首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Hemidiaphragms were removed from rats at various times after intrathoracic transection of the left phrenic nerve and were incubated in organ baths containing 1.5 ml of oxygenated, buffered physiologic saline solution, with added glucose and bovine serum albumin. After incubation, the acetylcholinesterase (AChE; EC 3.1.1.7) activities of the bath fluid and of the muscle were determined. Innervated left hemidiaphragms were found to release 107 units of AChE over a 3-h period, corresponding to 1.9% of their total AChE activity. Denervation led to a rapid loss of AChE from the muscle coincident with a transient increase in the outpouring of enzyme activity into the bath fluid. Thus, 1 day after nerve transection the left hemidiaphragm contained only 68% of the control amount of AChE activity, but released 140% as much as control. After 3 or 4 days of denervation, the AChE activity of the diaphragm stabilized at 35% of the control value. Release also fell below control by this time, but not as far. One week after denervation the release, 69 units per 3 hr, corresponded to 3.3% of the reduced content of AChE activity in the muscle, indicating that denervation caused an increase in the proportion of AChE released. Sucrose density gradient ultracentrifugation showed that 10S AChE accounted for more than 80% of the released enzyme activity at all times. The results did not rule out the possibility, however, that the released enzyme originally stemmed from 4S or 16S AChE in the diaphragm.  相似文献   

2.
FAST AXOPLASMIC TRANSPORT OF ACETYLCHOLINESTERASE IN MAMMALIAN NERVE FIBRES   总被引:9,自引:4,他引:5  
Abstract— Acetylcholinesterase (acetylcholine acetyl-hydrolase, EC 3.1.1.7) is carried down mammalian nerve fibres by the fast axoplasmic transport system. This conclusion was derived from experiments involving the ligation of cat sciatic nerves at two sites placed 83.5 mm apart. The enzyme accumulated in segments of nerve proximal to the upper ligation in a linear fashion over a period of at least 20 h. At approximately 5 h the accumulation of enzyme ceased in the nerve segment proximal to the distal ligation within the isolated length of nerve, an observation indicating that the portion of AChE free to move within the isolated nerve had been depleted during this period of time. The freely moving fraction of AChE was estimated to be 15% of the total enzyme activity present in the nerve (10% in the proximo-distal direction and 5% in the retrograde direction). The rate of AChE downflow (as estimated from the intercept of the curve plotting accumulation with the line denoting when depletion started) was 431 mm/day within a 95% confidence interval of 357–543 mm/day. In view of the variability, our results demonstrated that AChE was being carried by the fast axoplasmic transport system, which in earlier studies was estimated to have a characteristic rate close to 410 mm/day.
An accumulation of AChE was also found on the distal side of the ligations that represented a movement of AChE in the distal-proximal direction in the fibres. This retrograde transport was smaller in amount (about one-half) than the proximo-distal rate of transport, or close to 220 mm/day. The rate of AChE transport was discussed in relation to the 'transport filament' hypothesis of fast axoplasmic transport.  相似文献   

3.
The present work addresses the effects of short-term denervation on acetylcholinesterase (AChE; EC 3.1.1.7) isoenzymes in anterior gracilis muscles from adult male Sprague-Dawley rats. It examines possible relationships between AChE isoform changes and other denervation phenomena, and evaluates the importance of acetylcholine (ACh)-nicotinic receptor interactions in selectively modulating the activity of G4 AChE. Results confirm that denervation causes a specific, transient increase in G4 AChE and show that: most of the increment can be explained by the hydrophobic species of this isoenzyme; changes in AChE isoforms markedly precede the onset of spontaneous electromechanical activity (fibrillation), as well as acetylcholine receptor (AChR) proliferation; and the G4 AChE response is eliminated when AChRs are blocked by alpha-bungarotoxin treatment performed before but not after (24 h) denervation. These data point to the absence of direct causal relationships between the G4 AChE increment and fibrillation, AChR proliferation, or changes in the release of this isoform from denervated muscle. In turn, they suggest the participation of AChR activation in triggering the G4 AChE response and emphasize the possible role of ACh-AChR interactions in modulating the production of this isoenzyme in not only denervated but also innervated fast-twitch muscles.  相似文献   

4.
Acetylcholinesterase (AChE; EC 3.1.1.7) isoenzymes in gracilis muscles from adult Sprague-Dawley rats were studied 24-96 h after obturator nerve transection. Results show a selective denervation-induced increase in the globular G4 isoform, which is predominantly associated with the plasmalemma. This enzymatic increase was (a) transient (occurring between 24 and 60 h) and accompanied by declines in all other identifiable AChE isoforms; (b) observed after concurrent denervation and inactivation of the enzyme with diisopropylfluorophosphate, but not following treatment with cycloheximide; and (c) more prominent in the extracellular compartment of muscle endplate regions. Aside from this transient change, G4 activity did not fall below control levels, indicating that at least the short-term maintenance of G4 AChE (i.e., at both normal and temporarily elevated levels) does not critically depend on the presence of the motor nerve. In addition, this isoform's activity increases in response to perturbations of the neuromuscular system that are known to produce elevated levels of acetylcholine (ACh), such as short-term denervation and exercise-induced enhancement of motor activity. The present study is consistent with the hypothesis that individual AChE isoforms in gracilis muscle are subject to distinct modes of neural regulation and suggests a role for ACh in modulating the activity of G4 AChE at the motor endplate.  相似文献   

5.
CELLULAR DISTRIBUTION OF 16S ACETYLCHOLINESTERASE   总被引:12,自引:12,他引:0  
Multiple molecular forms of acetylcholinesterase (AChE; EC 3.1.1.7), in crude extracts of various tissues from the rat, were distinguished by velocity sedimentation analysis on linear sucrose gradients. Skeletal muscle samples containing end-plate regions showed three different forms of AChE with apparent sedimentation coefficients of 16, 10 and 4s. The 16s form was not detected in non-innervated regions of skeletal muscle, large intestine smooth muscle, whole brain tissue, red blood cells or plasma. Spinal cord, a predominantly motor cranial nerve and mixed (sensory and motor) peripheral nerves contained 16, 10, 6.5 and 4S AChE. Ventral motor roots, supplying the sciatic nerve, contained these four forms of the enzyme, while corresponding dorsal sensory roots were devoid of the 16S form. The 16s-AChE confined to ventral roots can be attributed totally to motor neurons and not to Schwann cells composing these roots. Whether the 16s-AChE presently found in motor nerves has chemical identity with that found at motor end-plates is the basis of future experiments.  相似文献   

6.
Rat soleus muscles were ectopically innervated by implanting a foreign nerve in an endplate-free region of muscle and, 2–3 weeks later, cutting the original nerve. The junctional, 16 S form of acetylcholinesterase (AChE) and focal staining for AChE disappeared from the old endplate region within a few days after denervation. In muscles with an ectopic nerve, but not in paired control muscles, 16 S AChE and focal staining were restored in the old endplate region 1–2 weeks after denervation even though nerve fibers could not be detected in that region. These results suggest that the nerve exerts a local effect, specifying the site at which junctional AChE appears, and a nonlocal effect, perhaps mediated by muscle activity, regulating the amount of junctional AChE.  相似文献   

7.
Experimental denervation of adult mouse sternocleidomastoid muscle results in a decrease in total AChE. The most rapid change essentially affects the tailed, asymmetric 16 S AChE, since one day after nerve section, “16S” AChE is already significantly decreased to about 70% of its control value. We found that both background and junctional “16S” AChE are affected by this rapid decrease. Later, a sharp fall in “10S” and “4S” AChE occurs about seven days after denervation when muscle atrophy develops with loss of weight and proteins. A gaussian analysis of the sedimentation profiles of AChE extracted from denervated muscle shows that there is not only an early rapid decrease in 16 S AChE but also a decrease in the monomeric 3.3S AChE. This result suggests that there is a very rapid turn-over of two molecular forms of AChE, the supposedly monomeric precursor and the complex asymmetric 16S AChE.  相似文献   

8.
Abstract: Velocity sedimentation analysis of acetylcholinesterase (AChE) molecular forms in the fast extensor digitorum longus muscle and in the slow soleus muscle of the rat was carried out on days 4, 8, and 14 after induction of muscle paralysis by botulinum toxin type A (BoTx). The results were compared with those observed after muscle denervation. In addition, the ability of BoTx-paralyzed muscles to resynthesize AChE was studied after irreversible inhibition of the preexistent enzyme by diisopropyl phosphorofluoridate. Major differences were observed between the effects of BoTx treatment and nerve section on AChE in the junctional region of the muscles. A precipitous drop in content of the asymmetric A12 AChE form was observed after denervation, whereas its decrease was much slower and less extensive in the BoTx-paralyzed muscles. Recovery of junctional AChE and of its A12 form after irreversible inhibition of the preexistent AChE in BoTx-paralyzed muscles was nevertheless very slow. It seems that a greater part of the junctional A12 AChE form pertains to a fraction with a very slow turnover that is rapidly degraded after denervation but not after BoTx-produced muscle paralysis. The postdenervation decrease in content of junctional A12 AChE is therefore not primarily due to muscle inactivity. The extrajunctional molecular forms of AChE seem to be regulated mostly by muscle activity because they undergo virtually identical changes both after denervation and BoTx paralysis. The differences observed in this respect between the fast and slow muscles after their inactivation must be intrinsic to muscles.  相似文献   

9.
In adult rat sternocleidomastoid muscle, AChE is concentrated in the region rich in motor end-plates (MEP). All major AChE forms, "16 S," "10 S," and "4 S," are accumulated at high levels, and not only "16 S" AChE. After denervation, muscle AChE decreases; 2 weeks after denervation, low levels (20-40% of control) are reached for all forms. During the following weeks, a slow but steady increase in "10 S" and "16 S" AChE occurs in the denervated muscle. At this stage, all forms are again observed to be highly concentrated in the region containing the old sites of innervation. Thus, in adult rat muscle the structures able to accumulate "16 S," "10 S," and "4 S" AChE in the MEP-rich regions remain several months after denervation. In normal young rat sternocleidomastoid muscle at birth, all AChE forms are already accumulated in the MEP-rich region. After denervation at birth, the denervated muscle loses its ability to keep a high concentration of "4 S," "10 S," and "16 S" AChE in the old MEP-rich region. All AChE forms are still present 1 month after denervation, but they are decreased and diffusedly distributed over the whole length of the muscle. In particular, "16 S" AChE is detected in the same proportion (10-15%) all along the denervated muscle. Thus, the diffuse distribution of AChE, and especially "16 S" AChE, after neonatal denervation, contrasts with the maintained accumulation observed in adult denervated muscle. It seems that denervation of young muscle results in a specific loss of the muscle ability to concentrate high levels of all AChE forms at the old sites of innervation.  相似文献   

10.
The effects of rat obturator nerve extracts on total and 16S acetylcholinesterase (AChE) activity were studied in endplate regions of denervated anterior gracilis muscles maintained in organ culture for 48 hr. The decrease of total AChE activity in cultured muscles was similar to that observed in denervated muscles in vivo. This decrease in activity was partly prevented by addition of either 100 or 200 μl nerve extract (2.7 mg/ml protein) to the nutrient medium. Nerve extract treatment also decreased the release of AChE activity from the muscle into the bathing medium. Conversely, rat serum (20 μl; 90 mg/ml protein) had no effect on total AChE activity in muscle endplates, nor on release of the enzyme by the muscle. The 16S form of AChE was confined to motor endplate muscle regions and its activity was drastically decreased by denervation in both organ culture and in vivo preparations in a comparable manner. Nerve-extract supplemented cultures contained a significantly (p ? 0.001) larger amount of endplate 16S AChE activity (140–145%) than the corresponding controls (100-). Our results suggest that some nerve soluble substance, other than serum contaminants or 16S AChE itself, affects the maintenance of 16S AChE at the neuromuscular junction.  相似文献   

11.
Abstract— Orthograde and retrograde axoplasmic transport of selected axonal organelles were examined by monitoring accumulation of enzyme activities residing in various types of particles proximal and distal to a ligature placed on rat sciatic nerve as a function of time after tying. Proximal to the tie, activity of acetylcholinesterase (AChE, EC 3.1.1.7; probably in small endoplasmic reticulum-like particles) accumulated for 2 days; then, during the next 5 days, the accumulation disappeared. Activities of glutamic dehydrogenase (GDH, EC 1.4.1.3) and monoamine oxidase (MAO, EC 1.4.3.4) (both located in mitochondria) accumulated steadily for 7 days. Accumulation of monoamine oxidase activity was more rapid than that of glutamic dehydrogenase during the first day or two. Acid phosphatase (acid P'tase, EC 3.1.3.2; in lysosomes) activity also accumulated throughout the week of observation. Accumulation of all four enzyme activities proximal to the ligature was blocked by nerve crush or subepineurial vinblastine injection 1 cm or more proximal to the site of the tie. Distal to the ligature, AChE activity accumulated early (14 h), and then gradually disappeared in the course of the week. MAO activity also accumulated, with a maximum at 2 days, and no further change thereafter. GDH activity, on the other hand, showed little accumulation during the first 2 days, but did appear in modest amounts at the end of the week. Distal accumulation of acid P'tase kept pace with proximal accumulation for the first day, and continued more slowly for another day, after which there was no further change. This system has been used to study the effects of axonal crush injury upon anterograde and retrograde axoplasmic transport. A tie applied at various times after injury, proximal to the site of injury, was used to show that orthograde transport of AChE was maintained for 1 day after tying, but at 2 days had fallen 50% or more, and within a week was down to 20–25% of control. At 3 days after injury retrograde transport of AChE activity was not different from the control. Orthograde transport of acid P'tase activity was depressed 35% by injury. Retrograde transport of acid P'tase was inhibited more than 50% both at 3 and at 7 days after injury. Transport of the mitochondrial enzymes was not measurably affected.  相似文献   

12.
Denervated neonatal rat sternocleidomastoid muscle has decreased levels of total AChE when compared to control muscle. Denervated versus control values of total muscle AChE present a three-phase curve in function of time after denervation. There is a rapid initial fall 0-3 days after denervation, an increase during about 2 weeks, then again a decrease in total AChE. Thus, there is a transitory net accumulation of AChE after the initial fall of activity in denervated developing muscle. Extrasynaptic areas of high AChE activity develop between 1 and 2 weeks after denervation and remain visible up to 1 month after denervation before vanishing. An electron microscope study shows that these accumulations are internal to the muscle fiber, close to a limited number of muscle nuclei and associated to the sarcoplasmic reticulum and nuclear envelope, but not to the T-tubule system. As found in adult rat muscle, the initial fall in AChE affects first the 16 S AChE form, and soon after, the 4 S and 10 S AChE forms. A main difference with adult muscle is the sudden increase and predominance over other forms of 10 S AChE 2 weeks after denervation at birth. Later, the decrease in AChE affects 16 S and 4 S AChE before 10 S AChE. The regions rich in extrasynaptic sites of AChE accumulation possess a very high proportion of 10 S AChE. Thus, the mechanisms of biosynthesis, intracellular transport and/or secretion of AChE may be very different in young, developing muscle compared to adult muscle.  相似文献   

13.
Abstract— The axoplasmic transport rate and distribution of acetylcholinesterase (AChe, EC 3.1.1.7) was studied in the sciatic nerves of normal rats and those with a neuropathy due to acrylamide, by measuring the accumulation of the enzyme proximal to single and double ligatures. The single ligature experiments showed that the apparent transport rate of AChE was decreased in acrylamide neuropathy. The double ligature experiments indicated that only 8.1% of AChE was mobile in normal rat sciatic nerve. The mobility of the enzyme in acrylamide-treated rat sciatic nerves was altered to 11.8%. The absolute transport rate of AChE in normal rat sciatic nerve was 567 mm/24 h, and in acrylamide neuropathy it was decreased to 287 mm/24 h.
The amount of AChE activity transported in normal rat sciatic nerve was 2.64 μmol/24 h. The rats with acrylamide neuropathy showed a decrease in the amount of AChE activity moving in the orthograde direction (2.03 μmol/24 h).
The colchicine-binding properties of tubulin protein from sciatic nerves of normal and acrylamide-treated rats were studied. In rats with acrylamide neuropathy, a marked decrease of 75% in tubulin-colchicine binding was observed.  相似文献   

14.
Experiments with application of colchicine to the muscle motor nerve carried out; this was done for the purpose of disturbance of rapid axoplasmic transport. A reduction of the areas of transverse sections of the muscle fibers, an increase in the number of fibers with a low succinic dehydrogenase (SDH) activity a greater homogeneity of the muscle fibers by the degree of optic density in staining for detection of the SDH activity was noted. Analogous changes were revealed under conditions of section of the motor nerve. However, denervation was accompanied by the block of conductivity and by degenerative changes in the nerve endings. As to the preparations treated with colchicine, transmission of excitation in the nerve and through the synapse was retained and was recorded by the end plate miniature potentials, end plate potentials and the action potentials of the muscle fibers. A conclusion was drawn that rapid axoplasmic transport brought substances maintaining differentiated state of the muscle fibers.  相似文献   

15.
16.
EFFECTS OF COLCHICINE ON AXONAL TRANSPORT IN PERIPHERAL NERVES   总被引:6,自引:1,他引:5  
—Colchicine injected intracisternally markedly inhibited the rapid migration (300-400 mm/day) of labelled proteins in the hypoglossal and vagus nerve of the rabbit. The transport of acetylcholinesterase (EC 3.1.1.7) and choline acetyltransferase (EC 2.3.1.6) previously shown to move with the slow (5-26 mm/day) phase of axoplasmic transport in these nerves, was only partially blocked. In view of this differential effect on axonal flow, we suggest that the neurotubules, on which colchicine acts preferentially, are primarily involved in the rapid (300-400 mm/day) axoplasmic flow. After local injection of colchicine into the nerves both the rapidly migrating labelled proteins and the enzymes (AChE and ChAc) accumulated above the site of injection to the same degree as they accumulate above a nerve ligation. Since this blockage of enzyme transport occurred after concentrations of colchicine much higher than those used for intracisternal injections these findings after local injection may represent more severe effects on axonal transport systems.  相似文献   

17.
Cholinesterase (ChE) activity is present in crustacean muscle extracts. However, since acetylcholine (ACh) is not a neuromuscular transmitter in these animals, the role and exact localization of ChE was unknown. The histochemical localization of the enzyme was studied in whole muscle and in the sarcoplasmic reticulum fraction of the extract, 50-µm frozen sections of glutaraldehyde-fixed crayfish tail flexor muscle were incubated with acetylthiocholine (ATC) as substrate, and examined under the electron microscope. After some modifications in published techniques, dense deposits were found associated with the sarcolemma, sarcolemmal invaginations, and transverse tubules. No deposits were found in 10-4 M eserine, or if butyrylthiocholine (BTC) was substituted for ATC. The vesicles in the sarcoplasmic reticulum fraction which demonstrate the activity must represent minced bits of these membranes. Using a spectrophotometric method, the kinetics of the crustacean muscle enzyme was compared to the acetylcholinesterase (AChE) on mammalian red blood cells and in the lobster ventral nerve cord. Surprisingly, and contrary to previous reports, the crustacean muscle enzyme did not demonstrate substrate inhibition. While a number of similarities to AChE were found, this lack of substrate inhibition makes questionable an unequivocal similarity with classical AChE.  相似文献   

18.
With the aim of investigating the roles of motor innervation and activity on muscle characteristics, we studied the molecular forms of acetylcholinesterase (AChE) in fast-twitch (semimembranosus accessorius; SMa) and slow-twitch (semimembranosus proprius; SMp) muscles of the rabbit. We have shown that SMa and SMp express different patterns and tissue distribution of AChE forms and that the effect of long denervation varies with age. Three principal findings concerning expression of AChE molecular forms emerge from these studies. (1) The activity of AChE and the pattern of its molecular forms are particularly altered in adult denervated SMa and SMp muscles. AChE activity increases by 10-fold in both muscles, but asymmetric forms disappear in SMa and increase by 20-fold in SMp muscles. A similar alteration of AChE is found after tenotomy of these muscles, showing that the effect of denervation may be partly due to suppression of muscle activity. (2) The different changes occurring in the composition of AChE molecular forms in adult denervated SMa and SMp muscles are consistent with fluorescent staining with anti-AChE monoclonal antibodies and with DBA or VVA lectins, which bind to AChE asymmetric, collagen-tailed forms. These lectins poorly stain denervated SMa muscle surfaces but intensely stain neuromuscular junctions and extrasynaptic areas in denervated SMp muscle. (3) In contrast with the adult, denervation of 1-day-old muscles does not markedly modify the total amount of AChE or the proportions of its molecular forms, despite dramatic effects on muscle structure. These results are supported by studies of labeling with fluorescent DBA: the lectin only slightly stains the muscle fiber surface of denervated 15-day-old SMp muscle. Taken together, these data show that denervated muscles escape physiological regulation, producing increased levels of AChE with highly variable cellular distribution and patterns of molecular forms, depending on the age of operation and on the type of muscle.  相似文献   

19.
Abstract— Cat sciatic nerves were exposed to iodoacetate for a period of 5–10 min and after washing out the iodoacetate, the enzymes, glyceraldehyde-3-phosphate dehydrogenase ( d -glyceraldehyde-3-phosphate: NAD oxidoreductase (phosphorylating); EC 1.2.1.12) and lactate dehydrogenase ( l -lactate: NAD oxidoreductase; EC 1.1.1.27) were extracted from the high-speed supernatant fraction of nerve homogenates. Concentrations of iodoacetate as low as 2.5 m m could completely block activity of glyceraldehyde-3-phosphate dehydrogenase but had no effect on lactate dehydrogenase. These findings are in accord with the classical concept shown earlier for muscle that iodoacetate blocks glycolysis by its action on glyceraldehyde-3-phosphate dehydrogenase. A complete block of activity of the enzyme was found after treatment with 2 to 5 m m -iodoacetate for a period of 10 min and such blocks were irreversible for at least 3 h. Glyceraldehyde-3-phosphate dehydrogenase activity was NAD specific, with NADP unable to substitute for NAD. The results are discussed in relation to the effect of iodoacetate in blocking glycolysis and in turn the fast axoplasmic transport of materials in mammalian nerve.  相似文献   

20.
By means of the gold-thiocholine (AuThCh) and gold-thiolacetic acid (AuThAc) methods, it has been demonstrated electron microscopically that acetylcholinesterase (AChE) is located at the prejunctional axoplasmic membrane and the postjunctional sarcoplasmic membrane, including the full lengths of its invaginations, at the motor end plate of mouse intercostal muscle. Nonspecific cholinesterase (ChE) is present in relatively low concentrations at the same sites, and in greater concentrations in the teloglial Schwann sheath cells. Significant amounts of reaction product appeared in the junctional cleft only after prolonged incubation with both methods. The identification of AChE and ChE was confirmed by the use of appropriate concentrations of several selective inhibitors. In confirmation of previous studies by light microscopy, the AuThCh method is more specific for AChE and ChE, whereas the AuThAc method allows greater accuracy of localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号