首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Shionogi carcinoma 115 (SC115) had been accepted for 20 yr as an androgen-dependent mouse mammary tumor. However, we recently found that the growth of SC115 tumors in vivo is also stimulated by pharmacological doses of estrogen through estrogen receptor. In the present study, action mechanisms of androgen or high doses of estrogen in the growth stimulation of SC115 were examined using a cloned cell line (SC-3) derived from the SC115 tumor. In serum-supplemented [2% steroid-free fetal calf serum-Eagle's minimum essential medium (MEM)] and serum-free [HAM F-12: MEM (1:1, v/v) containing 0.1% bovine serum albumin] media, testosterone (Test, 10(-9)-10(-6) M) significantly increased both cell number and DNA synthesis of SC-3 cells (by up to 10-fold), whereas oestradiol-17 beta (10(-12)-10(-6) M) had no such effects; the Test-induced growth was completely inhibited by the addition of a 100-fold molar excess of cyproterone acetate (CA). The serum-free medium cultured with SC-3 cells in the presence or absence of 10(-8) M Test was collected [conditioned medium (CM) or conditioned medium without Test (CM-)], and then Test in CM was removed by Gel filtration using Sephadex G-100 or inactivated by the addition of a 100-fold molar excess of CA. In the serum-free culture system, the addition of the CM without Test activity significantly enhanced both number of SC-3 cells and DNA synthesis in the cells, whereas CM(-) had no such effects. The present findings suggest that growth-stimulatory activities of androgen and high doses of estrogen on SC115 cells are mediated by growth factor(s), secreted from SC115 cells through androgen receptor and from some of nontransformed cells through estrogen receptor, respectively.  相似文献   

2.
An androgen-responsive cloned cell line (SC-3) derived from Shionogi carcinoma 115 (SC115) has been shown to secrete fibroblast growth factor (FGF)-like peptide in response to androgen, which binds to FGF receptor and promotes the proliferation of SC-3 cells in an autocrine mechanism. Since the androgen-induced autocrine factor has a property to bind heparin, we examined the effects of heparin on the growth of SC-3 cells. Heparin was found to exhibit significant inhibition of testosterone-induced growth in a concentration-dependent manner: Approximately 50% inhibition was found at a concentration of 0.1 micrograms/ml. DNA synthesis of SC-3 cells induced by testosterone was also inhibited strongly by heparin, and less strongly by heparan sulfate and dermatan sulfate. Proliferation of SC-3 cells induced by acidic (a) or basic (b) FGF appeared not to be modulated by heparin. In contrast, heparin efficiently blocked DNA synthesis stimulated with androgen-induced growth factor in the conditioned medium from testosterone-treated cells. These results indicate that heparin inhibits autocrine loop in SC-3 cells induced by androgen. Thus, the autocrine growth factor possesses a different characteristic from aFGF and bFGF in that its bioactivities are negatively modulated by the glycosaminoglycan.  相似文献   

3.
Antiglucocorticoid and antiprogestin RU38486 (RU486) stimulated the growth of highly androgen- and moderately glucocorticoid-sensitive SC-3 cells (a cloned cell line from Shionogi mouse mammary carcinoma 115) in a dose-dependent manner. A maximal 8-fold stimulation of growth by RU486 has been observed at 10(-7) M in a serum-free medium and its potency has been found to be almost the same as that of dexamethasone (Dex). The growth rate of SC-3 cells treated by triamcinolone acetonide (TA) or Dex combined with RU486 at 10(-9)-10(-7) M was enhanced compared to cells treated by TA or Dex alone, indicating that RU486 had additive rather than antagonistic effects. Our previous study revealed that RU486 could compete with the specific uptake of [3H]testosterone in intact SC-3 cells at relatively low affinity and the present study showed that the stimulatory effect of RU486 on the growth of SC-3 cells was significantly inhibited by pure antiandrogen flutamine and that half-maximal inhibition by flutamine was achieved at 10(-6) M. Moreover, we demonstrated that the conditioned medium from RU486-stimulated SC-3 cells contained growth-promoting activity which caused a 3.5-fold increase in DNA synthesis by SC-3 cells in the absence of RU486 and which was abolished by treatment with heparin-Sepharose. These results indicate that RU486-induced growth of SC-3 cells may be expressed as an androgenic activity through androgen receptor and mediated by a heparin-binding growth factor.  相似文献   

4.
Since we had previously shown that both basic fibroblast growth factor (bFGF) and testosterone stimulate the growth of mouse mammary carcinoma cells (SC-3) in serum-free culture, we tested the effect of bFGF or testosterone on FGF receptor mRNA levels. Northern blot analyses revealed that stimulation with bFGF resulted in a 5-fold increase in FGF receptor mRNA levels at 6-8 h followed by a decline to the unstimulated levels at 24 h. Simultaneous addition of cycloheximide blocked bFGF-induced accumulation of FGF receptor mRNA, although exposure of SC-3 cells to cycloheximide alone caused marginal increase in its basal level. Neither phorbol ester nor forskolin stimulated FGF receptor mRNA expression, but testosterone could raise FGF receptor mRNA levels. To obtain the maximum stimulation, however, testosterone required the longer stimulation period (12 h) than bFGF, suggesting that testosterone-induced FGF receptor mRNA accumulation is mediated through an induction of FGF-like growth factor.  相似文献   

5.
Summary BC3H1 myoblast cells seeded at low density on gelatin-coated dishes and exposed to a 1∶1 (vol/vol) mixture of Dulbecco’s modified Eagle’s medium and Ham’s F12 medium, proliferate actively when exposed to high density lipoproteins (HDL), transferrin, insulin, and basic or acidic fibroblast growth factor (FGF). This serum-free medium combination supported cell multiplication at a rate equal to that of serum-supplemented medium, and at low cell input (103 cells/35-mm dish). It also allowed serial transfer of the cultures under serum-free conditions. HDL seems to promote cell survival and to act as progression factor allowing cells to divide when exposed to either basic or acidic FGF. When the potency of basic and acidic FGF were compared, acidic FGF was 20-fold less potent than basic FGF.  相似文献   

6.
The androgen-dependent clonal cell line SC-3, derived from Shionogi carcinoma 115, secretes a fibroblast growth factor (FGF)-autocrine growth factor in response to androgen, which is able to bind to FGF receptors. In SC-3 cells, FGF receptor expression is upregulated by the SC-3-derived growth factor, providing a means of amplifying an autocrine loop of cell growth. In the present investigations, the effect of the polysulfonated naphthylurea suramin on this autocrine loop and its amplification in SC-3 cells were studied. Suramin inhibited androgen-dependent growth of SC-3 cells in a concentration-dependent fashion: ~50% inhibition was observed at 25 μM. [3H]Thymidine incorporation into the cells stimulated with partially purified SC-3-derived growth factor was inhibited by suramin in a similar way. Additionally, suramin inhibited acidic (a) or basic (b) FGF-induced cell proliferation, though relatively high concentrations were necessary to achieve the maximal inhibition. Pretreatment of SC-3 cells with suramin decreased cell surface 125I-bFGF binding without altering dissociation constant (Kd) of the binding sites. When the cells were incubated with 250 μM suramin for 24 h, the maximum binding (Bmax) decreased to almost 50% of the control. Treatment with suramin also decreased the levels of FGF receptor-1 mRNA to a similar extent, whereas it appeared not to affect the levels of β-actin mRNA. Moreover, suramin completely blocked androgen- or bFGF-induced accumulation of FGF receptor-1 mRNA. The inhibitory effects of suramin on FGF receptor expression were reversed by simultaneous addition of high concentrations of bFGF. These results indicate that suramin exerts its potent antiproliferative action on SC-3 cells through inhibition of an androgen-inducible autocrine loop involving SC-3-derived growth factor and FGF receptor. © 1993 Wiley-Liss, Inc.  相似文献   

7.
An androgen-dependent cell line denoted SC2G is a clone of an androgen-dependent mouse mammary tumor, Shionogi Carcinoma 115. Fibroblast growth factors (FGFs), epidermal growth factor (EGF) and transforming growth factor-alpha (TGF alpha) are stimulatory for the growth of SC2G cells in the absence of androgen. This clone was found to secrete an androgen-induced growth factor mostly eluting at 1.8 M NaCl on a heparin-Sepharose column. This factor was partially purified by chromatography on two consecutive heparin-Sepharose columns followed by cation-exchanging chromatography on an S-Sepharose column from the chemically defined serum-free medium conditioned by SC2G cells in the presence of androgen. The factor was a heat- and acid-labile cationic protein that was inactivated by reduction with dithiothreitol. On sodium dodecyl sulfate polyacrylamide gel electrophoresis, most of the growth-promoting activity of this factor was found at approx. 31 kDa under non-reduced conditions. Neither neutralizing antibody against basic-FGF nor that against EGF inhibited the growth-promoting activity of this factor in cell culture, suggesting the factor was distinct from basic FGF or EGF. However, the possibility that the factor was another FGF- or EGF-like growth factor was not excluded.  相似文献   

8.
B Sato 《Human cell》1989,2(3):246-253
Steroid hormone-responsive cell lines were clones from mouse mammary cancer (Shionogi Carcinoma 115) and Leydig cell tumor. SC-3 and SC-4 cells from Shionogi Carcinoma were androgen-responsive and -unresponsive in a serum-free medium, respectively. SC-3 cells secreted FGF-like growth factor as well as 24 K glycoprotein in response to androgen stimuli. B-1 and B-1F cells from mouse Leydig cell tumor were growth-stimulated in a serum-free medium by estrogen, androgen or retinoic acid. Transfection of ERE-TK-CAT gene into B-1F cells revealed that both estrogen and retinoic acid activated the CAT activity. In addition, the presence of corresponding receptors for steroid hormones or retinoic acid was demonstrated by hormone binding assays and/or Northern blot analysis. Thus, these serum-free culture systems seem to be very useful for analysing hormone action mechanisms in vitro.  相似文献   

9.
The complexity and the variations in the efficiency of different batches of serum stimulated the preparation of a serum-free medium which could promote not only growth, but also the differentiation properties of rabbit articular chondrocytes in culture. The serum-free medium (SFM) developed in this study contained insulin, transferrin, Na-selenite, human fibronectin bovine serum albumin (BSA), brain growth factor (BGF) or fibroblast growth factor (FGF), hydrocortisone and multiplication stimulating activity (MSA). Primary or secondary cultures of chondrocytes in such a medium attained a proliferation rate equal to 70-80% of that obtained with chondrocytes grown in a serum control medium. The deletion of various factors from SFM indicates that BGF or FGF are the most stimulating of growth factors. Insulin was beneficial when used individually; when combined with BGF or FGF, they had a synergistic effect on cell proliferation. MSA seemed not to play any role in chondrocyte growth in culture. The SFM medium did not modify either the morphology or the progression of cells into the cell cycle. It moreover allowed the maintenance of the specific function of chondrocytes to synthesize type II collagen.  相似文献   

10.
Suramin has been shown to inhibit the binding of various growth factors to their receptors. Shionogi Carcinoma 115 cells (SC 115 cells) and Chiba Subline 2 cells (CS 2 cells) are clones of an androgen-responsive mouse tumor cell and its autonomous subline, respectively. Since the growth of SC 115 and CS 2 cells are assumed to be regulated by their own fibroblast growth factor (FGF)-like growth factors, the present study was undertaken to examine the effect of suramin on these cells. Suramin inhibited the growth of SC 115 and CS 2 cells in a dose dependent manner. The inhibition of suramin was reversible up to 50 micrograms/ml. Suramin reversibly changed the shape of these cells from fibroblast-like to polygonal and epithelial-like ones, and inhibited 3H-thymidine incorporation into these cells which was evoked by acidic and basic FGFs, and conditioned medium obtained from CS 2 cells. The binding of 125I-basic FGF to SC 115 and CS 2 cells was inhibited by suramin. However, suramin had no effect on growth factor production and the hst-1 gene expression on CS 2 cells. In conclusion, suramin inhibited the autocrine and paracrine growth of SC 115 and CS 2 cells by blocking the binding of autocrine growth factors to their receptors.  相似文献   

11.
SC-3 cells derived from mouse mammary carcinoma (Shinogi carcinoma 115) exhibit remarkable growth enhancement and cell morphology change in response to androgen stimuli. These events are mediated through an androgen-induced growth factor (AIGF). Amino acid sequence deduced from cDNA reveals that AIGF has 215 amino acids with a signal peptide and scattered regions homologous to fibroblast growth factor (FGF) family proteins. The biological ability of AIGF to stimulate SC-3 cell growth is inhibited by heparin or suramin. More importantly, antisense oligodeoxynucleotide of AIGF can block androgen-induced growth of SC-3 cells. Upon synthesis under the control of androgen, AIGF is immediately secreted into the extracellular space without intracellular accumulation. At the early phase (18–24 h) of androgen stimulation, however, AIGF is mainly associated with the glycosaminoglycan on the cell surface or extracellular matris. In addition, treatment of SC-3 cells with sulfation blocker (chlorate) or heparitinase results in the abolishment of their ability to respond to androgen or AIGF, indicating that heparan sulfate has important roles for condensing AIGF on or near cell surface as well as potentiating the biological activity of AIGF. Then, AIGF can bind to the FGF receptor. Northern blot analysis and cDNA cloning indicate that SC-3 cells predominantly express the FGF receptor 1 with some altered amino acid sequences. Transfection of expression vectors of AIGF and this variant from of FGF receptor 1 into FGF receptor-negative myoblast cells (L 6 cells) confirms that a variant from of FGF receptor 1 is a receptor of AIGF. These results clearly demonstrate that an autocrine mechanism is operating in androgen-induced growth of SC-3 cells.  相似文献   

12.
We have found the presence of protein factor in rat adipose tissue which permits the proliferation of 3T3-L1 and Ob1771 preadipocytes cultured in a completely defined serum-free medium containing only progression factors [epidermal growth factor (EGF) and insulin] as growth factors. This mitogenic activity of the protein factor was not detected in various other cell lines, in particular, Swiss 3T3 cells which could proliferate in response to a competent factor [platelet-derived growth factor (PDGF) or fibroblast growth factor (FGF)] in the same serum-free medium. This activity of the factor was heat- and pronase-unstable, and reductant-stable, and the apparent molecular weight of the factor was about 20,000. These results strongly suggest that the protein factor is different from PDGF or FGF and contributes to the formation of new adipocytes by specifically stimulating the proliferation of preadipocytes, acting like competent factor.  相似文献   

13.
Summary We investigated the heterogeneity of cells in terms of androgen responsiveness within a single tumor mass of Shionogi carcinoma SC-115 showing androgen-dependent growth. After cloning of the tumor by the limiting dilution method in the presence of androgen, we isolated 40 clones at random. Twenty-two clones required androgen for growth (androgen-dependent phenotype), 16 did not (androgen-independent phenotype), and the remaining two clones showed growth inhibition when androgen was added (androgen-suppressed phenotype). In addition, 22 androgen-dependent clones showed heterogeneity in growth factor sensitivity in the absence of androgen. All clones were sensitive to both acidic and basic fibroblast growth factor (FGF), 7 of 22 clones were sensitive to epidermal growth factor (EGS) and transforming growth factor (TGF)-α, and 2 of 22 clones were sensitive to TGF-β. This preexisting heterogeneity may be partly responsible for the growth of androgen-dependent tumor under hormone-deprived circumstances. Three typical clones, SC2G, SC1G, and SC4A, were selected from androgen-dependent, -independent, and-suppressed phenotypic groups, respectively. These clones, as well as original solid tumors, were found to produce heparin-binding growth factors of heterogeneous elution positions. The molecular nature of these growth factors is not yet known. Neither anti-basic FGF antibody nor anti-EGF antibody inhibited the cell growth when added in cell culture, suggesting the factors were distinct from basic-FGF and EGF.  相似文献   

14.
Transforming growth factor beta-1 (1GF-β) stimulated porcine satellite cell proliferation in basal serum-free medium by 25%, but inhibited growth in serumcontaining medium by 58%. The effect of TGF-β on cell proliferation in serumfree medium was examined in combination with the following human recombinant growth factors: platelet-derived growth factor-BB (PDGF), basic fibroblast growth factor (FGF), insulin-like growth factor I (IGF-I), and epidermal growth factor (EGF). TGF-β inhibited PDGF-stimulated proliferation, enhanced FGF-stimulated proliferation, and had no effect on proliferation stimulated by IGF-I. The response of satellite cells to EGF and TGF-β in serum-free medium was not different than TGF-β alone. TGF-β depressed proliferation stimulated by the following combinations of two growth factors: PDGF and IGF-I, PDGF and EGF, PDGF and FGF, and IGF-I and EGF. In combination with IGF-I and FGF, TGF-β did not affect proliferation. TGF-β inhibited proliferation stimulated by the combination of PDGF, EGF, and IGF-I, but had no effect on proliferation stimulated by combinations of three growth factors that included FGF. FGF stimulated proliferation in Minimum Essential Medium containing 10% porcine serum (MEM-10% PS) by 13% above control. When the combination of TGF-β and FGF was added to MEM-10% PS, a 78% increase in proliferation was observed. Polyclonal antihuman PDGF-AB (this form neutralizes PDGF-AA, AB, and BB) reduced proliferation in MEM-10% PS by 44%. The combination of TGF-β and anti-PDGF-AB reduced proliferation by 59%, indicating the effects were not additive. These data indicate that: (1) FGF and TGF-β interact to increase proliferation of clonally derived porcine satellite cells, and (2) the inhibitory effect of TGF-β on proliferation of clonally derived porcine satelite cells can be primarily attributed to a reduction in the mitogenic effects of PDGF. © 1993 Wiley-Liss, Inc.  相似文献   

15.
A cultured rat ovarian cell line (31 A-F(2)) was used to study the effect of growth factors (epidermal growth factor [EGF] and fibroblast growth factor [FGF]), a survival factor (ovarian growth factor [OGF]), a hormone (insulin), and an iron-binding protein (transferring) on cell proliferation and steroid production under defined culture conditions. EGF and insulin were shown to be mitogenic (half-maximal response at 0.12 nM and 0.11 muM, respectively) for 31A-F(2) cells incubated in serum-free medium. EGF induced up to three doublings in the cell population, whereas insulin induced an average of one cell population doubling. FGF, OGF, and transferrin were found not to have any prominent effect on cell division when incubated individually with 31A-F(2) cells in serum-free medium. However, a combination of EGF, OGF, insulin, and transferrin stimulated cell division to the same approximate extent as cells incubated in the presence of 5 percent fetal calf serum. EGF or insulin did not significantly affect total cell cholesterol levels (relative to cells incubated in serum-free medium) when incubated individually with 31A-F(2) cells. However, cell cholesterol levels were increased by the addition of OGF (250 percent), FGF (370 percent), or a combination of insulin and EGF (320 percent). Progesterone secretion from 31A-F(2) cells was enhanced by EGF (25 percent), FGF (80 percent), and insulin (115 percent). However, the addition of a mitogenic mixture of EGF, OGF, insulin, and transferrin suppressed progesterone secretion 150 percent) below that of control cultures. These studies have permitted us to determine that EGF and insulin are mitogenic factors that are required for the growth of 31A-F(2) cells and that OGF and transferrin are positive cofactors that enhance growth. Also, additional data suggest that cholesterol and progesterone production in 31A-F(2) cells can be regulated by peptide growth factors and the hormone insulin.  相似文献   

16.
We describe the first completely serum-free model culture system for comparing growth control in transformed and untransformed cells. Continuous maintenance of untransformed AKR-2B fibroblasts and chemically transformed AKR-MCA cells in the presence of serum-free medium containing epidermal growth factor (E), insulin (I), and transferrin (T) resulted in cell lines which proliferated with similar doubling times (14 h), comparable to parental lines maintained in 10% serum (16 h). The transformed MCA-SF cells and untransformed AKR-SF cells did not differ in their saturation densities in medium containing E + I + T. However, the monolayer proliferation of MCA-SF cells was significantly greater than that of the AKR-SF cells in the presence of E + T, I + T, or T alone. Both cell lines required T to proliferate in monolayer culture. [3H]-Thymidine incorporation experiments and autoradiographic analysis indicated that quiescent MCA-SF cells could reenter the cell cycle by addition of nutrients alone. The combination of E + I + T produced no additional stimulation of DNA synthesis. In contrast, individual polypeptide growth factors (E, I, IGF-I, PDGF, FGF a or b, or TGF-beta 1) were required to elicit a mitogenic response in the untransformed AKR-SF cells. Peak mitogenesis occurred from 18-20 h for all growth factors except TGF-beta 1 (32 h). Neither AKR-SF nor MCA-SF cells could grow with anchorage independence in serum-free medium, unless both TGF-beta 1 and FGF a or b were simultaneously present. The results indicate that this well-defined, serum-free model system can be utilized to detect growth factor-related alterations associated with the transformed state.  相似文献   

17.
Ob17 is a clonal cell line isolated from the epididymal fat pad of C57 BL/6J ob/ob mouse that differentiates into adiposelike cells in serum-supplemented medium. In serum-free medium, this cell line shows increased growth under the addition of insulin, transferrin, fibroblast growth factor (FGF), and a factor present in extract of rat submaxillary gland (SMGE). This medium is referred to as 4F. Epidermal growth factor or nerve growth factor cannot replace SMGE, whereas partially purified platelet extract can substitute for FGF but only partially for SMGE. 4F Medium is able to support the proliferation of cells from other established preadipocyte clonal lines, HGFu and 3T3-F442A, and also of preadipocyte cells isolated from the stromal-vascular fraction of rat and mouse adipose tissues. In each case 4F medium is insufficient to support the differentiation of these cells into adipocytes. Ob17 cells grown and maintained in serum-free hormone-supplemented medium retain the ability to convert to adiposelike cells after serum addition. This serum requirement for differentiation cannot be substituted by the addition of growth hormone or of other putative adipogenic factors, or both. The results are discussed with respect to the requirements for growth and differentiation of the 3T3-L1 and 1246 preadipocyte cell lines previously described.  相似文献   

18.
Adult human articular chondrocytes were expanded in a medium with 10% serum (CTR) or further supplemented with different mitogens (i.e., EGF, PDGFbb, FGF-2, TGF beta 1, or FGF-2/TGF beta 1). Cells were then induced to redifferentiate in 3D pellets using serum-supplemented medium (SSM), serum-free medium (SFM), or SFM supplemented with factors inducing differentiation of chondroprogenitor cells (i.e., TGF beta 1 and/or dexamethasone). All factors tested during expansion enhanced chondrocyte proliferation and dedifferentiation, as assessed by the mRNA ratios of collagen type II to type I (CII/CI) and aggrecan to versican (Agg/Ver), using real-time PCR. FGF-2/TGF beta 1-expanded chondrocytes displayed the lowest doubling times, CII/CI and Agg/Ver ratios, averaging, respectively, 50, 0.2 and 15% of CTR-expanded cells. Redifferentiation in pellets was more efficient in SFM than SSM only for EGF-, PDGFbb- or FGF-2-expanded chondrocytes. Upon supplementation of SFM with TGF beta and dexamethasone (SFM TD), CII/CI ratios decreased 4.4-fold for EGF- and PDGFbb-expanded chondrocytes, but increased 96-fold for FGF-2/TGF beta 1-expanded cells. Chondrocytes expanded with FGF-2/TGF beta 1 and redifferentiated in SFM TD expressed the largest mRNA amounts of CII and aggrecan and generated cartilaginous tissues with the highest accumulation of glycosaminoglycans and collagen type II. Our results provide evidence that growth factors during chondrocyte expansion not only influence cell proliferation and differentiation, but also the cell potential to redifferentiate and respond to regulatory molecules upon transfer into a 3D environment.  相似文献   

19.
Highly purified recombiaant basic fibroblast growth factor (rbFGF) and acidic FGF (aFGF) stimulated the proliferation of human-human (h-h) hybridomas to the extent of over four-fold from a low cell density such as 1×103 cells per ml in a serum-free medium in 24-well plates. The stimulatory effect of rbFGF was also observed in various lymphoid cell lines. Expecting that FGF could be an autocrine growth factor, we introduced bFGF gene into a h-h hybridoma using an expression plasmid induced by dexamethasone. The transformed cells thus obtained, HPO-75.11bbFGF-7, were able to grow well from a low inoculum density in a serum-free medium and antibody production was also increased when bFGF gene expression was induced. The transformed cells could grow at clonal density in a serum-free medium in 96-well plates, though the original cells could not. We also obtained a more practical transfectant, HPO-75.29-H74, using a high-shear stress adapted clone as the recipient and an expression plasmid having bFGF gene under the control of metallothioneine-I promoter. The HOP-75.29-H74 cells were capable of growing and producing human monoclonal antibody against hepatitis B virus surface antigen from an inoculum density of 1×103 cells per ml in an agitation vessel without addition of an inducer.  相似文献   

20.
Androgen-dependent (SC3) and -independent (CADO21) cloned cell lines were established from androgen-dependent mouse mammary tumor (Shionogi carcinoma 115). The effects of conditioned medium (CM) collected from SC3 and CADO21 cells on the anchorage-independent growth of SC3 cells in soft agar were studied. CM prepared from SC3 cells in the absence of testosterone was unable to stimulate the growth of SC3 cells, whereas CM prepared from SC3 cells in the presence of 10(-8) M testosterone stimulated the growth of SC3 cells in a concentration-dependent manner (21 colonies at 10% and 48 colonies at 20%) and this growth-stimulatory effect was not inhibited by 10(-6) M cyproterone acetate. CM prepared from CADO21 cells in the absence of testosterone was also able to stimulate the SC3 cell growth in a concentration-dependent manner (9 colonies at 10% and 19 colonies at 20%). These results suggest that the growth of androgen-dependent SC3 cells is stimulated by androgen-induced growth factor(s) produced from the same cells (autocrine mechanism) and is also regulated by autonomous growth factor(s) produced from androgen-independent cancer cells formed from the dependent cancer cells (paracrine mechanism). A suggested possible mechanism of the progression from androgen-dependent to -independent growth of cancer cells is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号