in the diet. On the other hand, the s values of peroxisomes decreased by about 50% on feeding a PHFO diet, and by about 25% with added linoleic acid.  相似文献   

12.
Cardiovascular risks are frequently accompanied by high serum fatty acid levels. Although recent studies have shown that fatty acids affect mitochondrial function and induce cell apoptosis, l-carnitine is essential for the uptake of fatty acids by mitochondria, and may attenuate the mitochondrial dysfunction and apoptosis of cardiocytes. This study aimed to elucidate the activity of l-carnitine in the prevention on fatty acid-induced mitochondrial membrane permeability transition and cytochrome c release using isolated cardiac mitochondria from rats. Palmitoyl-CoA-induced mitochondrial respiration that was observed with l-carnitine was inhibited with oligomycin. The palmitoyl-CoA-induced mitochondrial membrane depolarization and swelling were greatly inhibited by the presence of l-carnitine. In ultrastructural observations, terminally swollen and ruptured mitochondria with little or no distinguishable cristae structures were induced by treatment with palmitoyl-CoA. However, the severe morphological damage in cardiac mitochondria was dramatically inhibited by pretreatment with l-carnitine. Treatment with l-carnitine also attenuated 4-hydroxy-l-phenylglycine- and rotenone-induced mitochondrial swelling even when the l-carnitine could not protect against the decrease in oxygen consumption associated with these inhibitors. Furthermore, l-carnitine completely inhibited palmitoyl-CoA-induced cytochrome c release. We concluded that l-carnitine is essential for cardiac mitochondria to attenuate the membrane permeability transition, and to maintain the ultrastructure and membrane stabilization, in the presence of high fatty acid β-oxidation. Consequently, the cells may be protected against apoptosis by l-carnitine through inhibition of the fatty acid-induced cytochrome c release.  相似文献   

13.
We report here on the identification and characterization of novel 2-enoyl thioester reductases of fatty acid metabolism, Etr1p from Candida tropicalis and its homolog Ybr026p (Mrf1'p) from Saccharomyces cerevisiae. Overexpression of these proteins in S. cerevisiae led to the development of significantly enlarged mitochondria, whereas deletion of the S. cerevisiae YBR026c gene resulted in rudimentary mitochondria with decreased contents of cytochromes and a respiration-deficient phenotype. Immunolocalization and in vivo targeting experiments showed these proteins to be predominantly mitochondrial. Mitochondrial targeting was essential for complementation of the mutant phenotype, since targeting of the reductases to other subcellular locations failed to reestablish respiratory growth. The mutant phenotype was also complemented by a mitochondrially targeted FabI protein from Escherichia coli. FabI represents a nonhomologous 2-enoyl-acyl carrier protein reductase that participates in the last step of the type II fatty acid synthesis. This indicated that 2-enoyl thioester reductase activity was critical for the mitochondrial function. We conclude that Etr1p and Ybr026p are novel 2-enoyl thioester reductases required for respiration and the maintenance of the mitochondrial compartment, putatively acting in mitochondrial synthesis of fatty acids.  相似文献   

14.
Male rats were fed a low-fat diet containing 36% of calories as ethanol, and the time-course development of the effects of ethanol on liver mitochondrial oxidation of choline was determined. Ethanol induced an increase in choline oxidase at days 2, 5 and 7 after being introduced into the diet. Due to an observed 32% increase in total fatty acids in the whole liver, defatted bovine serum albumin was added to the buffer used to homogenize the liver. The presence of bovine serum albumim resulted in a significant decrease in choline oxidase activity at days 2 and 5; however, ethanol still induced an increase in choline oxidase activity in these mitochondria. The total fatty acid concentration of mitochondria prepared in the absence of bovine serum albumin increased steadily until day 5; however, by day 7 the fatty acid concentration had returned to control levels. The addition of bovine serum albumin to the homogenization medium prevented the increase in the total amount of fatty acids. The fatty acid composition of the bovine serum albumin-treated mitochondria, however, was not different from the mitochondria is isolated in the absence of bovine serum albumin. Further, the addition of a free fatty acid to isolated mitochondrial preparations caused about a 100% increase in choline oxidase. These data are consistent with the idea that choline oxidase may be regulated to some extent by an influx or an increase in free fatty acids in the liver as a result of ethanol ingestion. Thus, a second mechanism has been described which contributes to the increase in choline oxidase after ethanol ingestion.  相似文献   

15.
Oxidative damage to mitochondrial proteins, lipids, and DNA seem to influence the promotion and progression of tumors. High-fat diets and diets high in iron decrease manganese superoxide dismutase activity, a mitochondrial antioxidant, in colon mucosa. Lipid peroxidation products are low in microsomal preparations from colonic mucosa even under peroxide-inducing conditions. However, damage specific to mitochondrial membranes is unknown. This study was designed to investigate dietary lipid and iron effects on fatty acid incorporation and lipid peroxide formation in mitochondrial membranes of colonic mucosa. Male Fischer rats were fed high-fat diets containing either corn oil or menhaden oil with an iron level of either 35 or 535 mg/kg diet. Animals were given two injections of the colon carcinogen, azoxymethane, or saline. Colon tissue was collected 1 and 6 weeks after injections. Mitochondrial and microsomal fractions were prepared for fatty acid analysis and quantitation of lipid peroxidation products. Results showed that lipid composition of both subcellular fractions were influenced by diet. Fatty acid composition of mitochondria differed from microsomes, but overall saturation remained constant. Peroxidation products in mitochondrial membranes were significantly greater than in microsomal membranes. Dietary treatment significantly affected mitochondrial peroxidation in carcinogen-treated animals. Therefore, mitochondria from colon mucosa are more susceptible to peroxidation than are microsomes, dietary factors influence the degree of peroxidation, and the resulting damage may be important in early colon carcinogenesis.  相似文献   

16.
The flow of carbon metabolites between cellular compartments is an essential feature of fungal metabolism. During growth on ethanol, acetate, or fatty acids, acetyl units must enter the mitochondrion for metabolism via the tricarboxylic acid cycle, and acetyl coenzyme A (acetyl-CoA) in the cytoplasm is essential for the biosynthetic reactions and for protein acetylation. Acetyl-CoA is produced in the cytoplasm by acetyl-CoA synthetase during growth on acetate and ethanol while β-oxidation of fatty acids generates acetyl-CoA in peroxisomes. The acetyl-carnitine shuttle in which acetyl-CoA is reversibly converted to acetyl-carnitine by carnitine acetyltransferase (CAT) enzymes is important for intracellular transport of acetyl units. In the filamentous ascomycete Aspergillus nidulans, a cytoplasmic CAT, encoded by facC, is essential for growth on sources of cytoplasmic acetyl-CoA while a second CAT, encoded by the acuJ gene, is essential for growth on fatty acids as well as acetate. We have shown that AcuJ contains an N-terminal mitochondrial targeting sequence and a C-terminal peroxisomal targeting sequence (PTS) and is localized to both peroxisomes and mitochondria, independent of the carbon source. Mislocalization of AcuJ to the cytoplasm does not result in loss of growth on acetate but prevents growth on fatty acids. Therefore, while mitochondrial AcuJ is essential for the transfer of acetyl units to mitochondria, peroxisomal localization is required only for transfer from peroxisomes to mitochondria. Peroxisomal AcuJ was not required for the import of acetyl-CoA into peroxisomes for conversion to malate by malate synthase (MLS), and export of acetyl-CoA from peroxisomes to the cytoplasm was found to be independent of FacC when MLS was mislocalized to the cytoplasm.  相似文献   

17.
Fatty acid compositions of glycerophosphatides of developing chick embryonic brain and liver were compared. In brain, ethanolamine and serine glycerophosphatides contained 30-40% polyunsaturated fatty acids, lecithin almost none (except for arachidonic). In the liver, these acids were equally distributed in the phospholipid fractions. The principal polyunsaturated fatty acids of the ethanolamine and serine glycerophosphatides in brain, liver, and yolk were 22:6, 20:4, and 18:2, respectively. During embryonic development of brain from the 8th day of incubation to hatching, the fatty acid composition of individual glycerophosphatide fractions remained constant. Because of the relative increase of ethanolamine glycerophosphatides and decrease of lecithin, total glycerophosphatides showed a decrease in 16:0 and an increase in 18:0. Substantial amounts of palmitaldehyde and stearaldehyde were present on the 8th day of incubation in the brain ethanolamine glycerophosphatide fraction. During the 3rd week of incubation, the liver showed a two-fold increase in the relative amount of 18:2 in all glycerophosphatide fractions. A decrease of 16:0 in the lecithin fraction and consequently in total glycerophosphatides was also observed during this period. No significant changes in glycerophosphatide fatty acids were observed in the yolk throughout incubation.  相似文献   

18.
Proton leak, as determined by the relationship between respiration rate and membrane potential, was lower in mitochondria from hypothyroid rats compared to euthyroid controls. Moreover, proton leak rates diminished even more when hypothyroid rats were fed a diet containing 5% of the lipid content as n-3 fatty acids. Similarly, proton leak was lower in euthyroid rats fed the 5% n-3 diet compared to one containing only 1% n-3 fatty acids. Lower proton leaks rates were associated with increased inner mitochondrial membrane levels of n-3 fatty acids and a decrease in the ratio of n-6/n-3 fatty acids. This trend was evident in the phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and cardiolipin phospholipid fractions. These results suggest that a significant portion of the effect of thyroid hormone status on proton leak is due to alterations in membrane fatty acid composition, primarily changes in n-3 content. Both the hypothyroid state and dietary effects appear to be mediated in part by inhibition of the Delta6- and Delta5-desaturase pathways.  相似文献   

19.
The effect of hypothyroidism on citrate carrier (CiC) activity has been investigated in rat-liver mitochondria. The rate of citrate transport was reduced by approximately 50% in mitochondria from hypothyroid as compared with euthyroid rats. In parallel, a decrease in the rate of de novo fatty acid synthesis was observed in the cytosol of the former animals. Kinetic analysis of citrate transport revealed that only the Vmax was reduced by hypothyroidism, while Km was almost unaffected. Hypothyroidism increased the mitochondrial percentage of phosphatidylcholine while decreased that of phosphatidylethanolamine; an altered fatty acid pattern but no significant difference in the sum of saturated and unsaturated fatty acids as well as in the unsaturation index was observed. The CiC Arrhenius plot did not show appreciable difference between the two groups of rats. However, Western blot analysis associated with mRNA quantitation indicated that both protein level and mRNA accumulation of hepatic CiC were noticeably decreased in hypothyroid state. Therefore, a reduced content of the carrier protein can represent a plausible mechanism to explain the decline in the CiC activity observed in rat liver mitochondria of hypothyroid rats.  相似文献   

20.
Weanling rats were fed semi-purified diets containing 15% by weight of either corn oil, a high oleic acid safflower oil, lard or hydrogenated soybean oil. Significant changes in the fatty acid composition of heart mitochondrial preparations were induced by these dietary fats. Despite these changes in membrane composition, no effects on the respiratory properties of the mitochondria were observed. These results suggest that mitochondrial membranes adapt to changes in dietary fatty acids in a way which prevents changes in their functional properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号