首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In social insects, nestmate recognition systems can be dynamic and modulated in response to various kinds of genetic and environmental cues. For example, multiple-queen colonies can possess weak recognition abilities relative to single-queen colonies, due to broader exposure to heritable and environmentally derived nestmate recognition cues.We conducted field experiments to examine nestmate recognition ability in a neotropical polygynous wasp, Polybia paulista. Despite the fact that the effective queen number in P. paulista is the highest ever recorded in polygynous wasps, this species exhibits a well functioning nestmate recognition system, which allows colony entry only to nestmate individuals. Similar to other social Hymenoptera, young wasps express colony specific chemical signatures within several days after emergence. This is the first study to show that the polygynous epiponine wasp is able to distinguish nestmates from non-nestmates. Received 23 May 2006; revised 6 October 2006; accepted 23 October 2006.  相似文献   

2.
Summary Nestmate discrimination was studied in the African harvester termite Hodotermes mossambicus in trophallactic feeding experiments. The results show that Hodotermes mossambicus is able to discriminate nestmates from non-nestmates, feeding nestmates significantly more than non-nestmates. Experiments in which termites were treated with the antibiotic tetracycline for 48 hours and then used either as donors or as recipients in the trophallactic assay indicate that the degree of similarity in the intestinal flora strongly affects nestmate discrimination. Antibiotic-treated termites were fed more frequently by treated non-nestmates than by untreated nestmates. Pairs of non-nestmates, which were both treated with the antibiotic, exchange food as frequently as untreated nestmates. Pairs of nestmates, on the other hand, out of which only one animal was treated, exhibit nearly as little trophallactic contacts as the non-nestmate controls. The results parallel similar recent results in Reticulitermes speratus and indicate that termites can make use of recognition cues which are quite different from those of social hymenopterans, cues that are produced by intestinal symbionts.Received 5 November 2002; revised 17 and 27 February 2003; accepted 9 March 2003.  相似文献   

3.
Intraspecific aggression is rare within introduced populations of the Argentine ant Linepithema humile, and colonies exhibit a structure known as unicoloniality, in which aggression among nests is atypical. We document a similar form of colony structure in an introduced population of Argentine ants in Victoria, Australia, in which aggression is extremely rare among nests ranging over hundreds of kilometres. However, using a highly sensitive behavioural bioassay we found that workers display subtle differences in their behaviour towards non-nestmates and nestmates. In particular, non-nestmates consistently engage in antennating behaviour with greater frequency than nestmates, perhaps providing a mechanism for homogenization of nest odour. Further, we found that non-nestmates at seaport sites (where populations may derive from multiple introductions) antennate each other with greater frequency than their counterparts from non-seaport sites. These data suggest that the Victorian population of L. humile may comprise multiple independent introductions. Received 4 July 2007; revised 15 January and 4 March 2008; accepted 4 March 2008.  相似文献   

4.
Social behaviour in spiders is rare: of the 39 000 species of spiders known, only 23 are considered to be cooperatively social. Delena cancerides is a social species of the huntsman spider that is endemic to Australia. This species is virtually unique among social spiders, having evolved social behaviour in the absence of a snare web. It is thought that this form of social behaviour in D. cancerides has evolved via the sub-social route, that is, the extension of an ancestrally occurring period of maternal care and the delayed dispersal of juveniles. Most social spiders show no aggression towards non-kin conspecifics, prompting suggestions that spiders cannot recognize kin; however, D. cancerides individuals are highly aggressive towards conspecifics introduced from outside their own colony. In order to determine whether selective aggression in D. cancerides has its basis in kin recognition, tolerance behaviour was assessed in the context of kinship and size. We observed that, in general, juveniles preferred to starve than engage in cannibalism of any conspecifics, related or not. However, where cannibalism did occur, non-kin were preferentially eaten, indicating that this species is clearly capable of kin recognition. Size thresholds were also established, below which juveniles are tolerated by adults and above which aggressive interactions leading to death occur. We conclude that kin recognition and juvenile dispersal explain the uncharacteristically high levels of genetic polymorphism in this species.  相似文献   

5.
Unlike all other social spiders, the social huntsman spider, Delena cancerides, has been reported to rapidly respond to non-nestmates with lethal aggression, similar to the behavior of some eusocial insects. We tested for the presence of nestmate recognition in D. cancerides under laboratory conditions by introducing 105 unrelated alien conspecifics into foreign colonies and comparing their behavior to 60 control spiders removed and returned to their natal colony. Spiders demonstrated nestmate recognition by investigating alien spiders far more than nestmates and by resting closer to nestmates than to aliens. Serious attacks or deaths occurred in 23% of all trials; however, aggression was not directed significantly more toward aliens than to nestmates. Most notably, aggression was largely mediated by the adult females (resident or alien), who were most likely to attack or kill other subadult or mature individuals. Young individuals (resident or alien) were largely immune from serious aggression. Spiders recently collected from the field tended to be more aggressive than spiders born and raised in the laboratory, possibly due to blurring of recognition cues related to laboratory husbandry. Our findings support the prediction that nestmate recognition should evolve when there is a benefit to discriminating against non-kin, as in this social spider system where foraging individuals may enter a foreign colony and the colony retreat is a limited resource.  相似文献   

6.
Ant colonies that undergo long starvation periods have to tune their exploratory and foraging responses to face their food needs. Although the number of foragers is known to increase with food deprivation in the ant Lasius niger, such enhanced food exploitation is not related to a more intense recruitment by successful scouts. We thus suggest that the colony’s response to a food shortage could result from changes at the level of the ant recruits, in particular from changes in their spatial organization inside the nest. Since aggregation plays a key role in the social organization of ants, we assume that the colony’s response to starvation could be due to changes in the aggregative behaviour of L. niger nestmates.We thus compared the aggregation dynamics of inner-nest workers and foragers having undergone either a short or a long-lasting starvation period. Whatever the ethological group (foragers or inner-nest workers), there was no significant influence of starvation on the aggregation dynamics nor on any feature of the observed clusters. This result shows that an increased foraging response to food shortage cannot be explained by changes in the tendency of nestmates to aggregate within the nest. Finally, we discuss other behavioural mechanisms, in particular changes in behavioural thresholds that could underlie the adaptive changes seen in colony foraging after long starvation periods. Received 25 June 2007; revised 21 January 2008; accepted 24 January 2008.  相似文献   

7.
When a honey bee colony becomes queenless and broodless its only reproductive option is for some of its workers to produce sons before the colony perishes. However, for this to be possible the policing of worker-laid eggs must be curtailed and this provides the opportunity for queenless colonies to be reproductively parasitized by workers from other nests. Such reproductive parasitism is known to occur in Apis florea and A. cerana. Microsatellite analyses of worker samples have demonstrated that the proportion of non-natal workers present in an A. cerana colony declines after a colony is made queenless. This observation suggests that queenless A. cerana colonies may be more vigilant in repelling potentially parasitic non-natal workers than queenright colonies. We compared rates of nestmate and non-nestmate acceptance in both queenright and queenless A. cerana colonies using standard assays and showed that there is no statistical difference between the proportion of non-nestmate workers that are rejected in queenless and queenright colonies. We also show that, contrary to earlier reports, A. cerana guards are able to discriminate nestmate workers from non-nestmates, and that they reject significantly more non-nestmate workers than nestmate workers. Received 25 February 2008; revised 21 May 2008; accepted 25 June 2008.  相似文献   

8.
Summary Discrimination of nestmates from non-nestmates has mainly been investigated in female social insects. Little is known about discrimination of males. Here we show that under natural conditions at the nest entrance, honeybee workers can discriminate nestmate drones from non-nestmate drones as effectively as they can discriminate nestmate workers from non-nestmate workers.  相似文献   

9.
Cultivation of herbicide-tolerant strain of GM corn involves applications of a non-selective herbicide. Mortality of arthropod natural enemies resulting from the application of herbicides is negligible. But nothing is known how herbicides affect the behaviour of natural enemies and thus alter their pest control efficacy. Aim of the study was to assess the effect of the Roundup residues on the predatory, defensive, locomotory and reproductive behaviour of epigeic spiders and carabid beetles. Specimens of Pardosa agricola (Araneae: Lycosidae) and Poecilus cupreus (Coleoptera: Carabidae) were exposed for 2 h to the fresh and 1-day old residues of Roundup Biaktiv (Monsanto, IPA 480 g/l). Predation rate was similar for all treatments in both spiders and beetles. Spiders did not avoid surface treated with herbicide residues more than the control surface, but beetles slightly avoided surface with fresh residues. The speed of locomotion of spiders was not altered by herbicide residues, but beetles exposed to residues crawled at significantly lower speed than the control group. Herbicide residues did not affect the escape efficacy of spiders from a predator. Residues had no detrimental effect on the courtship, mating frequency and duration in spiders. Roundup Bioaktiv thus appears to be harmless to lycosid spiders and only slightly harmful to carabid beetles. The biological control potential of both predators should not be reduced by the application of Roundup Bioaktiv.  相似文献   

10.
Summary In spiders, known as potentially cannibalistic, mutual tolerance is one important requirement for group life. Using the subsocial spiderStegodyphus lineatus which possibly resembles the ancestors of the social species, the effects of competition were investigated in the laboratory. When dispersal was prevented, spiderlings were capable of living in groups. The intensity of competition for food among spiders in groups was varied experimentally by varying group size or the relative size differences of individuals. Body mass and mortality were compared in the different experiments. Prey availability, the size of the spiders and initial body size differences among group members all influenced the survival probability and growth of the spiders. Spiders of equal size tolerated each other with a higher probability than spiders of different sizes. Feeding in groups was always disadvantagous even for the largest spiders.  相似文献   

11.
12.
A 12 month survey was carried out of the spider population in a commercial citrus grove at Kibbutz Afeq in Northern Israel. The spiders collected from grapefruit foliage and ground cover were identified; young stages were reared to maturity and then identified.Chiracanthium mildei L. Koch represented 52% of all spiders captured during the year andTheridion sp. accounted for 34%. In the undercover,Gnaphosidae spiders represented 43% of the total spiders captured in pitfall traps andLycosidae 35%. A field experiment was carried out to evaluate the effectivness of spiders in biological control of the scaleCeroplastes floridensis Mask. in the citrus ecosystem. Wherever spiders were undisturbed on tree branches, populations ofC. floridensis were not able to develop to a level sufficient to cause economic damage. The increase in the number of scales was minimal: from 47 initially to 56. There was no damage to leaves nor was honeydew or sooty mold observed. During the same time period, on the 3 branches from which spiders had been eliminated, the number of scales increased seven-fold from 44 to 309. Leaves were heavily infested with sooty mold fungi that developed on the honeydew produced by the scales. Contribution from the Agricultural Research Organization, Neve Ya'ar, Regional Experiment Station. P.O. Haifa 31999, Israel. No. 1314-E 1984, series.  相似文献   

13.
Summary Polyethism is a well-known phenomenon in social insects. How this phenomenon influences interactions among individuals, the spatial distribution in the nest is, on the other hand, very rarely documented. Therefore, we conducted experiments on the ant Lasius niger to observe the influence of polyethism on aggregation, by distinguishing two groups of ants: the brood-tenders and the foragers. We show a great difference in their self aggregation level. Brood-tenders are characterized by a rapid and dense gathering in one main stable cluster while foragers gather in several small unstable clusters. We show experimentally and verify with a model that this difference in behaviour is based on a smaller probability of leaving a cluster for the brood-tenders. Aggregation in the mixed case (groups composed of brood-tenders and foragers) is very close to that of the pure forager case, showing a decrease in the level of aggregation of the brood-tenders respecting to the pure group of brood-tenders. Nevertheless, experimental results supported by the results of the model, show that ants do not change their own behaviour when the two groups are together. Therefore, the decrease of the aggregation of brood-tenders in the mixed case can be explained by a difference in the dynamics between brood-tenders and foragers.Received 9 May 2003; revised 26 August 2003; accepted 1 September 2003.  相似文献   

14.
A first case of subsociality is reported for the genus Latrodectus. Individuals were found sharing the same web and feeding together. In captivity they showed mutual tolerance and communal feeding. This finding is remarkable for two reasons. First, widow spiders, even compared with other spiders, are famously aggressive and cannibalistic so that social behavior in the genus was unexpected. Second, the genus nests outside the “Anelosimus + lost colulus” clade where all the other social theridiids are found.  相似文献   

15.
While there are now a number of theoretical models predicting how consistent individual differences in behaviour may be generated and maintained, so far, there are few empirical tests. The social niche specialization hypothesis predicts that repeated social interactions among individuals may generate among-individual differences and reinforce within-individual consistency through positive feedback mechanisms. Here, we test this hypothesis using groups of the social spider Stegodyphus mimosarum that differ in their level of familiarity. In support of the social niche specialization hypothesis, individuals in groups of spiders that were more familiar with each other showed greater repeatable among-individual variation in behaviour. Additionally, individuals that were more familiar with each other exhibited lower within-individual variation in behaviour, providing one of the first examples of how the social environment can influence behavioural consistency. Our study demonstrates the potential for the social environment to generate and reinforce consistent individual differences in behaviour and provides a potentially general mechanism to explain this type of behavioural variation in animals with stable social groups.  相似文献   

16.
The possible significance of nestmate recognition in prevention of robbing and parasitism in three species of stingless bees was assessed. Nestmate discrimination abilities vary among them; Melipona quadrifasciataworkers attacked 74% of nonnestmate conspecifics that were encountered, while M. scutellarisand M. rufiventriswere less discriminating, attacking only 14 and 60% of non-nestmates, respectively. In tests of interspecific interactions, M. quadrifasciataand M. scutellariswere the least mutually tolerant of all species pairs tested. Tests with Apis melliferashowed a high degree of intolerance by two of the three Meliponaspecies.  相似文献   

17.
Looking where others are allocating attention can facilitate social interactions by providing information about objects or locations of interest. We asked whether European starlings follow the orientation behaviour of conspecifics owing to their highly gregarious behaviour. Starlings reoriented their attention to follow that of a robot around a barrier more often than when the robot''s attention was directed elsewhere. This is the first empirical evidence of reorienting in response to conspecific attention in a songbird. Starlings may use this behaviour to obtain fine-tuned spatial information from conspecifics (e.g. direction of predator approach, spatial location of food patches), enhancing group cohesion.  相似文献   

18.
Isvaran K 《Oecologia》2007,154(2):435-444
The main ecological factors that are hypothesized to explain the striking variation in the size of social groups among large herbivores are habitat structure, predation, and forage abundance and distribution; however, their relative roles in wild populations are not well understood. I combined analyses of ecological correlates of spatial variation in group size with analyses of individual behaviour in groups of different sizes to investigate factors maintaining variation in group size in an Indian antelope, the blackbuck Antilope cervicapra. I measured group size, habitat structure, forage, and the occurrence of predators in ten blackbuck populations, and, at a smaller spatial scale, within an intensively studied population. To examine the processes by which these ecological factors influence group size, I used behavioural observations and an experiment to estimate the shape of the relationship between group size and potential costs and benefits to individuals. Group size varied extensively both among and within populations. Analyses of spatial variation in group size suggested that both forage and habitat structure influence group size: large-scale, among-population variation in group size was primarily related to habitat structure, while small-scale, within-population variation was most closely related to forage abundance. Analyses of individual behaviour suggested that larger groups incur greater travel costs while foraging. However, individuals in larger groups appeared to experience greater benefits, namely the earlier detection of a “predator”, a reduction in vigilance, and an increase in the time spent feeding. Overall, these findings suggest that individuals in groups experience a trade-off between predation-related benefits and costs arising from feeding competition. Habitat structure and forage likely influence the nature of this trade-off; thus, variation in these ecological factors may maintain variation in group size. The role of predation pressure and other factors in explaining the remaining variation needs further exploration. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
It is well known that a predator has the potential to regulate a prey population only if the predator responds to increases in prey density and inflicts greater mortality rates. Predators may cause such density-dependent mortality depending on the nature of the functional and numerical responses. As spiders are usually faced with a shortage of prey, the killing behavior of the spider Nesticodes rufipes at varying densities of Musca domestica was examined here through laboratory functional response experiments where spiders were deprived of food for 5 (well-fed) or 20 days (hungry). An additional laboratory experiment was also carried out to assess handling time of spiders. The number of prey killed by spiders over 24- and 168-h periods of predator–prey interaction was recorded. Logistic regression analyses revealed the type II functional response for both well-fed and hungry spiders. We found that the lower predation of hungry spiders during the first hours of experimentation was offset later by an increase in predation (explained by estimated handling times), resulting in similarity of functional response curves for well-fed and hungry spiders. It was also observed that the higher number of prey killed by well-fed spiders over a 24-h period of spider–prey interaction probably occurred due to their greater weights than hungry spiders. We concluded that hungry spiders may be more voracious than well-fed spiders only over longer time periods, since hungry spiders may spend more time handling their first prey items than well-fed spiders.  相似文献   

20.
R. Le Cohu 《Hydrobiologia》1982,87(2):97-111
Two enclosures without a bottom were placed in a shallow non-stratified pond. One of these enclosures (B) had a transparent plastic wall and was open at the top. The second enclosure (N) was painted in black and covered over. The vertical distribution and daily migration of Ceratium hirundinella, Trachelomonas spp., Gomphosphaeria naegeliana and Aphanizomenon flos-aquae were studied. Investigations were carried out during a 24 h period both in the pond and inside the two enclosures. Vertical migration was shown by the four algae, even within the water column N. Differences between the behaviour patterns of the different algae are described.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号