首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phosphorylation of the regulatory light chains (RMLC) of nonmuscle myosin can increase the actin-activated ATPase activity and filament formation. Little is known about these regulatory mechanisms and how the RMLC are involved in ATP hydrolysis. To better characterize the nonmuscle RMLC, we isolated cDNAs encoding the Dictyostelium RMLC. Using an antibody specific for the RMLC, we screened a lambda gt11 expression library and obtained a 200-base-pair clone that encoded a portion of the RMLC. The remainder of the sequence was obtained from two clones identified by DNA hybridization, using the 200-base-pair cDNA. The composite RMLC cDNA was 645 nucleotides long. It contained 60 base pairs of 5' untranslated, 483 bases of coding, and 102 base pairs of 3' untranslated sequence. The amino acid sequence predicted an 18,300-dalton protein that shares 42% amino acid identity with Dictyostelium calmodulin and 30% identity with the chicken skeletal myosin RMLC. This sequence contained three regions that were similar to the E-F hand calcium-binding domains found in calmodulin, troponin C, and other myosin light chains. A sequence similar to the phosphorylation sequence found in chicken gizzard and skeletal myosin light chains was found at the amino terminus. Genomic Southern blot analysis suggested that the Dictyostelium genome contains a single gene encoding the RMLC. Analysis of RMLC expression patterns during Dictyostelium development indicated that accumulation of this mRNA increases just before aggregation and again during culmination. This pattern is similar to that obtained for the Dictyostelium essential myosin light chain and suggests that expression of the two light chains is coordinated during development.  相似文献   

3.
The complete amino acid sequence of a neuronal myosin heavy chain (MHC) from mammalian brain (1999 amino acids, 230 kDa) has been deduced by sequencing cDNA clones isolated from a rat brain cDNA library. The library was screened using an affinity-purified polyclonal antibody that had been raised against myosin purified from a neuronally-derived cell line (Neuro-2A). Restriction digests of genomic DNA from Neuro-2A cells and rat brain are consistent with an identity of the sequenced isoform from these two sources. RNA blot analysis demonstrates this myosin to exhibit differential expression within the cerebral cortex and spinal cord. No expression was observed in liver, kidney, heart, spleen or skeletal muscle, or even within other regions of the brain. The sequence of this neuronal MHC is compared with those of other non-muscle MHCs, to which it shows an overall similarity of structure, especially with respect to conserved regions within the head (ATP binding site, actin binding site, reactive thiols) and the presence of an alpha-helical coiled-coil tail that can be arranged as 28-residue repeating units plus four skip residues. A unique non-helical tailpiece composed of 72 amino acid residues marks the C-terminus of this neuronal myosin isoform.  相似文献   

4.
Clones possessing inserts of brain myosin II have been obtained by screening a rat brain cDNA expression library with a polyclonal antibody, raised against myosin II from the mouse neuroblastoma cell line, Neuro-2A. A partial sequence comprising the 3' coding and non-coding regions of the myosin message has been determined which is markedly different from other myosin sequences. The derived amino-acid sequence comprises the C-terminal 90 amino acids: VSS(PO4)LKNKLRRGDLPFVVTRRLVRKGTLELS(PO4)DDDDESKASLINETQPPQCLDQQ LDQQ LDQLFNWPVNAGCVCGWGVEQTQGEEAVHKCRT(CO2H). This sequence encompasses regions homologous to both the casein kinase II and protein kinase C heavy-chain phosphorylation sites. The non-helical "tail-piece" is considerably longer (an additional 39 amino acid residues) than found in other myosins. Northern blot analysis demonstrates this myosin II message to be unique to cerebral cortex, with no expression in all other non-cortical brain regions and peripheral tissues tested. Our results suggest functional diversity for myosin II isozymes within the brain.  相似文献   

5.
Monoclonal antibodies were raised against a protein with a molecular mass of 24 kDa that has been described as a membrane-associated, actin binding protein from Dictyostelium discoideum [( 1985) J. Cell Biol. 100, 727-735]. Using these monoclonal antibodies we isolated from a lambda gt11 expression library cDNA clones coding for this protein. The cDNA deduced amino acid sequence revealed the presence of an unusual carboxy-terminus which has homologies to the C-termini of Octopus rhodopsin and synaptophysin. This part of the protein sequence contains 5 direct repeats with the motif GYP (P)Q(P). Southern and Northern blots showed that this sequence is present in a series of Dictyostelium genes transcribed in all stages of development.  相似文献   

6.
7.
8.
The Dictyostelium essential light chain is required for myosin function.   总被引:14,自引:0,他引:14  
A Dictyostelium mutant (7-11) that expresses less than 0.5% of wild-type levels of the myosin essential light chain (EMLC) has been created by overexpression of antisense RNA. Cells from 7-11 contain wild-type levels of the myosin heavy chain (MHC) and regulatory light chain (RMLC). Myosin isolated from 7-11 cells consists of the MHC with the RMLC associated in reduced stoichiometry, and binds to purified actin in an ATP-sensitive fashion. Purified 7-11 myosin displays calcium-activated ATPase activity with a Vmax about 15%-25% of that of wild type, and a Km for ATP of 27 +/- 5 microM versus 83 +/- 30 microM for wild type. At actin concentrations as high as 17 microM, 7-11 myosin displays greatly reduced actin-activated ATPase activity. Phenotypically, 7-11 cells resemble MHC mutants, growing poorly in suspension and becoming large and multinucleate. When starved for multicellular development, 7-11 cells take several hours longer than wild-type cells to aggregate. Although multicellular aggregates eventually form, they fail to develop further. The cells are also unable to cap receptors in response to Con A treatment. Since cells expressing the EMLC are phenotypically similar to MHC null mutants, the EMLC appears necessary for myosin function, at least in part because it is required for normal actin-activated ATPase activity.  相似文献   

9.
《The Journal of cell biology》1987,105(6):2999-3005
The amino acid sequence of the myosin tail determines the specific manner in which myosin molecules are packed into the myosin filament, but the details of the molecular interactions are not known. Expression of genetically engineered myosin tail fragments would enable a study of the sequences important for myosin filament formation and its regulation. We report here the expression in Escherichia coli of a 1.5- kb fragment of the Dictyostelium myosin heavy chain gene coding for a 58-kD fragment of the myosin tail. The expressed protein (DdLMM-58) was purified to homogeneity from the soluble fraction of E. coli extracts. The expressed protein was found to be functional by the following criteria: (a) it appears in the electron microscope as a 74-nm-long rod, the predicted length for an alpha-helical coiled coil of 500 amino acids; (b) it assembles into filamentous structures that show the typical axial periodicity of 14 nm found in muscle myosin native filaments; (c) its assembly into filaments shows the same ionic strength dependence as Dictyostelium myosin; (d) it serves as a substrate for the Dictyostelium myosin heavy chain kinase which phosphorylates myosin in response to chemotactic signaling; (e) in its phosphorylated form it has the same phosphoamino acids and similar phosphopeptide maps to those of phosphorylated Dictyostelium myosin heavy chain; (f) it competes with myosin for the heavy chain kinase. Thus, all the information required for filament formation and phosphorylation is contained within this expressed protein.  相似文献   

10.
The assembly of myosins into filaments is a property common to all conventional myosins. The ability of myosins to form filaments is conferred by the tail of the large asymmetric molecule. We are studying cloned portions of the Dictyostelium myosin gene expressed in Escherichia coli to investigate functional properties of defined segments of the myosin tail. We have focused on five segments derived from the 68-kD carboxyl-terminus of the myosin tail. These have been expressed and purified to homogeneity from E. coli, and thus the boundaries of each segment within the myosin gene and protein sequence are known. We identified an internal 34-kD segment of the tail, N-LMM-34, which is required and sufficient for assembly. This 287-amino acid domain represents the smallest tail segment purified from any myosin that is capable of forming highly ordered paracrystals characteristic of myosin. Because the assembly of Dictyostelium myosin can be regulated by phosphorylation of the heavy chain, we have studied the in vitro phosphorylation of the expressed tail segments. We have determined which segments are phosphorylated to a high level by a Dictyostelium myosin heavy chain kinase purified from developed cells. While LMM-68, the 68-kD carboxyl terminus of Dictyostelium myosin, or LMM-58, which lacks the 10-kD carboxyl terminus of LMM-68, are phosphorylated to the same extent as purified myosin, subdomains of these segments do not serve as efficient substrates for the kinase. Thus LMM-58 is one minimal substrate for efficient phosphorylation by the myosin heavy chain kinase purified from developed cells. Taken together these results identify two functional domains in Dictyostelium myosin: a 34-kD assembly domain bounded by amino acids 1533-1819 within the myosin sequence and a larger 58-kD phosphorylation domain bounded by amino acids 1533-2034 within the myosin sequence.  相似文献   

11.
cDNA fragments putatively encoding amino acid sequences characteristic of the fatty acid desaturase were obtained using expressed sequence tag (EST) information of the Dictyostelium cDNA project. Using this sequence, we have determined the cDNA sequence and genomic sequence of a desaturase. The cloned cDNA is 1489 nucleotides long and the deduced amino acid sequence comprised 464 amino acid residues containing an N-terminal cytochrome b5 domain. The whole sequence was 38.6% identical to the initially identified Delta5-desaturase of Mortierella alpina. We have confirmed its function as Delta5-desaturase by over expression mutation in D. discoideum and also the gain of function mutation in the yeast Saccharomyces cerevisiae. Analysis of the lipids from transformed D. discoideum and yeast demonstrated the accumulation of Delta5-desaturated products. This is the first report concering fatty acid desaturase in cellular slime molds.  相似文献   

12.
Multiple actin-based motor genes in Dictyostelium.   总被引:21,自引:3,他引:18       下载免费PDF全文
Dictyostelium cells, devoid of conventional myosin, display a variety of motile activities, consistent with the presence of other molecular motors. The Dictyostelium genome was probed at low stringency with a gene fragment containing the conserved conventional myosin head domain sequences to identify other actin-based motors that may play a role in the observed motility of these mutant cells. One gene (abmA) has been characterized and encodes a polypeptide of approximately 135 kDa with a head region homologous to other myosin head sequences and a tail region that is not predicted to form either an alpha-helical structure of coiled-coil interactions. Comparisons of the amino acid sequences of the tail regions of abmA, Dictyostelium myosin I, and Acanthamoeba myosins IB and IL reveal an area of sequence similarity in the amino terminal half of the tail that may be a membrane-binding domain. The abmA gene, however, does not contain an unusual Gly, Pro, Ala stretch typical of many of the previously described myosin Is. Two additional genes (abmB and abmC) were identified using this approach and also found to contain sequences that encode proteins with typical conserved myosin head sequences. The abm genes may be part of a large family of actin-based motors that play various roles in diverse aspects of cellular motility.  相似文献   

13.
14.
A full-length cDNA corresponding to the Dictyostelium myosin light chain kinase gene has been isolated and characterized. Sequence analysis of the cDNA confirms conserved protein kinase subdomains and reveals that the Dictyostelium sequence is highly homologous to those of calcium/calmodulin-dependent protein kinases, including myosin light chain kinases from higher eukaryotes. Despite the high homologies to calcium/calmodulin-dependent protein kinases, there is no recognizable calmodulin-binding domain within the Dictyostelium sequence. However, the Dictyostelium myosin light chain kinase possesses a putative auto-inhibitory domain near its carboxyl terminus. To further characterize this domain, the full-length enzyme as well as a truncated form lacking this domain were expressed in bacterial cells and purified. The full-length enzyme expressed in bacteria exhibits essentially the same biochemical characteristics as the enzyme isolated from Dictyostelium. The truncated form however exhibits a Vmax that is approximately ten times greater than that of the native enzyme. In addition, unlike the native kinase and the full-length kinase expressed in bacteria, the truncated enzyme does not undergo autophosphorylation. These results suggest that the Dictyostelium enzyme, like myosin light chain kinases from higher eukaryotes, is regulated by an autoinhibitory domain but that the specific molecular signals necessary for activation of the Dictyostelium enzyme are entirely distinct.  相似文献   

15.
Two-dimensional mapping of the tryptic phosphopeptides generated following in vitro protein kinase C phosphorylation of the myosin heavy chain isolated from human platelets and chicken intestinal epithelial cells shows a single radioactive peptide. These peptides were found to comigrate, suggesting that they were identical, and amino acid sequence analysis of the human platelet tryptic peptide yielded the sequence -Glu-Val-Ser-Ser(PO4)-Leu-Lys-. Inspection of the amino acid sequence for the chicken intestinal epithelial cell myosin heavy chain (196 kDa) derived from cDNA cloning showed that this peptide was identical with a tryptic peptide present near the carboxyl terminal of the predicted alpha-helix of the myosin rod. Although other vertebrate nonmuscle myosin heavy chains retain neighboring amino acid sequences as well as the serine residue phosphorylated by protein kinase C, this residue is notably absent in all vertebrate smooth muscle myosin heavy chains (both 204 and 200 kDa) sequenced to date.  相似文献   

16.
S-Adenosyl-L-homocysteine hydrolase has been cloned from a lambda gt11 cDNA library prepared from Dictyostelium discoideum that had been starved for 3 hours. The sequence of the cloned cDNA was determined and the deduced amino acid sequence was compared to the amino acid sequence of rat AdoHcy hydrolase. When the sequences from the two species were aligned, 74% of the amino acids were in identical positions. If conservative changes were taken into account the homology was 84%. Because differences have been reported in the binding characteristics of NAD+ to the D. discoideum and rat AdoHcy hydrolases, changes in the amino acids of the putative NAD+-binding site were of particular interest. Six changes were observed in this region but the changes appeared to be in regions that are not critical to the three dimensional folding of the NAD+-binding site.  相似文献   

17.
A full-length cDNA clone for GTP cyclohydrolase I (EC 3.5.4.16) was isolated from a Tetrahymena pyriformis cDNA library by plaque hybridization. The nucleotide sequence determination revealed that the length of the cDNA insert was 1516 bp. The coding region encoded a protein of 223 amino acid residues with a calculated molecular mass of 25 416 Da. The deduced amino acid sequence of Tetrahrymena GTP cyclohydrolase I showed sequence identity with that of Escherichia coli (55%). The identity of T. pyriformis GTP cyclohydrolase I with sequences of Dictyostelium discoideum, Saccharomyces cerevisiae, Drosophila melanogaster, mouse, rat, and human enzymes was less marked and was 30, 30, 25, 28, 28, and 27%, respectively. RNA blot analysis showed a single mRNA species of 2.1 kb in this protozoan. The mRNA level of GTP cyclohydrolase I increased during synchronous cell division induced by intermittent heat treatment. The results suggest that the mRNA expression is associated with the cell cycle of T. pyriformis.  相似文献   

18.
A cDNA clone (SSC801) putatively encoding sepiapterin reductase (SR) was obtained from the expressed sequence tag clones of Dictyostelium discoideum. The cDNA sequence of 878 nucleotides constituted an ORF of 265 amino acid residues but was missing a few N-terminal residues. The deduced amino acid sequence showed 29.8% identity with mouse SR sequence and a molecular mass of 29,969 Da. The coding sequence was cloned in E. coli expression vector and overexpressed. The purified His-tag recombinant enzyme was confirmed to have the genuine activity of SR to produce tetrahydrobiopterin from 6-pyruvoyltetrahydropterin in a coupled assay with 6-pyruvoyltetrahydropterin synthase as well as dihydrobiopterin from sepiapterin. However, dictyopterin was not observed in our assay condition. The enzyme was also inhibited by N-acetylserotonin and to a lesser extent by melatonin. Km values for NADPH and sepiapterin were 51.8+/-2.7 microM and 40+/-2 microM, respectively. Vmax was determined as 0.14 micromol/min/mg of protein.  相似文献   

19.
L-Gulono-gamma-lactone oxidase, one of the microsomal flavin enzymes, catalyzes the last step of L-ascorbic acid biosynthesis in many animals; however, it is missing in scurvy-prone animals such as humans, primates, and guinea pigs. A cDNA clone for this enzyme was isolated by screening a rat liver cDNA expression library in lambda gt11 using antibody directed against the enzyme. The cDNA clone contained 2120 nucleotides and an open reading frame of 1320 nucleotides encoding 440 amino acids of the protein with a molecular weight of 50,605. The amino-terminal sequence (residues 1-33) of the enzyme isolated from rat liver completely coincided with the corresponding part of the deduced amino acid sequence. The identity of the cDNA clone was further confirmed by the agreement of the composition of the deduced amino acids with that determined by amino acid analysis of the enzyme. Hydropathy analysis of the deduced amino acid sequence revealed several hydrophobic regions, suggesting that they anchor the protein into the microsomal membrane. The deduced amino acid sequence showed no obvious homology with the flavin-binding regions of other eight flavoenzymes.  相似文献   

20.
A 3.6 kilobase cDNA clone coding for the human embryonic myosin heavy chain has been isolated and characterized from an expression library prepared from human fetal skeletal muscle. The derived amino acid sequence for the entire rod part of myosin shows 97% sequence homology between human and rat and a striking interspecies sequence conservation among the charged amino acid residues. The single copy gene is localized to human chromosome 17 and its expression in fetal skeletal muscle is developmentally regulated. The sequence information permits the design of isoform-specific probes for studies on the structure of the gene and its role in normal and defective human myogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号