首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intrinsic property of liquids is a vital indicator of formulation performance and stability. Therefore, investigation of the interfacial phenomenon of surface tension is a routine procedure in the development of products in a wide variety of areas including foods, pharmaceuticals, cosmetics, and painting technologies. We hypothesize that studies related to the maximum pull on a rod can be extrapolated to disk geometry and applied to measure surface tension using a texture analyzer. A glass disk probe was attached to the arm of a texture analyzer and pulled from the liquid surface. The maximum force of detachment was used to calculate surface tension extrapolating from the theory of maximum pull on a rod. The surface tension of water, ethanol, and a hydroalcoholic solution was measured and compared with literature values to validate this hypothesis. The calculated values of surface tension for the liquids studied were within 5% of the reported values. Probe diameter appears to have an important role on surface tension accuracy compared with literature values. Slight discrepancies can be attributed to temperature control and leveling of liquid surface, although still in accordance with the reported values of surface tension measured using different methods. This study presents a simple, precise, and quick method to determine the surface tension of liquids from the maximum pull on a disk. Further studies are warranted to determine the optimum glass disk probe diameter for better accuracy.  相似文献   

2.
Summary The stress and strain (surface tension and fractional change in area) in the plasma membrane of protoplasts isolated from rye leaves (Secale cereale L. cv Puma) were measured during osmotic expansions from isotonic into a range of more dilute solutions. The membrane surface tension increases rapidly to a maximum and then decreases slowly with some protoplasts lysing in all phases of the expansion. The maximum surface tension is greater for rapid expansions, and protoplasts lyse earlier during rapid expansion. Over the range of expansion rates investigated, the area at which lysis occurs is not strongly dependent on expansion rate. The value of the maximum tension is determined by the expansion rate and the rate at which new material is incorporated into the membrane. During osmotic expansion, protoplasts isolated from cold-acclimated plants incorporate material faster than do those from nonacclimated plants and thus incur lower membrane tensions.  相似文献   

3.
The surface tension (σ) of batter prepared with one or two of the major ingredients of wheat flour, egg and sucrose was measured by the maximum bubble pressure method. The surface tension of the soft- and hard-wheat flour suspension decreased as the solid content of wheat flour was increased, finally reaching 48.2 and 52.7 dyn/cm, respectively. The surface tension of the wheat flour suspension was lower than that of its supernatant, which suggests that the precipitate reduced the surface tension. Gelatinization of the wheat flour suspension lowered its surface tension. The surface tension of the whole egg dispersion decreased markedly to about 53 dyn/cm as the solid concentration was increased from 0 to 1%, and remained almost constant as the concentration was increased further. This tendency was almost the same as that of the egg yolk dispersion. The surface tension of mixtures of two ingredients such as egg and wheat flour, and egg and sucrose was almost equal to that of the ingredient with the lower surface tension at the same concentration as in the mixture.  相似文献   

4.
The critical concentrations of the mycella formation of novobiocin, mithramycin, variamycin, erythromycin, oleandomycin and lincomycin were determined with two methods by changes in the isotherms of the surface tension and in the maximum absorption of rodamine due to the antibiotic concentrations. The results obtained with the two methods were comparable.  相似文献   

5.
6.
The mechanics of a worm crawling along a flat surface is analyzed. The external forces of friction and gravity, and the internal pressure and tension, are taken into account. An equation of motion is formulated, and solutions are sought in which both the tension and the linear density are required to lie between prescribed bounds. Pulse and periodic travelling wave solutions are constructed. The maximum crawling velocity is determined, as well as the wave form which achieves it. Comparison of the results with experimental observations shows that the theory yields a maximum crawling velocity which is much larger than the observed velocity. Therefore, the theory is changed to require that the time rate of change of tension be less than a prescribed bound, rather than that the tension be bounded. With this modification, the theory agrees fairly well with the observations.  相似文献   

7.
The pulsating bubble surfactometer (PBS) is often used for in vitro characterization of exogenous lung surfactant replacements and lung surfactant components. However, the commercially available PBS is not able to dynamically track bubble size and shape. The PBS therefore does not account for bubble growth or elliptical bubble shape that frequently occur during device use. More importantly, the oscillatory volume changes of the pulsating bubble are different than those assumed by the software of the commercial unit. This leads to errors in both surface area and surface tension measurements. We have modified a commercial PBS through the addition of an image-acquisition system, allowing real-time determination of bubble size and shape and hence the accurate tracking of surface area and surface tension. Compression-expansion loops obtained with the commercially available PBS software were compared with those provided by the image-analysis system for dipalmitoylphosphatidylcholine, Infasurf, and Tanaka lipids (dipalmitoylphosphatidylcholine-palmitoyloleoylphosphatidyl-glycerol-palmitic acid, 68:22:9) at concentrations of 0.1 and 1.0 mg/ml and at frequencies of 1 and 20 cycles/min. Whereas minimum surface tension as determined by the image-analysis system is similar to that measured by the commercially available software, the maximum surface tension and the shapes of the interfacial area-surface tension loops are quite different. Differences are attributable to bubble drift, nonsinusoidal volume changes, and variable volume excursions seen with the modified system but neglected by the original system. Image analysis reveals that the extent of loop hysteresis is greatly overestimated by the commercial device and that an apparent, rapid increase in surface tension upon film expansion seen in PBS loops is not observed with the image-analysis system. The modified PBS system reveals new dynamic characteristics of lung surfactant preparations that have not previously been reported.  相似文献   

8.
Both diaphragm shape and tension contribute to transdiaphragmatic pressure, but of the three variables, tension is most difficult to measure. We measured transdiaphragmatic pressure and the global shape of the in vivo canine diaphragm and used principles of mechanics to compute the tension distribution. Our hypotheses were that 1) tension in the active diaphragm is nonuniform with greater tension in the central tendon than in the muscular regions; 2) maximum tension is essentially oriented in the muscle fiber direction, whereas minimum tension is orthogonal to the fiber direction; and 3) during submaximal activation change in the in vivo global shape is small. Metallic markers, each 2 mm in length, were implanted surgically on the peritoneal surface of the diaphragm at 1.5- to 2.0-cm intervals along the muscle bundles at the midline, ventral, middle, and dorsal regions of the left costal diaphragm and along a muscle bundle of the crural diaphragm. Postsurgery, a biplane videofluoroscopic system was used to determine the in vivo three-dimensional coordinates of the markers at end expiration and end inspiration during quiet breathing as well as at end-inspiratory efforts against an occluded airway at lung volumes of functional residual capacity and at one-third maximum inspiratory capacity increments in volume to total lung capacity. A surface was fit to the marker locations using a two-dimensional spline algorithm. Diaphragm surface was modeled as a pressurized membrane, and tension distribution in the active diaphragm was computed using the ANSYS finite element program. We showed that the peak of the diaphragm dome was closer to the ventral surface than to the dorsal surface and that there was a depression or valley in the crural region. In the supine position, during inspiratory efforts, the caudal displacement of the dorsal region of the diaphragm was greater than that of the dome, and the valley along the crural diaphragm was accentuated. In contrast, at lower lung volumes in the prone posture, the caudal displacement of the dome was greater than that of the crural region. At end of inspiration, transdiaphragmatic pressure was approximately 6.5 cmH2O, and tensions were nonuniform in the diaphragm. Maximum principal stress sigma(1) of central tendon was found to be greater than sigma(1) of the costal region, and that was greater than sigma(1) of the crural region, with values of 14-34, 14-29, and 4-14 g/cm, respectively. The corresponding data of the minimum principal stress sigma(2) were 9-18, 3-9, and 0-1.5 g/cm, respectively. Maximum principal tension was approximately parallel to the muscle fibers, whereas minimum tension was essentially orthogonal to the longitudinal direction of the muscle fibers. In the muscular region, sigma(1) was approximately 3-fold sigma(2), whereas in the central tendon, sigma(1) was only approximately 1.5-fold sigma(2.).  相似文献   

9.
The course of active state in heart muscle has been analyzed using a modified quick release method. The onset of maximum active state was found to be delayed, requiring 110-500 msec from time of stimulation, while the time to peak isometric tension required 250-650 msec. Further, the time from stimulation to peak tension was linearly related to the time required to establish maximum intensity of active state as well as to the duration of maximum active state. The duration of maximum active state was prolonged (90-220 msec), occupying most of the latter half of the rising phase of the isometric contraction. Norepinephrine (10(-5) M) shortened the latency from electrical stimulus to mechanical response, accelerated the onset of maximum active state, increased its intensity, decreased its duration, and accelerated its rate of decline. These changes were accompanied by an increase in the rate of tension development and the tension developed while the time from stimulation to peak isometric tension was abbreviated. Similar findings were shown for strophanthidin (1 microgram/ml) although lesser decrements in the duration of maximum active state and time to peak tension were found than with norepinephrine for similar increments in the maximum intensity of active state.  相似文献   

10.
The change in surface tension of solutions of poly-L -lysine in water has been studied as a function of temperature at various pH values. The changes at various temperatures have been correlated with changes in the circular dichroic spectra reflecting conformational change. In addition to the major transition at 50°C attributed to the conversion of the α-helical → β conformation, two other transitions have been observed at 30°C and 80°C. A minimum in the surface tension value was observed at pH 10, near the pK value for poly-L -lysine. It was concluded that at this pH the concentration of hydrophobic groups at the surface was a maximum.  相似文献   

11.
Secretory A(2) phospholipases (sPLA(2)) hydrolyze surfactant phospholipids cause surfactant dysfunction and are elevated in lung inflammation. Phospholipase-mediated surfactant hydrolysis may disrupt surfactant function by generation of lysophospholipids and free fatty acids and/or depletion of native phospholipids. In this study, we quantitatively assessed multiple mechanisms of sPLA(2)-mediated surfactant dysfunction using non-enzymatic models including supplementation of surfactants with exogenous lysophospholipids and free fatty acids. Our data demonstrated lysophospholipids at levels >or=10 mol% of total phospholipid (i.e., >or=10% hydrolysis) led to a significant increase in minimum surface tension and increased the time to achieve a normal minimum surface tension. Lysophospholipid inhibition of surfactant function was independent of the lysophospholipid head group or total phospholipid concentration. Free fatty acids (palmitic acid, oleic acid) alone had little effect on minimum surface tension, but did increase the maximum surface tension and the time to achieve normal minimum surface tension. The combined effect of equimolar free fatty acids and lysophospholipids was not different from the effect of lysophospholipids alone for any measurement of surfactant function. Surfactant proteins did not change the percent lysophospholipids required to increase minimum surface tension. As a mechanism that causes surfactant dysfunction, depletion of native phospholipids required much greater change (equivalent to >80% hydrolysis) than generation of lysophospholipids. In summary, generation of lysophospholipids is the principal mechanism of phospholipase-mediated surfactant injury in our non-enzymatic models. These models and findings will assist in understanding more complex in vitro and in vivo studies of phospholipase-mediated surfactant injury.  相似文献   

12.
R E Stafford  T Fanni  E A Dennis 《Biochemistry》1989,28(12):5113-5120
The critical micelle concentration (cmc) of several lysophospholipids and of a lysophospholipid analogue was determined from surface tension measurements using the maximum bubble pressure method and/or 31P NMR. The use of the maximum bubble pressure method has now been extended to micromolar concentrations of surfactant, and the experimental parameters that effect its use have been explored. Surface activity was found to vary with changes in the chain length and in the headgroup polarity of the lysophospholipid. The cmc's for 1-decanoyl-, 1-dodecanoyl-, 1-tetradecanoyl-, and 1-hexadecanoyl-sn-glycero-3-phosphocholine are 7.0, 0.70, 0.070, and 0.007 mM, respectively. The cmc's for 1-decanoyl- and 1-dodecanoyl-sn-glycero-3-phosphoethanolamine are 4.4 and 0.33 mM, respectively. The cmc for dodecylphosphocholine, a lysophospholipid analogue, was found to be 1.1 mM. The cmc's for 1-tetradecanoyl- and 1-hexadecanoyl-sn-glycero-3-phosphoglycerol were found to be 3.0 and 0.60 mM, respectively, in pure water. In 0.1 M Tris-HCl (pH = 8.0), their cmc's are 0.16 and 0.018 mM, respectively. Surface tension and adsorption density values determined at the cmc are reported for each compound. The relationship of dynamic surface tension and lipid purity is discussed. These studies provide information about the micellization and interfacial properties of several biologically important lysophospholipids.  相似文献   

13.
We developed an in vitro preparation to investigate shape and stress distribution in the intact rat diaphragm. Our hypothesis was that the diaphragm is anisotropic with smaller compliance in transverse fiber direction than along fibers, and therefore shape change may be small. After the animals were killed (8 rats), the entire diaphragm was excised and fixed into a mold at the insertions. Oxygenated Krebs-Ringer solution was circulated under the diaphragm and perfused over its surface. A total of 20-23 small markers were sutured on the diaphragm surface. At transdiaphragmatic pressure (P(di)) of 3-15 cmH(2)O, curvature was smaller in transverse direction than along fibers. Using finite element analysis we computed membrane tension. At P(di) of 15 cmH(2)O, tension in central tendon was larger than muscle. In costal region maximum principal tension (sigma(1)) is essentially along the fibers and ranged from 6-10 g/cm. Minimum principal tension (sigma(2)) was 0. 3-4 g/cm. In central tendon, sigma(1) was 10-15 g/cm, compared with 4-10 g/cm for sigma(2). The diaphragm was considerably stiffer in transverse fiber direction than along the fibers.  相似文献   

14.
Monolayers of DPPE and its N-methylated derivatives including DPPC have been investigated at 23 and 37 degrees C using a modified Langmuir-Wilhelmy surface balance. The monolayers have been subjected to dynamic compression and expansion, and some characteristics of the surfaces have been determined. The minimum surface tension attained by surfaces containing the lipids (maximum surface pressures sustained by the films) depended on the extent of methylation of the head group. Monolayers of DPPE or N-MeDPPE collapsed at surface tensions of 12-16 mN.m-1, whereas those containing N,N-diMeDPPE and DPPC could be compressed to near zero surface tension. The areas per molecule occupied by these lipids under high compression varied slightly and not systematically with head-group methylation. Monolayers containing mixtures of DPPC and DPPE were also studied under the same conditions. The monolayers showed some deviation from the behaviour expected if they were to have characteristics of ideally mixed systems. The minimum surface tensions attained suggested that monolayers containing 50 mol% or more DPPC might be further enriched during compression by some selective exclusion of the DPPE. At high surface pressures, some positive deviations in nominal areas per molecule from that expected for ideal mixing were observed in the monolayers made with 50 mol% or more DPPC. These deviations might be caused by packing disruptions associated with the explosion of lipid from the films.  相似文献   

15.
Gas-liquid mass transfer properties of shaken 96-well microtiter plates were characterized using a recently described method. The maximum oxygen transfer capacity (OTR(max)), the specific mass transfer area (a), and the mass transfer coefficient (k(L)) in a single well were determined at different shaking intensities (different shaking frequencies and shaking diameters at constant filling volume) and different filling volumes by means of sulfite oxidation as a chemical model system. The shape (round and square cross-sections) and the size (up to 2 mL maximum filling volume) of a microtiter plate well were also considered as influencing parameters. To get an indication of the hydrodynamic behavior of the liquid phase in a well, images were taken during shaking and the liquid height derived as a characteristic parameter. The investigations revealed that the OTR(max) is predominantly dependent on the specific mass transfer area (a) for the considered conditions in round-shaped wells. The mass transfer coefficient (k(L)) in round-shaped wells remains at a nearly constant value of about 0.2 m/h for all shaking intensities, thus within the range reported in the literature for surface-aerated bioreactors. The OTR(max) in round-shaped wells is strongly influenced by the interfacial tension, determined by the surface tension of the medium used and the surface properties of the well material. Up to a specific shaking intensity the liquid surface in the wells remains horizontal and no liquid movement can be observed. This critical shaking intensity must be exceeded to overcome the surface tension and, thus, to increase the liquid height and enlarge the specific mass transfer area. This behavior is solely specific to microtiter plates and has not yet been observed for larger shaking bioreactors such as shaking flasks. In square-shaped microtiter plate wells the corners act as baffles and cause a significant increase of OTR(max), a, and k(L). An OTR(max) of up to 0.15 mol/L/h can be reached in square-shaped wells.  相似文献   

16.
A novel series of cationic surfactants was prepared based on Mannich base (produced from the condensation of piperidine and/or morpholine as secondary amine and paraformaldehyde in the presence of 8-hydroxyquinoline). The chemical structures of the synthesized cationic surfactants were confirmed using elemental analyses, FTIR spectroscopy and 1H NMR. Surface activities of the prepared surfactants were measured including: surface tension (gamma), critical micelle concentration (CMC), effectiveness (pi(CMC)), efficiency (Pc20), maximum surface excess (Gamma(max)), minimum surface area (A(min)), interfacial tension (gamma(IT)), emulsification power and foaming power at 25 degrees C. The structural influences on their surface activities and adsorption free energy were discussed. The synthesized cationic surfactants were evaluated for their biocidal activity towards Gram +ve bacteria (Staph. Cocu., Bacillus), Gram -ve bacteria (Salmonella, E. coli), fungi (A. terrus., A. flav.) and yeast (Candida) at 1.0, 2.5 and 5.0mg/mL, respectively. The target compounds showed good inhibition towards Gram +ve bacteria, Gram -ve bacteria and yeast. Meanwhile, excellent fungicidal results were obtained against the various types of fungi under investigation.  相似文献   

17.
The tension-time area is an estimation of the work performed by contracting motor units. The relationship between tension and frequency of stimulation and between tension-time area and frequency have been studied on 148 single motor units of the rat medial gastrocnemius muscle, under isometric conditions. Motor units were classified as fast fatigable (FF), fast resistant to fatigue (FR) or slow (S). Trains of stimuli of increasing frequency and constant duration were used. For all motor units a half of the maximum tetanic tension corresponded to lower frequencies compared to frequencies at a half of the maximum tension-time area. Moreover, the slopes of tension-frequency and area-frequency curves (change of tension or area per 1 Hz rise in frequency) were higher for slow than for fast motor units. The tension-time area per one pulse was calculated for different frequencies of stimulation. For slow units the maximum area per pulse corresponded to significantly lower frequencies than for fast ones, especially of FF type. However, for all three types of motor units this optimal frequency corresponded to sub-fused tetani with a tension of about 75% of the maximum tension, and with the fusion index slightly over 0.90. The absolute values of the maximum tension-time area per pulse revealed that in one contraction within the tetanus, slow units are generating greater work than FR units. The work performed by FF units is nearly two times larger than for S units, although the tension of slow units is over eight times lower. The presented results reveal that the contraction of slow motor units is much more effective than was suggested based on their low tension.  相似文献   

18.
The effects on isometric tension of three divalent ions that block calcium channels, magnesium, cobalt, and cadmium, were tested in small bundles of rat soleus fibers. Cobalt, at a concentration of 2 or 6 mM, reversibly depressed twitch and tetanic tension and the depression was much greater in solutions containing no added calcium ions. Magnesium caused much less depression of tension than cobalt. The depression of tension was not accompanied by membrane depolarization or a reduction in the amplitude of action potentials. A reduction caused by 6 mM cobalt in the amplitude of 40 or 80 mM potassium contractures was not accompanied by a comparable reduction in tension during 200 mM potassium contractures, and could be explained by a shift in the potassium contracture tension-voltage curve to more positive potentials (by +7 mV on average). Similar effects were not seen with 2 or 6 mM magnesium. At a concentration of 20 mM, both cobalt and magnesium depressed twitch and tetanic tension, cobalt having greater effect than magnesium. Both ions shifted the potassium contracture tension-voltage curve to the right by +5 to +10 mV, caused a small depression of maximum tension, and slowed the time course of potassium contractures. Cadmium (3 mM) depressed twitch, tetanic, and potassium contracture tension by more than 6 mM cobalt, but experiments were complicated by the gradual appearance of large contractures that became even larger, and sometimes oscillatory, when the solution containing cadmium was washed out. It was concluded that divalent cations affect both activation and inactivation of tension in a manner that cannot be completely explained by a change in surface charge.  相似文献   

19.
Protoplasts prepared from thalli ofBoergesenia forbesii were subjected to the measurement of tension at the surface by means of the suction method. The tension at the surface just after completion of spheration was 0.2–0.4 dyne/cm irrespective of the temperature. Since this value is of the same order of magnitude as those measured in other species of cells without a cell coat, it is suggested that the protoplast just after spheration is covered with the plasma membrane. The measured tension at the surface was constant and not affected by the degree of deformation of the protoplast, suggesting that the surface of the protoplast is not elastic. After some time the tension began to increase abruptly. Both the latent time elapsed prior to the increase in the tension and the rate of tension increase were strongly dependent on the temperature. As long as protoplasts were treated with cellulase, increase in the tension was completely inhibited, but it occurred soon after washing out of the cellulase. Protoplasts were stained with Calcoflour White at around the time when the tension began to increase. These results suggest that the cell wall formation begins at the time of abrupt increase in the tension at the surface.  相似文献   

20.
We studied Ca(2+) dependence of tension and actomyosin ATPase rate in detergent extracted fiber bundles isolated from transgenic mice (TG), in which cardiac troponin I (cTnI) serines 43 and 45 were mutated to alanines (cTnI S43A/S45A). Basal phosphorylation levels of cTnI were lower in TG than in wild-type (WT) mice, but phosphorylation of cardiac troponin T was increased. Compared with WT, TG fiber bundles showed a 13% decrease in maximum tension and a 20% increase in maximum MgATPase activity, yielding an increase in tension cost. Protein kinase C (PKC) activation with endothelin (ET) or phenylephrine plus propranolol (PP) before detergent extraction induced a decrease in maximum tension and MgATPase activity in WT fibers, whereas ET or PP increased maximum tension and stiffness in TG fibers. TG MgATPase activity was unchanged by ET but increased by PP. Measurement of protein phosphorylation revealed differential effects of agonists between WT and TG myofilaments and within the TG myofilaments. Our results demonstrate the importance of PKC-mediated phosphorylation of cTnI S43/S45 in the control of myofilament activation and cross-bridge cycling rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号