首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular nitrogen is produced stoichiometrically from the spontaneous decomposition of N-methyl-N-nitrosourea in phosphate buffer and is readily detected by gas chromatography. It is also generated in high yield from the oxidation of dimethylnitrosamine by mouse or rat liver microsomes. Gas chromatographic analysis for nitrogen generated from dimethylnitrosamine was more difficult because the amount of nitrogen generated was similar to that produced in control tubes which contained no dimethylnitrosamine.  相似文献   

2.
A metabolizing test system is presented that comprises mouse liver microsomes for metabolic activation of the test compound, NADPH as co-factors, dimethylnitrosamine (DMN) as model mutagen and human peripheral lymphocytes as target cells. Lymphocytes were cultured in RPMI 1640 medium in the presence of phytohemagglutinin for 48 h before being used in the system. Incubation of the lymphocytes for 45 min in the metabolically active system reduced thymidine incorporation by 50%, whereas in the metabolically inactive system without NADPH thymidine incorporation was reduced by 15%. The latter reduction was due to the cytotoxic effects of the mouse liver microsomes and of DMN. When the lymphocytes were cultured for another 24 h after exposure to the metabolizing system and DMN, significant increased formation of chromosomal aberrations such as gaps were observed, cross-overs and breaks being less frequent.  相似文献   

3.
L Y Fong  K M Lee  H J Lin 《Mutation research》1982,105(1-2):29-36
The mutagenic activity of dimethylnitrosamine activated by rat-liver microsomes in the presence of NADH was compared with that obtained with NADPH. 3 histidine auxotrophic strains of Salmonella underwent reversions after activation with NADH as the sole coenzyme. All 3 tester strains showed a dose-response relationship with dimethylnitrosamine (10-125 mumoles per plate) after NADH-supported activation. With NADH as the sole coenzyme, the most sensitive strain, hisG46, showed a 105-fold increase in mutagenesis frequency as compared with the 230-fold increase obtained with NADPH. Activation of dimethylnitrosamine in the presence of NADH and NADPH, in combination, produced mutagenesis at frequencies above those seen with NADH alone, but less than or equal to those seen with NADPH as the only coenzyme during the activation step. Experiments in vitro showed that microsomal incorporation of carbon from [14C]dimethylnitrosamine was highest in the presence of NADPH, lowest with NADH and reached intermediate levels when both coenzymes were present. The source of the microsomes in all experiments was liver from rats pre-treated with Aroclor 1254.  相似文献   

4.
Qualitative and quantitative assay were developed to study the in vitro enzymatic activation of dimethylnitrosamine (DMNA) to its mutagenic form. Three different fractions from mouse liver homogenates, including purified microsomes, were employed for the activation, and several parameters of the assay were investigated. Qualitative tests were conducted to measure the ability of hepatic enzymes obtained from six mammalian specie to activate DMNA. A comparison between two inbred mouse strains using the in vitro activation assay demonstrated that this technique might be a useful tool in quantitatively measuring differences in genetically influenced levels of DMNA metabolism in individual animals and their tissues.  相似文献   

5.
The carcinogen dimethylnitrosamine (DMNA) is known to exhibit a high degree of strain, organ, age, and sex related tumor specificity in mice. Using microbial mutagenesis assays coupled with mouse tissue microsomal enzyme activation systems, evidence has been obtained that demonstrated a close relationship between the level of in vitro DMNA activation to a mutagen and in vivo tumor susceptibility. DMNA activation by liver, lung, and kidney microsomes from several mouse strains was compared by measuring the rate of mutagenic metabolites formed during incubation of the carcinogen in mutation assays using Salmonella typhimurium G-46 as the indicator microorganism.  相似文献   

6.
The mutagenicity of dimethylnitrosamine (DMN) for bacteria was investigated by means of the metabolic activation process of the compound with rat liver microsomes.Three strains of streptomycin (SM)-dependent Escherichia coli having tetracycline (TC)-resistance factor (Sd-E. coli(TC)) were derived for this study. The reverse mutation in these strains from SM dependence to non-dependence was used as the marker for mutagenicity. The drug resistance factor (R factor) which was transferred to these strains was used in order to get around the bacterial contamination throughout the experiments. The study of the mutagenicity of DMN metabolites has been made by incubating DMN with rat liver microsomes and cofactor system in the presence of indicator bacterial cells.The reverse mutation was markedly induced for all of three strains in the complete incubation mixture but it was not observed when the cofactor system was omitted or the liver microsomal suspension was replaced by the kidney cell sap. When the indicator bacterial cells were added to the mixture in which DMN was previously incubated with the microsomes and cofactor system, the mutagenicity was extremely decreased.  相似文献   

7.
1. The incorporation of methyl groups into histones from dimethylnitrosamine and from methionine was studied by injection of the labelled compounds, isolation of rat liver and kidney histones, and analysis of hydrolysates by column chromatography. 2. Labelled methionine gave rise to labelled in-N-methyl-lysine, di-in-N-methyl-lysine and an amino acid presumed to be omega-N-methyl-arginine. 3. Administration of labelled dimethylnitrosamine gave rise to labelled S-methylcysteine, 1-methylhistidine, 3-methylhistidine and in-N-methyl-lysine derived from the alkylating metabolite of dimethylnitrosamine. In addition, labelled formaldehyde released by metabolism of dimethylnitrosamine leads to the formation of labelled S-adenosylmethionine, and hence to labelling of in-N-methyl-lysine, di-in-N-methyl-lysine and omega-N-methylarginine by enzymic methylation. 4. The formation of in-N-methyl-lysine by alkylation of liver histones was confirmed by using doubly labelled dimethylnitrosamine to discriminate between direct chemical alkylation and enzymic methylation via S-adenosylmethionine. These experiments also suggested the possibility that methionine residues in the histones were alkylated to give methylmethionine sulphonium residues. 5. The extent of alkylation of liver histones was maximal at about 5h after dosing and declined between 5 and 24h. The methylated amino acids resulting from direct chemical alkylation were preferentially lost: this is ascribed to necrosis of the more highly alkylated cells. 6. Liver histones were about four times as alkylated as kidney histones; the extent of alkylation of liver histones was similar to that of liver total nuclear proteins. 7. Methyl methanesulphonate (120mg/kg) alkylated liver histones to a greater extent than did dimethylnitrosamine. Diethylnitrosamine also alkylated liver histones. 8. The results are discussed with regard to the possible effects of alkylation on histone function, and the possible role of histone alkylation in carcinogenesis by the three compounds.  相似文献   

8.
The effects of tetrahydrofuran (THF) on rat liver microsomes in vitro and in vivo were opposite. In vitro THF inhibited the p-nitrophenol (PNP) hydroxylase activity of microsomes from control rats and from rats treated with PB, acetone, and isoniazide--by 50, 20, 60, and 80%, respectively. THF inhibited dimethylnitrosamine (NDMA) demethylation in control and induced microsomes in a lesser degree. THF increased the total cytochrome P-450 content as well as the contents of cytochromes P-450IIE1 and P-450IIB1/B2. The activities of PNP-hydroxylation and NDMA-demethylation increased also, whereas the PR-dealkylation activity was unchanged. An increase in the THF dose caused inhibition of the rat liver microsomal monooxygenase system.  相似文献   

9.
Antibodies to mouse liver cytochrome P3-450 (anti-P3-450) and antibodies to rat liver cytochrome P-450d (anti-P-450d-c) inhibit the 0-deethylation of 7-ethoxyresorufin (ER) in liver microsomes of benz(a)pyrene-induced (BP) mice but do not inhibit the 0-deethylase activity in liver microsomes of BP-induced rats. Anti-P3-450 and anti-P-450c inhibit BP-hydroxylation in BP-induced mouse liver microsomes by 20%, but they do not inhibit this reaction at all in BP-induced rat liver microsomes. In a reconstituted monooxygenase system isolated cytochrome P3-450 metabolized 7-ER and BP. In contrast, its homologue, cytochrome P-450d, did not metabolize these substrates. The fraction containing cytochrome P1-450 metabolized 7-ER at a low rate and BP at a rate of 3.6 nmol product/min/nmol cytochrome. Western blot analysis with anti-P-450c + d revealed two bands in SDS-PAGE gels containing BP-induced mouse liver microsomes. The interaction of mouse liver BP-microsomes with anti-P3-450 and anti-P-450d-c was accompanied by the appearance of a single band (cytochrome P3-450).  相似文献   

10.
A sensitive method for the determination of cytochrome P450 (P450 or CYP) 1A activities such as ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) in liver microsomes from human, monkey, rat and mouse by high-performance liquid chromatography with fluorescence detection is reported. The newly developed method was found to be more sensitive than previous methods using a spectrofluorimeter and fluorescence plate reader. The detection limit for resorufin (signal-to-noise ratio of 3) was 0.80 pmol/assay. Intra-day and inter-day precisions (expressed as relative standard deviation) were less than 6% for both enzyme activities. With this improved sensitivity, the kinetics of EROD and MROD activities in mammalian liver microsomes could be determined more precisely. EROD activities in human and monkey liver microsomes, and MROD activities in liver microsomes from all animal species exhibited a monophasic kinetic pattern, whereas the pattern of EROD activities in rat and mouse liver microsomes was biphasic. In addition, the method could determine the non-inducible and 3-methylcholanthrene-inducible activities of EROD and MROD in rat and mouse liver microsomes under the same assay conditions. Therefore, this method is applicable to in vivo and in vitro studies on the interaction of xenobiotic chemicals with cytochrome CYP1A isoforms in mammals.  相似文献   

11.
Chou YC  Ueng YF  Chou CY  Tien JH 《Life sciences》2005,77(7):735-745
Dimemorfan (d-3-methyl-N-methylmorphinan), an analogue of dextromethorphan, is commonly used as a non-opioid antitussive. To clarify the contribution of cytochrome P450 (P450) in dimemorfan N-demethylation, effects of selective inducers and inhibitors were studied in ICR mice. Phenobarbital (PB)- and dexamethasone (Dex)-treatments caused 5-fold increases of liver microsomal dimemorfan N-demethylation activity. In untreated mouse liver microsomes, demethylation activity was strongly inhibited by a CYP3A inhibitor, ketoconazole. In PB-and Dex-treated mouse liver microsomes, ketoconazole caused strong inhibition, whereas orphenadrine caused a decrease of less than 20%. Pretreatment of control mouse liver microsomes with anti-CYP3A inhibited demethylation activity, whereas pre-treatment with anti-CYP2B had no effect. In PB-and Dex-treated mouse liver microsomes, the demethylation activity was inhibited by both anti-CYP3A and anti-CYP2B. In control mice, the intrinsic clearance of dimemorfan from N-demethylation was 5.8 microl min(-1)mg protein(-1). In PB- and Dex-treated mice, the correlation coefficient of fitting using one-enzyme and two-enzyme models were similar. The intrinsic clearances of induced mouse liver microsomes were similar. These results revealed that CYP3A played a major role in hepatic demethylation in untreated mice. Both CYP3A and CYP2B were involved in this demethylation in PB- and Dex-treated mice.  相似文献   

12.
The effect of administration of carbon tetrachloride and dimethylnitrosamine in vivo on hepatic microsomal function related to drug metabolism was measured. It was found that the capacity of isolated microsomes to demethylate dimethylaniline was diminished during the first hour after carbon tetrachloride poisoning and during the second hour after dimethylnitrosamine poisoning. Thereafter the microsomes from carbon tetrachloride-poisoned livers showed a continuous decline in activity so that at 24hr. there was little residual capacity to undertake demethylation. Microsomes from dimethylnitrosamine-poisoned animals were not different from controls at 24hr. During the first 3hr. there was a transient rise in the accumulation of the N-oxide intermediate in carbon tetrachloride-poisoned livers, with a subsequent fall to below control values. In dimethylnitrosamine poisoning there was a parallel decrease in N-oxide accumulation with decreased demethylation. In the latter part of the first 24hr. the ratio of N-oxide accumulation to demethylation was increased in both instances. At 2hr. after poisoning with either compound there was no evidence of altered NADPH(2)-dependent neotetrazolium reduction or lipid peroxidation. NADPH(2)-dependent azo-dye cleavage was decreased. There was no difference in microsomal cytochrome b(5) content, but there was a decrease in the amount of cytochrome P-450. This latter change was correlated with the decreased capacity for NADPH(2)-dependent oxidative demethylation. It is suggested that dimethylnitrosamine is associated with a defect in microsomal NADPH(2)-dependent electron transport at the level of cytochrome P-450. In addition to affecting cytochrome P-450, carbon tetrachloride is associated with a second severe block involving the release of formaldehyde from the N-oxide intermediate.  相似文献   

13.
1. DNA was extracted from livers, kidneys and lungs of Syrian golden hamsters at various times (up to 96h) after injection of a hepatocarcinogenic dose of [14C]dimethylnitrosamine. Purine bases were released from the DNA by mild acid hydrolysis and separated by Sephadex G-10 chromatography. 2. At 7h after dimethylnitrosamine administration liver DNA was alkylated to the greatest extent, followed by that of lung and kidney, the values for which were 8 and 3% respectively of those for liver. 3. The O6-methylguanine/7-methylguanine ratios were initially the same in all three organs and in the liver DNA of rats under similar conditions of dose. 4. O6-Methylguanine was the most persistent alkylated purine in all three hamster tissues. There was evidence for excision of 7-methyl-guanine, the highest activity for this being present in the liver. 5. Detectable amounts of the minor products 3-methyladenine, 1-methyladenine, 3-methylguanine and 7-methyladenine were present in most hamster tissues, and their individual rates of loss from liver DNA were determined. 6. Ring-labelling of the normal purines in DNA was highest in the liver, followed closely by the lung (80% of that in liver) whereas the kidney had very low incorporation (3% of that in liver). 7. The results are discussed with respect to the hepatotoxicity of dimethylnitrosamine, the miscoding potential of the various alkylation products and the induction of liver tumours in hamsters.  相似文献   

14.
The metabolism of benzo[a]pyrene (BP) by microsomal fractions of the skin, lungs and liver of the mouse, and the effects on this process of pretreatment with the xenobiotics phenobarbital (PB) and 3-methylcholanthrene (3-MC) were examined. Differences between the untreated tissues were found both in terms of the total amounts of diol recovered and in the relative proportions of the individual diols extracted following incubation. Induction with PB or 3-MC significantly altered the profiles of metabolic diols obtained with epidermal and hepatic microsomes compared with their respective controls. Pulmonary microsomes showed similar trends to those obtained with liver microsomes but these were not statistically significant. The optical purity of the BP-7,8-diol that was formed by each microsomal type was examined by direct resolution of the enantiomers on HPLC using a chiral stationary phase. In each case the (-)-7R,8R-enantiomer predominated. Pretreatment with 3-MC significantly decreased the optical purity of BP-7,8-diol recovered from incubations with skin microsomes, but significantly increased the optical purity of the diol extracted from incubations with lung and liver microsomes. In addition to the diols, an unidentified BP metabolite was found that eluted between BP-9,10- and 4,5-diol on a reverse-phase high-performance liquid chromatography (HPLC) system and which represented a major product in extracts of incubations of BP with both induced and uninduced skin and lung microsomal fractions.  相似文献   

15.
Samples of two human livers taken during operation of kidney donor patients were processed for microsome fractions and used for metabolization of cyclophosphamide (CP) and dimethylnitrosamine (DMN) in combination with the NADPH-generating system. Rat-liver microsomes were checked for comparison. Induction of chromatid aberrations and sister-chromatid exchanges in a newly isolated clone of Chinese hamster fibroblasts served as indicators of activity. Human S-9 fractions standardized on protein content showed strong variations of CP and DMN activation. Whereas liver microsomes of one patient (who also suffered from Gaucher's disease) were highly active for both pre-carcinogens and metabolized DMN at the same level as the uninduced rat-liver microsomes, the S-9 fraction from the second patient failed to activate CP, but was distinctly positive for DMN. It is suggested that samples of liver and other organs of renal transplant donors might be a practicable source of freshly prepared human microsome fractions usable in biochemical, genetic and carcinogenetic studies. Problems concerning the extrapolation of results are discussed.  相似文献   

16.
The human liver cytochrome P-450 (P-450) proteins responsible for catalyzing the oxidation of mephenytoin, tolbutamide, and hexobarbital are encoded by a multigene family (CYP2C). Although several cDNA clones and proteins related to this "P-450MP" family have been isolated, assignment of specific catalytic activities remains uncertain. Sulfaphenazole was found to inhibit tolbutamide hydroxylation to a greater extent than mephenytoin or hexobarbital hydroxylation. The inhibition by sulfaphenazole was competitive for tolbutamide and hexobarbital hydroxylation but with much different Ki values (5 vs 480 microM, respectively). Inhibition of mephenytoin hydroxylase was not competitive. The results suggest that different P-450 proteins in the P450MP family may be involved in the metabolism of these compounds. A cDNA clone (MP-8) related to the P-450MP family, isolated from a bacteriophage lambda gt11 human liver library, was expressed in Saccharomyces cerevisiae by using the pAAH5 expression vector. Yeast transformed with pAAH5 containing the MP-8 sequence (pAAH5/MP-8) showed a ferrous-CO spectrum typical of the P-450 proteins. Immunoblotting with anti-P450MP revealed that pAAH5/MP-8 microsomes contained a protein with an Mr similar to that of P-450MP-1 (approximately 48,000) that was not present in microsomes from yeast transformed with pAAH5 alone (1.7 X 10(4) molecules of the expressed P-450 per cell). Microsomes from pAAH5/MP-8 contained no detectable mephenytoin 4'-hydroxylase activity but were more active in tolbutamide hydroxylation, on a nanomoles of P-450 basis, than human liver microsomes. The pAAH5/MP-8 microsomes also contained hexobarbital 3'-hydroxylase activity, although the enrichment compared to liver microsomes was not great with respect to the tolbutamide hydroxylase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. BD-IV rats were given labelled dimethylnitrosamine (2 mg/kg) by stomach tube on weekdays (Monday to Friday) for up to 24 weeks. The rats killed after 2, 4, 8, 16 and 24 weeks of treatment (72 h after the final dimethylnitrosamine gavage) and DNA was isolated from the pooled livers, kidneys and lungs. Purine bases were released from the DNA by mild acid hydrolysis and separated by Sephadex G-10 chromatography. 2. Throughout the experiment, the content of 7-methylguanine in liver DNA was approx. 16 times that in kidney and lung. The amount of this product increased in the DNA of all three tissues up to 16 weeks, but by 24 weeks had decreased by 20% in the liver and 46% in the other tissues. 3. O6-Methylguanine was not detected in liver DNA, but was easily measured in kidney and lung DNA after 4 weeks of dimethylnitrosamine administration. The amount of O6-methylguanine in kidney and lung DNA increased relative to that of 7-methylguanine, and by 24 weeks was 60% of the 7-methylguanine content in both tissues. 4. Incorporation of radioactive C1 breakdown products of dimethylnitrosamine into normal purines in DNA increased continuously in all three tissues. 5. The results are discussed with respect to the specific hepatocarcinogenic effect of chronic administration of dimethylnitrosamine and the possible contribution of increased DNA repair and DNA synthesis.  相似文献   

18.
1. Ruthenium Red-insensitive Ca2+ transport in the mouse ascites sarcoma 180/TG is enriched in a 'heavy' microsomal fraction (microsomes) sedimented at 35 000 g for 20 min. The subcellular distribution of this Ca2+ transport differed from that of Ruthenium Red-sensitive Ca2+ transport and (Na+ + K+)-dependent ATPase activity, but was similar to that of glucose 6-phosphatase. 2. The affinity of this transport system for 'free' Ca2+ is high (Km approx. 6 microM) and that for MgATP somewhat lower (Km approx. 100 microM). Ca2+ transport by the tumour microsomes, by contrast with that by liver microsomes, was greatly stimulated by low concentrations of P1. 3. Although incubation of intact ascites cells with glucagon led to an increase in intracellular cyclic AMP, no stable increase in the initial rate of Ca2+ transport in the subsequently isolated 'heavy' microsomes could be detected as in similar experiments carried out previously with rat liver cells. Reconstitution experiments suggest that a deficiency exists in the tumour microsomal membrane such that an action of glucagon that is normally present in rat liver microsomes is not evoked.  相似文献   

19.
The ability of liver microsomes, sites of synthesis of 25-hydroxycholecalciferol, to further metabolize 25-hydroxycholecalciferol has been assessed. When liver microsomes were incubated with 25-hydroxycholecalciferol in the presence of cytosol, a metabolite was isolated that comigrated with 8 alpha,25-dihydroxy-9,10-seco-4,6,10(19)-cholestatrien-3- one in three different chromatographic systems. The ultraviolet spectrum (220-350 nm) and mass spectrum of the purified metabolite were identical to that of synthetic 8 alpha,25-dihydroxy-9,10-seco-4,6,10(19)-cholestatrien-3-one. This study indicates that liver microsomes convert 25-hydroxycholecalciferol to 8 alpha,25-dihydroxy-9,10-seco-4,6,10(19)-cholestatrien-3-one. The significance of this metabolite, which has been shown previously by others to be produced by alveolar macrophages, has yet to be determined.  相似文献   

20.
The metabolism of benzo(a)pyrene [BP], a model carcinogenic PAH, by hepatic microsomes of two duck species, mallard (Anas platyrhynchos) and common merganser (Mergus merganser americanus) collected from chemically-contaminated and relatively non-contaminated areas was investigated. The rate of metabolism of BP by liver microsomes of common merganser and mallard collected from polluted areas (2,650 +/- 310 and 2,200 +/- 310 pmol/min per mg microsomal protein, respectively) was significantly higher than that obtained with liver microsomes of the two species collected from non-polluted areas (334 +/- 33 and 231 +/- 30 pmol/min per mg microsomal protein, respectively). The level of cytochrome P-450 1A1 was significantly higher in the liver microsomes of both duck species from the polluted areas as compared to the ducks from the non-polluted areas. The major BP metabolites, including BP-9, 10-diol, BP-4, 5-diol, BP-7, 8-diol, BP-1, 6-dione, BP-3, 6-dione, BP-6, 12-dione, 9-hydroxy-BP and 3-hydroxy-BP, formed by liver microsomes of both duck species from polluted and non-polluted areas, were qualitatively similar. However, the patterns of these metabolites were considerably different from each other. Liver microsomes of ducks from the polluted areas produced a higher proportion of benzo-ring dihydrodiols than the liver microsomes of ducks from the non-polluted areas, which converted a greater proportion of BP to BP-phenols. The predominant enantiomer of BP-7,8-diol formed by hepatic microsomes of the two duck species had an (-)R,R absolute stereochemistry. The data suggest that duck and rat liver microsomal enzymes have different regioselectivity but similar stereoselectivity in the metabolism of BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号