首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Furaptra (Raju, B., E. Murphy, L. A. Levy, R. D. Hall, and R. E. London. 1989. Am. J. Physiol. 256:C540-C548) is a "tri-carboxylate" fluorescent indicator with a chromophore group similar to that of fura-2 (Grynkiewicz, G., M. Poenie, and R. Y. Tsien. 1985. J. Biol. Chem. 260:3440-3450). In vitro calibrations indicate that furaptra reacts with Ca2+ and Mg2+ with 1:1 stoichiometry, with dissociation constants of 44 microM and 5.3 mM, respectively (16-17 degrees C; ionic strength, 0.15 M; pH, 7.0). Thus, in a frog skeletal muscle fiber stimulated electrically, the indicator is expected to respond to the change in myoplasmic free [Ca2+] (delta[Ca2+]) with little interference from changes in myoplasmic free [Mg2+]. The apparent longitudinal diffusion constant of furaptra in myoplasm was found to be 0.68 (+/- 0.02, SEM) x 10(-6) cm2 s-1 (16-16.5 degrees C), a value which suggests that about half of the indicator was bound to myoplasmic constituents of large molecular weight. Muscle membranes (surface and/or transverse-tubular) appear to have some permeability to furaptra, as the total quantity of indicator contained within a fiber decreased after injection; the average time constant of the loss was 302 (+/- 145, SEM) min. In fibers containing less than 0.5 mM furaptra and stimulated by a single action potential, the calibrated peak value of delta[Ca2+] averaged 5.1 (+/- 0.3, SEM) microM. This value is about half that reported in the preceding paper (9.4 microM; Konishi, M., and S. M. Baylor. 1991. J. Gen. Physiol. 97:245-270) for fibers injected with purpurate-diacetic acid (PDAA). The latter difference may be explained, at least in part, by the likelihood that the effective dissociation constant of furaptra for Ca2+ is larger in vivo than in vitro, owing to the binding of the indicator to myoplasmic constituents. The time course of furaptra's delta[Ca2+], with average values (+/- SEM) for time to peak and half-width of 6.3 (+/- 0.1) and 9.5 (+/- 0.4) ms, respectively, is very similar to that of delta[Ca2+] recorded with PDAA. Since furaptra's delta[Ca2+] can be recorded at a single excitation wavelength (e.g., 420 nm) with little interference from fiber intrinsic changes, movement artifacts, or delta[Mg2+], furaptra represents a useful myoplasmic Ca2+ indicator, with properties complementary to those of other available indicators.  相似文献   

2.
Fluo-3 is an unusual tetracarboxylate Ca2+ indicator. For recent lots supplied by Molecular Probes Inc. (Eugene, OR), FMAX, the fluorescence intensity of the indicator in its Ca(2+)-bound form, is approximately 200 times that of FMIN, the fluorescence intensity of the indicator in its Ca(2+)-free form. (For earlier lots, impurities may account for the smaller reported values of FMAX/FMIN, 36-40). We have injected fluo-3 from a high-purity lot into intact single fibers from frog muscle and measured the indicator's absorbance and fluorescence signals at rest (A and F, respectively) and changes in absorbance and fluorescence following action potential stimulation (delta A and delta F signals substantially lagged behind that of the myoplasmic free Ca2+ transient. Our analysis of fluo-3's signals from myoplasm therefore focused on information about the level of resting myoplasmic free [Ca2+] ([Ca2+]r). From A, delta A, and in vitro estimates of fluo-3's molar extinction coefficients, the change in the fraction of fluo-3 in the Ca(2+)-bound form during activity (delta f) was estimated. From delta f, delta F, and F, the fraction of the indicator in the Ca(2+)-bound form in the resting fiber (fr) was estimated by fr = (delta f x F/delta F) + (1-FMAX/FMIN)-1. Since FMAX/FMIN is large, the contribution of the second term to the estimate of fr is small. At 16 degrees C, the mean value (mean +/- S.E.) of fr was 0.086 +/- 0.004 (N = 15). From two estimates of the apparent dissociation constant of fluo-3 for Ca2+ in the myoplasm, 1.09 and 2.57 microM, the average value of [Ca2+]r is calculated to be 0.10 and 0.24 microM, respectively. The smaller of these estimates lies near the upper end of the range of values for [Ca2+]r in frog fibers (0.02-0.12 microM) estimated by others with aequorin and Ca(2+)-selective electrodes. The larger of the estimates lies within the range of values (0.2-0.3 microM) previously estimated in this laboratory with fura red. We conclude that [Ca2+]r in frog fibers is at least 0.1 microM and possibly as large as 0.3 microM.  相似文献   

3.
Experiments were carried out to test the hypothesis that mM concentrations of fura-2, a high-affinity Ca2+ buffer, inhibit the release of Ca2+ from the sarcoplasmic reticulum (SR) of skeletal muscle fibers. Intact twitch fibers from frog muscle, stretched to a long sarcomere length and pressure-injected with fura-2, were activated by an action potential. Fura-2's absorbance and fluorescence signals were measured at different distances from the site of fura-2 injection; thus, the myoplasmic free Ca2+ transient (delta [Ca2+]) and the amount and rate of SR Ca2+ release could be estimated at different myoplasmic concentrations of fura-2 ([fura-2T]). At [fura-2T] = 2-3 mM, the amplitude and half-width of delta [Ca2+] were reduced to approximately 25% of the values measured at [fura-2T] less than 0.15 mM, whereas the amount and rate of SR Ca2+ release were enhanced by approximately 50% (n = 5; 16 degrees C). Similar results were observed in experiments carried out at low temperature (n = 2; 8.5-10.5 degrees C). The finding of an enhanced rate of Ca2+ release at 2-3 mM [fura-2T] is opposite to that reported by Jacquemond et al. (Jacquemond, V., L. Csernoch, M. G. Klein, and M. F. Schneider. 1991. Biophys. J. 60:867-873) from analogous experiments carried out on cut fibers. In two experiments involving the injection of larger amounts of fura-2, reductions in SR Ca2+ release were observed; however, we were unable to decide whether these reductions were due to [fura-2T] or to some nonspecific effect of the injection itself. These experiments do, however, suggest that if large [fura-2T] inhibits SR Ca2+ release in intact fibers, [fura-2T] must exceed 6 mM to produce an effect comparable to that reported by Jacquemond et al. in cut fibers. Our clear experimental result that 2-3 mM [fura-2T] enhances SR Ca2+ release supports the proposal that delta [Ca2+] triggered by an action potential normally feeds back to inhibit further release of Ca2+ from the SR (Baylor, S.M., and S. Hollingworth. 1988. J. Physiol. [Lond.]. 403:151-192). Our results provide no support for the hypothesis that Ca(2+)-induced Ca2+ release plays a significant role in excitation-contraction coupling in amphibian skeletal muscle.  相似文献   

4.
Intact single twitch fibers from frog muscle were stretched to long sarcomere length, micro-injected with the pH indicator dye phenol red, and activated by action potential stimulation. Indicator-related absorbance changes (denoted by delta A0 and delta A90) were measured with 0 degree and 90 degrees polarized light (oriented, respectively, parallel and perpendicular to the fiber axis). Two components of delta A were detected that had generally similar time courses. The "isotropic" component, calculated as the weighted average (delta A0 + 2 delta A90)/3, had the wavelength dependence expected for a change in myoplasmic pH. If calibrated in pH units, this signal's peak amplitude, which occurred 15-20 ms after stimulation, corresponded to a myoplasmic alkalization of average value 0.0025 +/- 0.0002 (+/- SEM; n = 9). The time course of this change, as judged from a comparison with that of the fibers' intrinsic birefringence signal, was delayed slightly with respect to that of the myoplasmic free [Ca2+] transient. On average, the times to half-peak and peak of the phenol red isotropic signal lagged those of the birefringence signal by 2.4 +/- 0.2 ms (+/- SEM; n = 8) and 8.4 +/- 0.5 ms (+/- SEM; n = 4), respectively. The other component of the phenol red signal was "dichroic," i.e., detected as a difference (delta A0-delta A90 greater than 0) between the two polarized absorbance changes. The wavelength dependence of this signal was similar to that of the phenol red resting dichroic signal (Baylor and Hollingworth. 1990. J. Gen. Physiol. 96:449-471). Because of the presence of the active dichroic signal, and because approximately 80% of the phenol red molecules appear to be bound in the resting state to either soluble or structural sites, the possibility exists that myoplasmic events other than a change in pH underlie the phenol red isotropic signal.  相似文献   

5.
Intact single twitch fibers from frog muscle were studied on an optical bench apparatus after microinjection with tetramethylmurexide (TMX) or purpurate-3,3' diacetic acid (PDAA), two compounds from the purpurate family of absorbance Ca2+ indicators previously used in cut muscle fibers (Maylie, J., M. Irving, N. L. Sizto, G. Boyarsky, and W. K. Chandler. 1987. J. Gen. Physiol. 89:145-176; Hirota, A., W. K. Chandler, P. L. Southwick, and A. S. Waggoner. 1989. J. Gen. Physiol. 94:597-631.) The apparent longitudinal diffusion constant of PDAA (mol wt 380) in myoplasm was 0.99 (+/- 0.04, SEM) x 10(-6) cm2 s-1 (16-17 degrees C), a value which suggests that 24-43% of the PDAA molecules were bound to myoplasmic constituents of large molecular weight. The corresponding values for TMX (mol wt 322) were 0.98 (+/- 0.05) x 10(-6) cm2 s-1 and 44-50%, respectively. Muscle membranes (surface and/or transverse-tubular) appear to be permeable to TMX and, to a lesser extent, to PDAA, since the total amount of indicator contained within a fiber decreased with time after injection. The average time constants for disappearance of indicator were 46 (+/- 7, SEM) min for TMX and 338 (+/- 82) min for PDAA. The fraction of indicator in the Ca2(+)-bound state in resting fibers was significantly different from zero for TMX (0.070 +/- 0.008) but not for PDAA (0.026 +/- 0.009). In in vitro calibrations PDAA but not TMX appeared to react with Ca2+ with 1:1 stoichiometry. In agreement with Hirota et al. (Hirota, A., W. K. Chandler, P. L. Southwick, and A. S. Waggoner. 1989. J. Gen. Physiol. 94:597-631), we conclude that PDAA is probably a more reliable myoplasmic Ca2+ indicator than TMX. In fibers that contained PDAA and were stimulated by a single action potential, the calibrated peak value of the myoplasmic free [Ca2+] transient (delta[Ca2+]) averaged 9.4 (+/- 0.6) microM, a value about fivefold larger than that calibrated with antipyrylazo III under otherwise identical conditions (Baylor, S. M., and S. Hollingworth. 1988. J. Physiol. 403:151-192). The fivefold difference is similar to that previously reported in cut fibers with antipyrylazo III and PDAA. Since in both intact and cut fibers the percentage of PDAA bound to myoplasmic constituents is considerably smaller than that found for antipyrylazo III, the PDAA calibration of delta[Ca2+] is likely to be more accurate. Interestingly, in intact fibers the peak value of delta[Ca2+] calibrated with either PDAA or antipyrylazo III is about half that calibrated in cut fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The fluorescent Mg2+/Ca2+ indicator, furaptra, was injected into single frog skeletal muscle fibers, and the indicator's fluorescence signals were measured and analyzed with particular interest in the free Mg2+ concentration ([Mg2+]) in resting muscle. Based on the fluorescence excitation spectrum of furaptra, the calibrated myoplasmic [Mg2+] level averaged 0.54 mM, if the value of dissociation constant (KD) for Mg2+ obtained in vitro (5.5 mM) was used. However, if the indicator reacts with Mg2+ with a two-fold larger KD in myoplasm, as previously suggested for the furaptra-Ca2+ reaction (M. Konishi, S. Hollingworth, A.B. Harkins, S.M. Baylor. 1991. J. Gen. Physiol. 97:271-301), the calculated [Mg2+] would average 1.1 mM. Thus, the value 1.1 mM probably represents the best estimate from furaptra of [Mg2+] in resting muscle fibers. Extracellular perfusion of muscle fibers with high Mg2+ concentration solution or low Na+ concentration solution did not cause any detectable changes in the [Mg2+]-related furaptra fluorescence within 4 min. The results suggest that the myoplasmic [Mg2+] is highly regulated near the resting level of 1 mM, and that changes only occur with a very slow time course.  相似文献   

7.
Intracellular calcium ion ([Ca2+]i) transients were measured in single rat ventricular myocytes with the fluorescent indicator furaptra. Cells were voltage clamped with a single patch electrode containing the K+ salt of furaptra and fluorescence at 500 nm was measured during illumination with 350 and 370 nm light. Depolarizing voltage-clamp pulses elicited [Ca2+]-dependent fluorescent transients in 30 of 33 cells tested. The peak change in [Ca2+]i elicited by 50-ms depolarizations from -70 to +10 mV was 1.52 +/- 0.25 microM (mean +/- SEM, n = 7). The size of the [Ca2+]i transient increased in response to 10 microM isoproterenol, prolongation of the depolarization, and increasing pipette [Na+]. Because furaptra is sensitive to Ca2+ and Mg2+, changes in [Mg2+]i during the [Ca2+]i transient could not be measured. Instead, a single-compartment model was developed to simulate changes in [Mg2+] during [Ca2+] transients. The simulations predicted that a 2 microM [Ca2+] transient was accompanied by a slow increase in [Mg2+] (14-29 microM), which became larger as basal [Mg2+] increased (0.5-2.0 mM). The [Mg2+] transient reached a peak approximately 1 s after the peak of the [Ca2+] transient with the slow changes in [Mg2+] dominated by competition at the Ca2+/Mg2+ sites of Troponin. These changes in [Mg2+], however, were so small and slow that they were unlikely to affect the furaptra fluorescence signal at the peak of the [Ca2+]i transient. The [Ca2+]i transient reported by furaptra appears to be larger than that reported by other Ca2+ indicators; however, we conclude this larger transient is at least as accurate as [Ca2+]i transients reported by the other indicators.  相似文献   

8.
The Ca indicator antipyrylazo III was introduced into cut frog twitch fibers by diffusion (Maylie, J., M. Irving, N. L. Sizto, and W. K. Chandler. 1987. Journal of General Physiology. 89:41-81). Like arsenazo III, antipyrylazo III was largely bound to or sequestered by intracellular constituents; on average, a fraction 0.68 was so immobilized. After action potential stimulation, there was an early change in absorbance, with a wavelength dependence that nearly matched a cuvette Ca-difference spectrum. As with arsenazo III, this signal became prolonged as experiments progressed. In a freshly prepared cut fiber containing 0.3 mM indicator, the absorbance change had an average half-width of 10 ms at 18 degrees C. The peak amplitude of this Ca signal depended on the indicator concentration in a roughly parabolic manner, which is consistent with a 1:2 stoichiometry for Ca:indicator complexation and, for indicator concentrations less than or equal to 0.4 mM, constant peak free [Ca]. If all the antipyrylazo III inside a fiber can react normally with Ca, peak free [Ca] is 3 microM at 18 degrees C. If only freely diffusible indicator can react, the estimate is 42 microM. The true amplitude probably lies somewhere in between. The time course of Ca binding to intracellular buffers and of Ca release from the sarcoplasmic reticulum is estimated from the 3- and 42-microM myoplasmic [Ca] transients. After action potential stimulation, the release waveform is rapid and brief; its latency after the surface action potential is 2-3 ms and its half-width is 2-4 ms. This requires rapid coupling between the action potential in the transverse tubular system and Ca release from the sarcoplasmic reticulum. The peak fractional occupancy calculated for Ca-regulatory sites on troponin is 0.46 for the 3-microM transient and 0.93 for the 42-microM transient. During a 100-ms tetanus at 100 Hz, the corresponding fractional occupancies are 0.56 and 0.94. The low value of occupancy associated with the low-amplitude [Ca] calibration seems inconsistent with a brief tetanus being able to produce near-maximal activation (Blinks, J. R., R. Rudel, and S. R. Taylor. 1978. Journal of Physiology. 277:291-323; Lopez J. R., L. A. Wanck, and S. R. Taylor. 1981. Science. 214:47-82).  相似文献   

9.
The effects of high intracellular concentrations of various calcium buffers on the myoplasmic calcium transient and on the rate of release of calcium (Rrel) from the sarcoplasmic reticulum (SR) were studied in voltage-clamped frog skeletal muscle fibers. The changes in intracellular calcium concentration (delta[Ca2+]) for 200-ms pulses to 0-20 mV were recorded before and after the injection of the calcium buffer and the underlying Rrel was calculated. If the buffer concentration after the injection was high, the initial rate of rise of the calcium transient was slower after injection than before and was followed by a slow increase of [Ca2+] that resembled a ramp. The increase in myoplasmic [Mg2+] that accompanies the calcium transient in control was suppressed after the injection and a slight decrease was observed instead. After the injection the buffer concentration in the voltage-clamped segment of the fiber decreased as the buffer diffused away toward the open ends. The calculated apparent diffusion coefficient for fura-2 (Dapp = 0.40 +/- 0.03 x 10(-6) cm2/s, mean +/- SEM, n = 6) suggests that approximately 65-70% of the indicator was bound to relatively immobile intracellular constituents. As the concentration of the injected buffer decreased, the above effects were reversed. The changes in delta[Ca2+] were underlined by characteristic modification of Rrel. The early peak component was suppressed or completely eliminated; thus, Rrel rose monotonically to a maintained steady level if corrected for depletion. If Rrel was expressed as percentage of SR calcium content, the steady level after injection did not differ significantly from that before. Control injections of anisidine, to the concentration that eliminated the peak of Rrel when high affinity buffers were used, had only a minor effect on Rrel, the peak was suppressed by 26 +/- 5% (mean +/- SE, n = 6), and the steady level remained unchanged. Thus, the peak component of Rrel is dependent on a rise in myoplasmic [Ca2+], consistent with calcium-induced calcium release, whereas the steady component of Rrel is independent of myoplasmic [Ca2+].  相似文献   

10.
Cut muscle fibers from Rana temporaria were mounted in a double Vaseline-gap chamber and equilibrated with an end-pool solution that contained 20 mM EGTA and 1.76 mM Ca (sarcomere length, 3.3-3.8 microns; temperature, 14-16 degrees C). Sarcoplasmic reticulum (SR) Ca release, delta[CaT], was estimated from changes in myoplasmic pH (Pape, P.C., D.- S. Jong, and W.K. Chandler. 1995. J. Gen. Physiol. 106:259-336). The maximal value of delta[CaT] obtained during a depleting depolarization was assumed to equal the SR Ca content before stimulation, [CaSR]R (expressed as myoplasmic concentration). After a depolarization to -55 to -40 mV in fibers with [CaSR]R = 1,000-3,000 microM, currents from intramembranous charge movement, Icm, showed an early I beta component. This was followed by an I gamma hump, which decayed within 50 ms to a small current that was maintained for as long as 500 ms. This slow current was probably a component of Icm because the amount of OFF charge, measured after depolarizations of different durations, increased according to the amount of ON charge. Icm was also measured after the SR had been depleted of most of its Ca, either by a depleting conditioning depolarization or by Ca removal from the end pools followed by a series of depleting depolarizations. The early I beta component was essentially unchanged by Ca depletion, the I gamma hump was increased (for [CaSR]R > 200 microM), the slow component was eliminated, and the total amount of OFF charge was essentially unchanged. These results suggest that the slow component of ON Icm is not movement of a new species of charge but is probably movement of Q gamma that is slowed by SR Ca release or some associated event such as the accompanying increase in myoplasmic free [Ca] that is expected to occur near the Ca release sites. The peak value of the apparent rate constant associated with this current, 2-4%/ms at pulse potentials between -48 and -40 mV, is decreased by half when [CaSR]R approximately equal to 500-1,000 microM, which gives a peak rate of SR Ca release of approximately 5-10 microM/ms.  相似文献   

11.
The AM loading of a number of different fluorescent Ca2+ indicators was compared in intact single fibers of frog muscle. Among the 13 indicators studied, loading rates (the average increase in the fiber concentration of indicator per first 60 min of loading) varied approximately 100-fold, from approximately 3 microM/h to >300 microM/h (16 degrees C). Loading rates were strongly dependent on the molecular weight of the AM compounds, with the rate increasing steeply as molecular weight decreased below approximately 850. Properties of delta F/F (the Ca2(+)-related fluorescence signal observed with fiber stimulation) were also measured in AM-loaded fibers and compared with those previously reported for fibers microinjected with indicator. In general, the time course of delta F/F was very similar with AM-loading and microinjection; however, the amplitude of delta F/F was usually smaller with AM-loading. There was a strong correlation between the rate of indicator loading and the value of the parameter f (the ratio of the amplitude of delta F/F in AM-loaded versus microinjected fibers). For indicators with small loading rates (<10 microM/h, N = 5), f values were generally small (< or =0.4, N = 4); whereas with large loading rates (>100 microM/h, N = 4), f values were large (> or =0.8, N = 4). This suggests that, with any AM indicator, a small concentration may associate nonspecifically with the fiber (either the indicator is incompletely de-esterified or, if completely de-esterified, not located in the myoplasmic compartment). If the loaded concentration is small, the nonspecific indicator will present a significant source of error in the estimation of [Ca2+]i.  相似文献   

12.
J R Lopez  L Parra 《Cell calcium》1991,12(8):543-557
Inositol 1,4,5-trisphosphate (InsP3) has been proposed as an intracellular messenger which mobilizes calcium from the sarcoplasmic reticulum, during excitation-contraction coupling in skeletal muscle. We have measured the myoplasmic free calcium concentration ([Ca2+]i) by means of calcium selective microelectrodes in intact fibers isolated from Leptodactylus insularis microinjected with InsP3. In muscle fibers bathed in normal Ringer, the mean resting [Ca2+]i was 0.11 +/- 0.01 microM (M +/- SEM, n = 30). The microinjection of 0.3, 0.5 and 1 microM InsP3 induced transient increments in the [Ca2+]i to 0.35 +/- 0.02 microM (n = 9), to 0.53 +/- 0.03 microM (n = 11) and 0.94 +/- 0.06 microM (n = 10) respectively. Microinjection of 0.3, 0.5 and 1 microM InsP3 in muscle fibers incubated in low Ca2+ solution induced increments in [Ca2+]i similar to those observed in fibers bathed with normal Ringer. The microinjection of 0.3, 0.5 and 1 microM InsP3 in muscle fibers partially depolarized with 10 mM [K+]o induced transient enhancements of the resting [Ca2+]i that were greater than the transients observed in the normally polarized muscle. In partially depolarized fibers microinjected with 0.3, 0.5 and 1 microM InsP3, the [Ca2+]i was changed to 1.45 +/- 0.14 microM (n = 20), to 3.37 +/- 0.34 microM (n = 7) and to 7.43 +/- 0.70 microM (n = 6) respectively. In all partially depolarized fibers these increments in [Ca2+]i were associated with local contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Fura red, a fluorescent Ca2+ indicator with absorbance bands at visible wavelengths, was injected into intact single muscle fibers that had been stretched to a long sarcomere length (approximately 3.8 microns) and bathed in a 'high-Ca2+' Ringer ([Ca2+] = 11.8 mM). From fura red's slow diffusion coefficient in myoplasm, 0.16 (+/- 0.01, SEM) x 10(-6) cm2 s-1 (N = 5; 16 degrees C), it is estimated that approximately 85% of the indicator molecules are bound to muscle constituents of large molecular weight. Binding appears to elevate, by 3- to 4-fold, the indicator's apparent dissociation constant for Ca2+ (KD), which is estimated to be 1.1-1.6 microM in myoplasm. Fura red's myoplasmic absorbance spectrum was used to estimate fr, the fraction of fura red molecules in the Ca2+-bound form at rest. In 3 fibers thought to be minimally damaged by the micro-injection, fr was estimated to be 0.15 (+/- 0.01). Thus, resting myoplasmic free [Ca2+] ([Ca2+]r) is estimated to be 0.19-0.28 microM. For fibers in normal Ringer solution ([Ca2+] = 1.8 mM), at shorter sarcomere length (approximately 2.7 microns), and containing a nonperturbing concentration of indicator (< or = 0.2 mM), [Ca2+]r is estimated to be 0.18-0.27 microM. This range is higher than estimated previously in frog fibers with other techniques. In 6 fibers, R, the indicator's fluorescence ratio signal (equal to the emission intensity measured with 420 nm excitation divided by that measured with 480 nm excitation), was measured at rest and following electrical stimulation and compared with absorbance measurements made from the same fiber region. The analysis implies that RMIN and RMAX (the values of R that would be measured if all indicator molecules were in the Ca(2+)-free and Ca(2+)-bound states, respectively) were substantially smaller in myoplasm than in calibration solutions lacking muscle proteins. Several methods for estimation of [Ca2+]r from R are analyzed and discussed.  相似文献   

14.
In previous papers we used estimates of the composition of frog muscle and calculations involving the likely fixed charge density in myofibrils to propose bathing solutions for skinned fibers, which best mimic the normal intracellular milieu of intact muscle fibers. We tested predictions of this calculation using measurements of the potential across the boundary of skinned frog muscle fibers bathed in this solution. The average potential was -3.1 mV, close to that predicted from a simple Donnan equilibrium. The contribution of ATP hydrolysis to a diffusion potential was probably small because addition of 1 mM vanadate to the solution decreased the fiber actomyosin ATPase rate (measured by high-performance liquid chromatography) by at least 73% but had little effect on the measured potential. Using these solutions, we obtained force-pCa curves from mechanically skinned fibers at three different temperatures, allowing the solution pH to change with temperature in the same fashion as the intracellular pH of intact fibers varies with temperature. The bath concentration of Ca2+ required for half-maximal activation of isometric force was 1.45 microM (22 degrees C, pH 7.18), 2.58 microM (16 degrees C, pH 7.25), and 3.36 microM (5 degrees C, pH 7.59). The [Ca2+] at the threshold of activation at 16 degrees C was approximately 1 microM, in good agreement with estimates of threshold [Ca2+] in intact frog muscle fibers.  相似文献   

15.
The effects of tetracaine on charge movements and on antipyrylazo III signals monitoring intracellular delta [Ca2+] were compared in cut frog semitendinosus muscle fibers in a single vaseline gap-voltage clamp. Low tetracaine concentrations (25-40 microM) markedly reduced delta [Ca2+] signals and shifted the rheobase. However, they neither influenced charge movement nor that peak delta [Ca2+] value associated with the contractile threshold. Higher tetracaine concentrations (100-200 microM) partly inhibited charge movements in cut fibers. They separated a steeply voltage-sensitive charge, some of whose features resembled 'q gamma' reported in intact fibers, and whose movement preceded delta [Ca2+] signals at threshold. These findings: (a) directly confirm an earlier suggestion that tetracaine acts on steps in excitation-contraction coupling rather than myofilament activation; (b) show that tetracaine at low concentrations can directly interfere with sarcoplasmic reticular calcium release without modifying charge movement; (c) show that the tetracaine-sensitive charge, first found in intact fibers, also exists in cut fibers; and (d) make it unlikely that tetracaine-sensitive charge transfer is a consequence of Ca2+ release as suggested on earlier occasions.  相似文献   

16.
Hui CS 《Biophysical journal》2005,89(2):1030-1045
Charge movement and calcium transient were measured simultaneously in stretched frog cut twitch fibers under voltage clamp, with the internal solution containing 20 mM EGTA plus added calcium and antipyrylazo III. When the nominal free [Ca2+]i was 10 nM, the shape of the broad I(gamma) hump in the ON segments of charge movement traces remained invariant when the calcium release rate was greatly diminished. When the nominal free [Ca2+]i was 50 nM, which was close to the physiological level, the I(gamma) humps were accelerated and a slow calcium-dependent I(delta) component (or state) was generated. The peak of ON I(delta) synchronized perfectly with the peak of the calcium release rate whereas the slow decay of ON I(delta) followed the same time course as the decay of calcium release rate. Suppression of calcium release by TMB-8 reduced the amount of Q(delta) concomitantly but not completely, and the effects were partially reversible. The same simultaneous suppression effects were achieved by depleting the sarcoplasmic reticulum calcium store with repetitive stimulation. The results suggest that the mobility of Q(delta) needs to be primed by a physiological level of resting myoplasmic Ca2+. Once the priming is completed, more I(delta) is mobilized by the released Ca2+ during depolarization.  相似文献   

17.
Ca(2+) release from the sarcoplasmic reticulum (SR) of skeletal muscle takes place at the triadic junctions; following release, Ca(2+) spreads within the sarcomere by diffusion. Here, we report multicompartment simulations of changes in sarcomeric Ca(2+) evoked by action potentials (APs) in fast-twitch fibers of adult mice. The simulations include Ca(2+) complexation reactions with ATP, troponin, parvalbumin, and the SR Ca(2+) pump, as well as Ca(2+) transport by the pump. Results are compared with spatially averaged Ca(2+) transients measured in mouse fibers with furaptra, a low-affinity, rapidly responding Ca(2+) indicator. The furaptra Deltaf(CaD) signal (change in the fraction of the indicator in the Ca(2+)-bound form) evoked by one AP is well simulated under the assumption that SR Ca(2+) release has a peak of 200-225 microM/ms and a FDHM of approximately 1.6 ms (16 degrees C). Deltaf(CaD) elicited by a five-shock, 67-Hz train of APs is well simulated under the assumption that in response to APs 2-5, Ca(2+) release decreases progressively from 0.25 to 0.15 times that elicited by the first AP, a reduction likely due to Ca(2+) inactivation of Ca(2+) release. Recovery from inactivation was studied with a two-AP protocol; the amplitude of the second release recovered to >0.9 times that of the first with a rate constant of 7 s(-1). An obvious feature of Deltaf(CaD) during a five-shock train is a progressive decline in the rate of decay from the individual peaks of Deltaf(CaD). According to the simulations, this decline is due to a reduction in available Ca(2+) binding sites on troponin and parvalbumin. The effects of sarcomere length, the location of the triadic junctions, resting [Ca(2+)], the parvalbumin concentration, and possible uptake of Ca(2+) by mitochondria were also investigated. Overall, the simulations indicate that this reaction-diffusion model, which was originally developed for Ca(2+) sparks in frog fibers, works well when adapted to mouse fast-twitch fibers stimulated by APs.  相似文献   

18.
Myoplasmic free calcium transients delta [Ca2+] were monitored with the calcium indicators antipyrylazo III and fura-2 in voltage clamped cut frog skeletal muscle fibers, in the presence and absence of 0.5 mM caffeine. Without caffeine delta [Ca2+] began to decline within a few milliseconds of fiber repolarization for pulses of all durations. In caffeine delta [Ca2+] continued to rise for 10-60 ms after 10 or 20 ms depolarizing pulses, indicating that the release of calcium from the sarcoplasmic reticulum (SR) continued well after repolarization of transverse tubular (TT) membranes in the presence of caffeine. Caffeine also increased the peak amplitude of delta [Ca2+] for all pulses and slowed the decline of delta [Ca2+] after pulses of all durations. The rate of calcium release from the SR calculated from delta [Ca2+] showed that for 10 ms pulses in caffeine release did not turn off abruptly on repolarization but instead declined to zero with a time constant essentially the same as the time constant for inactivation of SR calcium release during depolarizing pulses in the presence or absence of caffeine. The observed loss of TT membrane potential control of SR calcium release in the presence of caffeine suggests the appearance of a significant component of cytosolic Ca2+-induced calcium release in caffeine.  相似文献   

19.
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters.  相似文献   

20.
Transient stretch of cardiac muscle during a twitch contraction may dissociate Ca2+ from myofilaments into the cytosol at the moment of quick release of the muscle. We studied the effect of stretch and quick release of trabeculae on changes in intracellular Ca2+ ([Ca2+]i) during triggered propagated contractions (TPCs). Trabeculae were dissected from the right ventricle of 9 rat hearts. [Ca2+]i was measured using electrophoretically injected fura-2. Force was measured using a silicon strain gauge and sarcomere length was measured using laser diffraction techniques. Reproducible TPCs (n = 13) were induced by trains of electrical stimuli (378 +/- 19 ms interval) for 7.5 s at [Ca2+]o of 2.0 mM (27.9 +/- 0.2 degrees C). The latency of the TPC force and the underlying increase in [Ca2+]i was calculated from the time (TimeF) between the last stimulus and the peak of TPC force (PeakF), or the time (TimeCa) between the last stimulus and the peak of the increase in [Ca2+]i during the TPCs (PeakCa). As a result of a 10% increase in muscle length for 150-200 ms during the last stimulated twitches, TimeF and TimeCa decreased and PeakF and PeakCa increased significantly (n = 13). In addition, transient stretch sometimes induced a twitch contraction subsequent to the accelerated TPC and its underlying increase in [Ca2+]i. These results suggest that Ca2+ binding and dissociation from the myofilaments by the stretch and quick release of muscle may modulate the TPC force and the underlying increases in [Ca2+]i and play an important role in the induction of arrhythmias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号