首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Journal of Plant Growth Regulation - The metabolism of zeatin and that of 6-benzylaminopurine (BAP) have been compared in oat leaf segments in relation to the markedly differing ability of these...  相似文献   

2.
Cytokinin bases (zeatin and dihydrozeatin) and ribosides (zeatin riboside and dihydrozeatin riboside) were identified as major cytokinins in tobacco xylem sap by radioimmunoassay. When 3H-labelled zeatin riboside or dihydrozeatin riboside were supplied to tobacco plants via the xylem, leaves of differing maturity did not differ appreciably in level of radioactivity or in metabolism of the cytokinin. The major metabolites of zeatin riboside in leaves were adenine, adenosine and adenine nucleotides, whereas that of dihydrozeatin riboside was dihydrozeatin 7-glucoside. Incorporation of [14C]adenine into zeatin was evident in upper green leaves. indicating that young leaves have the capacity to synthesize cytokinins in situ. In contrast, fully expanded green leaves and senescing tobacco leaves exhibited little or no incorporation of [14C]adenine into cytokinins. This difference in cytokinin biosynthetic capacity may contribute to the differing cytokinin levels in leaves of different matirity, and may participate in control of sequential leaf senescence in tobacco.  相似文献   

3.
The effect of nitrogenous nutrients on endogeneous cytokinins and senescence of tobacco leaves was investigated. Ammonium nitrate was the most effective in retarding senescence and its activity was attributed principally to NH4+ ions. Repeated applications or a continuous supply of ammonium nitrate was required for maximal retardation of tobacco leaf senescence. Ammonium nitrate solution supplied via the petioles reduced the senescence retarding effect of dihydrozeatin applied directly to the laminae of detached tobacco leaves. Ammonium nitrate also elevated the endogenous levels of cytokinins (especially zeatin and dihydrozeatin) particularly in growing tobacco leaves excised from near the apex of the plant. Ammonium nitrate induced retardation of leaf senescence may be mediated at least partly by its effect on foliar cytokinin content.  相似文献   

4.
The cytokinin complex in tobacco leaves of various maturities was characterized by radioimmunoassay and mass spectrometry. Zeatin was the major base, whereas zeatin riboside was identified as the main riboside. in leaves of all maturities studied. Relative to upper younger leaves, the basal yellow leaves had reduced levels of both cytokinin bases and ribosides. Exogenous applications of dihydrozeatin and zeatin to detached tobacco leaves in amounts sufficient to delay senescence, elevated cytokinin base and riboside levels 2–5 fold. Presenescent and senescent leaves of intact plants showed quantitatively similar changes in cytokinin content. which therefore appear to be of significance in control of senescence. When supplied exogenously, the principal cytokinin bases found to occur in tobacco leaves (zeatin and dihydrozeatin) were markedly more effective than auxins and gibberellic acid in retarding senescence. Localised application of cytokinins to leaf blades of detopped plants was much less effective than application to intact plants. The cytokinin induced senescence retardation in tobacco leaves was independent of effects on directed metabolite transport. Evidence that endogenous levels of active cytokinins in intact tobacco leaves are involved in control of sequential leaf senescence is discussed.  相似文献   

5.
Cytokinin activity in rose petals and its relation to senescence   总被引:3,自引:6,他引:3       下载免费PDF全文
Cytokinin activity in young rose petals was higher than in old ones. The content of endogenous cytokinins in petals of a short-lived variety (Golden Wave) was lower than in a long-lived variety (Lovita). Application of the cytokinin, N6-benzyladenine, increased longevity of the short-lived variety. This strengthens the view that cytokinins participate in the endogenous regulation of senescence in rose petals.  相似文献   

6.
O6-Substituted guanine and hypoxanthine derivatives were prepared and tested for their cytokinin activity by the tobacco callus, radish cotyledons and lettuce seed bioassay systems. The results indicated that some derivatives of both types possess cytokinin activity.  相似文献   

7.
Kinetic studies of formation of glucosides of 6-benzylaminopurine (BAP) in excised radish cotyledons indicated that the 3-, 7-, and 9-glucosides (N-glucosides) were each formed directly from BAP. The 7- and 9-glucosides of BAP and the 7-glucoside of zeatin exhibited great stability in the cotyledons, but the 3-glucoside was converted to free BAP and to the 7- and 9-glucosides of BAP. When3H-labeled zeatin was supplied to developed cotyledons, at high concentrations (100 μM), 7-glucosylzeatin was the principal metabolite, but an appreciable proportion of the extracted3H was due to O-glucosylzeatin. In immature cotyledons, as used in the radish cotyledon cytokinin bioassay, this O-glucoside was shown to be converted into zeatin 7-glucoside probably via free zeatin. Metabolism of BAP and zeatin in radish cotyledons was studied in relation to cytokinin-induced cotyledon expansion. Cytokinin N-glucosides were not metabolites responsible for the observed cytokinin-induced expansion, and were not detoxification products, or deactivation products formation of which was coupled with cytokinin action. However, the free base, its riboside, and nucleotide were possible active forms of BAP associated with cotyledon expansion. The possible significance of cytokinin N-glucosides is discussed. Senescent and nonsenescent cotyledons differed in their metabolism of BAP, zeatin, and zeatin riboside. Senescence was associated principally with a reduction in ability to form 7-glucosylzeatin, enhanced metabolism to adenine derivatives, and an inability to form appreciable amounts of 3-glucosyl-BAP. A two-dimensional thin layer chromatography (TLC) system, based on adjoining layers of cellulose and silica gel, for separating zeatin metabolites is described. This does not completely separate zeatin and zeatin riboside from the corresponding dihydro-compounds. A reversed phase TLC method for achieving these separations is also reported.  相似文献   

8.
Kinetic studies of formation of glucosides of 6-benzylaminopurine (BAP) in excised radish cotyledons indicated that the 3-, 7-, and 9-glucosides (N-glucosides) were each formed directly from BAP. The 7- and 9-glucosides of BAP and the 7-glucoside of zeatin exhibited great stability in the cotyledons, but the 3-glucoside was converted to free BAP and to the 7- and 9-glucosides of BAP. When3H-labeled zeatin was supplied to developed cotyledons, at high concentrations (100 M), 7-glucosylzeatin was the principal metabolite, but an appreciable proportion of the extracted3H was due to O-glucosylzeatin. In immature cotyledons, as used in the radish cotyledon cytokinin bioassay, this O-glucoside was shown to be converted into zeatin 7-glucoside probably via free zeatin.Metabolism of BAP and zeatin in radish cotyledons was studied in relation to cytokinin-induced cotyledon expansion. Cytokinin N-glucosides were not metabolites responsible for the observed cytokinin-induced expansion, and were not detoxification products, or deactivation products formation of which was coupled with cytokinin action. However, the free base, its riboside, and nucleotide were possible active forms of BAP associated with cotyledon expansion. The possible significance of cytokinin N-glucosides is discussed.Senescent and nonsenescent cotyledons differed in their metabolism of BAP, zeatin, and zeatin riboside. Senescence was associated principally with a reduction in ability to form 7-glucosylzeatin, enhanced metabolism to adenine derivatives, and an inability to form appreciable amounts of 3-glucosyl-BAP.A two-dimensional thin layer chromatography (TLC) system, based on adjoining layers of cellulose and silica gel, for separating zeatin metabolites is described. This does not completely separate zeatin and zeatin riboside from the corresponding dihydro-compounds. A reversed phase TLC method for achieving these separations is also reported.  相似文献   

9.
The metabolism and biological activity of a 9-substituted cytokinin   总被引:3,自引:3,他引:0       下载免费PDF全文
In order to test the metabolic stability of 9-substituted cytokinins, 6-benzylamino-9-methyl purine has been synthesized and labeled with 14C in the 9-methyl carbon or doubly labeled with 14C in the 9-methyl carbon and 3H in the methylene moiety of the side chain. Although the 6-benzylamino-9-methylpurine is chemically stable, cytokinin-requiring tissues begin removing the 9-substituent in as little as 10 minutes. Among the various metabolic products is free benzylaminopurine. Thus, the biological activity of 9-substituted cytokinins could be accounted for by their conversion to the free base.  相似文献   

10.
The relation between nitrogen deficiency and leaf senescence   总被引:1,自引:0,他引:1  
Because the "mobilization" of nitrogen resulting from nutritional nitrogen deficiency is also prominent during leaf senescence, the characteristics of these two syndromes were compared. Oat plants ( Avena sativa L. cv. Victory) were raised on a nutrient solution, complete except for nitrogen supply (i.e., with only the seed protein as nitrogen source), and the senescence of their leaves was compared with that of controls grown on a full nutrient solution. The N-deficient plants flowered after forming only 4 leaves and each set a single seed. The nitrogen lack affected the content of chlorophyll somewhat more than the content of the amino acids or protein nitrogen. However, spraying the plants with kinetin solution was able to retain 20–30% of the chlorophyll and protein. During senescence, the chlorophyll appears to be less stable in the N-deficient leaves than in the controls, while the protein is somewhat more stable than in the controls. Also, when the detached leaves from N-deficient plants senesced in white light or in darkness, kinetin delayed their senescence almost as effectively as that of control leaves. Most strikingly, the stomata of N-deficient leaves after detachment and floating on water were largely closed in light, just as in senescence, but could be partially induced to open by kinetin treatment. Since stomatal closure has earlier been shown to cause senescence, the characteristic syndrome of foliar nitrogen deficiency is concluded to be partly that of senescence.  相似文献   

11.
12.
A group of xanthine derivatives and a novel analog of 6-benzylaminopurine (BAP) were tested for their ability to inhibit conjugation of cytokinin with alanine in soybean leaves. 3-(5-Hexenyl)-1,7-dimethylxanthine was found to be the most effective xanthine derivative. Although it had no senescence-retarding activity when applied alone to soybean leaves, it enhanced the action of BAP.  相似文献   

13.
Leaf senescence varies greatly among cotton cultivars, possiblydue to their root characteristics, particularly the root-sourcedcytokinins and abscisic acid (ABA). Early-senescence (K1) andlate-senescence (K2) lines, were reciprocally or self-graftedto examine the effects of rootstock on leaf senescence and endogenoushormones in both leaves and xylem sap. The results indicatethat the graft of K1 scion onto K2 rootstock (K1/K2) alleviatedleaf senescence with enhanced photosynthetic (Pn) rate, increasedlevels of chlorophyll (Chl) and total soluble protein (TSP),concurrently with reduced malondialdehyde (MDA) contents inthe fourth leaf on the main-stem. The graft of K2 scion ontoK1 rootstock enhanced leaf senescence with reduced Pn, Chl,and TSP, and increased MDA, compared with their respective self-graftedcontrol plants (K1/K1 and K2/K2). Reciprocally grafted plantsdiffered significantly from their self-grafted control plantsin levels of zeatin and its riboside (Z+ZR), isopentenyl andits adenine (iP+iPA), and ABA, but not in those of dihydrozeatinand its riboside (DHZ+DHZR) in leaves in late season, whichwas consistent with variations in leaf senescence between reciprocallyand self-grafted plants. The results suggest that leaf senescenceis closely associated with reduced accumulation of Z+ZR, andiP+iPA rather than DHZ+DHZR, or enhanced ABA in leaves of cotton.Genotypic variation in leaf senescence may result from the differencein root characteristics, particularly in Z+ZR, iP+iPA, and ABAwhich are regulated by the root system directly or indirectly. Key words: Abscisic acid, cotton, cytokinins, grafting, leaf senescence Received 23 October 2007; Revised 17 January 2008 Accepted 23 January 2008  相似文献   

14.
Nitrogen and carbohydrate assimilates were temporally and spatially compartmented among various cell types in soybean (Glycine max L., Merr.) leaves during seed filling. The paraveinal mesophyll (PVM), a unique cell layer found in soybean, was demonstrated to function in the synthesis, compartmentation and remobilization of nitrogen reserves prior to and during the seed-filling stages. At anthesis, the PVM vacuoles contain substantial protein which completely disappears by two weeks into the seed filling. Distinct changes in the PVM cytoplasm, tonoplast and organelles were correlated with the presence or absence of the vacuolar material. Microautoradiography following the accumulation of several radiolabeled sugars and amino acids demonstrated the glycoprotein nature of the vacuolar material. Incorporation of methionine, leucine, glucose, and glucosamine resulted in heavy labelling of the PVM vacuole, in contrast to galactose, proline, and mannose which resulted in a much reduced labelling pattern. In addition, starch is unequally compartmented and degraded among the various leaf cells during seed filling. At the end of the photoperiod at the flowering stage, the highest starch accumulation was in the second palisade layer followed by the spongy mesophyll and the first (uppermost) palisade layer. Starch in the first palisade layer was completely degraded during the dark whereas the starch in the second palisade and spongy mesophyll was not remobilized to any appreciable extent. By mid-podfilling (approximately five weeks postanthesis) starch was absent in the first palisade layer at the end of the photoperiod while the second palisade and spongy mesophyll layers contained substantial starch. Starch was remobilized from these latter cells during the remainder of seed filling when current photosynthetic production is low. Structural changes associated with cell senescence first appear in the upper palisade layer and then progress (excluding the PVM) to the second palisade and spongy mesophyll layer. The PVM and phloem appear to retain their structural integrity into the leaf yellowing stage. Reducing sink capacity by pod removal resulted in a continued accumulation of vacuolar protein, an increase in cytoplasmic volume, and fragmentation of the vacuole in the PVM. Pod removal also resulted in an increased amount of accumulated starch (which did not turn over) in all mesophyll layers, and an increase in cell size and cell-wall thickness.  相似文献   

15.
Excised soybean (Glycine max [L.] Merrill) cv Anoka leaf discs tend to remain green even after the corresponding intact leaves have turned yello on fruiting plants. We have found that explants which include a leaf along with a stem segment (below the node) and one or more pods (maintained on distilled H2O) show similar but accelerated leaf yellowing and abscission compared with intact plants. In podded explants excised at pre-podfill, the leaves begin to yellow after 16 days, whereas those excised at late podfill begin to yellow after only 6 days. Although stomatal resistances remain low during the first light period after excision, they subsequently increase to levels above those in leaves of intact plants. Explants taken at mid to late podfill with one or more pods per node behave like intact plants in that pod load does not affect the time lag to leaf yellowing. Explant leaf yellowing and abscission are delayed by removal of the pods or seeds or by incubation in complete mineral nutrient solution or in 4.6 micromolar zeatin. Like chorophyll breakdown, protein loss is accelerated in the explants, but minerals or especially zeatin can retard the loss. Pods on explants show rates and patterns of color change (green to yellow to brown) similar to those of pods on intact plants. These changes start earlier in explants on water than in intact plants, but they can be delayed by adding zeatin. Seed dry weight increased in explants, almost as much as in intact plants. Explants appear to be good analogs of the corresponding parts of the intact plant, and they should prove useful for analyzing pod development and mechanisms of foliar senescence. Moreover, our data suggest that the flux of minerals and cytokinin from the roots could influence foliar senescence in soybeans, but increased stomatal resistance does not seem to cause foliar senescence.  相似文献   

16.
Gepstein S 《Plant physiology》1982,70(4):1120-1124
When abraded oat (Avena sativa L. cv Victory) leaf segments are floated on KCl solution, white light causes acidification of the solution external to leaf tissue. The presence of mannitol amplifies the light-induced proton secretion. Mature leaves as well as young ones acidify the medium in light, while senescing leaves (after 3 to 4 days incubated in water in the dark) lose the ability to produce this response to light. The decrease in H+ secretion is already measureable after as little as 30 minutes in darkness, while the increase in proteolysis rate was detected only after 6 hours in dark. The decrease in capacity to secrete protons is one of the symptoms of leaf senescence. Moreover, fusicoccin mimics light in stimulating H+ pumping and delaying the senescence in the dark. On the other hand vanadate, an apparent inhibitor of plasma membrane H+ ATPase, blocks the acidification and promotes the chlorophyll and protein degradation in leaf segments during the 2-day period of incubation. These results, which show a parallel between cessation of H+ secretion and acceleration of senescence, may suggest a regulatory role for H+ secretion in leaf senescence.  相似文献   

17.
A sterile culture nitrate of Penicillium expansum was shown to induce pisatin synthesis in pea leaf discs. The amount of pisatin produced by pea leaves was shown to decrease as they underwent senescence. N6-benzyladenine delayed senescence, and at the same time maintained the production of pisatin at a high level. In darkness, leaf discs maintained on either benzyl-adenine solution or distilled water produced greater amounts of pisatin than leaf discs which were not treated in this way. Benzyladenine also increased pisatin production by leaf discs kept in the light. The relevance of these results to disease resistance and possible mechanisms involved are discussed.  相似文献   

18.
Sink removal and leaf senescence in soybean : cultivar effects   总被引:6,自引:3,他引:3       下载免费PDF全文
Three cultivars of soybean (Glycine max [L.] Merr. cvs Harper, McCall, and Maple Amber) were grown in the field and kept continuously deflowered throughout the normal seedfill period. For all cultivars, deflowering led to delayed leaf abscission and a slower rate of chlorophyll loss. Compared to control plants, photosynthesis and ribulose 1,5-bis-phosphate carboxylase/oxygenase (Rubisco) level declined slightly faster for deflowered Harper, but for both McCall and Maple Amber, leaves of deflowered plants maintained approximately 20% of maximum photosynthesis and Rubisco level 1 month after control plants had senesced. Deflowering led to decreased leaf N remobilization and increased starch accumulation for all cultivars, but cultivars differed in that for McCall and Maple Amber, N and starch concentrations slowly but steadily declined over time whereas for Harper, N and starch concentrations remained essentially constant over time. SDS-PAGE of leaf proteins indicated that for all cultivars, deflowering led to accumulation of four polypeptides (80, 54, 29, and 27 kilodaltons). Western analysis using antisera prepared against the 29 and 27 kilodalton polypeptides verified that these polypeptides were the glycoproteins previously reported to accumulate in vacuoles of paraveinal mesophyll cells of depodded soybean plants. The results indicated that depending on the cultivar, sink removal can lead to either slightly faster or markedly slower loss of photosynthesis and Rubisco. This difference, however, was not associated with the ability to synthesize leaf storage proteins. For any particular cultivar, declines in chlorophyll, photosynthesis, and Rubisco were initiated at approximately the same time for control and deflowered plants. Thus, even though cultivars differed in rate of decay of photosynthetic rate and Rubisco level in response to sink removal, the initiation of leaf senescence was not influenced by presence or absence of developing fruits.  相似文献   

19.
Life span of the second leaf of wheat(Triticum aestivum L., cv. Grana) plants was studied from day 8 to day 50 of plant age in a variant with nitrogen (+N) and in a variant in which plant senescence was induced by the omission of nitrogen from the nutrient solution (−N). Seed protein was the sole source of nitrogen for these plants. Specific leaf mass (SLM) in the −N variant, and specific leaf area (SLA), the mass of fresh leaf, soluble protein content and total nitrogen content in the +N variant peaked by day 22 of plant age (that is by day 19 of leaf age). Dry matter content, leaf length and leaf area, and SLM in the +N variant peaked by day 29 of plant age (that is by day 26 of leaf age). The ontogeny of the second leaf in the variant with enhanced senescence was shorter by at least 14 days. Plants from this variant showed typical symptoms of N deficiency, that is yellowing of leaves, tip burn, and lack of tillering. However, the growth and biochemical characters studied did not indicate an earlier onset of the senescence of the second leaf of −N plants. Both +N and −N variants reached their peaks (with the exception of an earlier peak by day 12 in case of total nitrogen content in the −N variant) on the same day of leaf age. Thus the first part of the leaf life span from leaf growth initiation to full expansion was of the same length in both the control and N-def icient plants. The stage of the proper senescence of the second leaf of −N plants was very short; the leaf completely died away within 7 days after senescence onset.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号