首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among women infected with carcinogenic human papillomavirus (HPV), there is a two- to five-fold increased risk of cervical precancer and cancer in women who smoke compared to those who do not smoke. Because tobacco smoke contains carcinogenic polycyclic aromatic hydrocarbons (PAHs), it was of interest to examine human cervical tissue for PAH-DNA adduct formation. Here, we measured PAH-DNA adduct formation in cervical biopsies collected in follow-up among women who tested positive for carcinogenic HPV at baseline. A semi-quantitative immunohistochemistry (IHC) method using antiserum elicited against DNA modified with r7,t8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) was used to measure nuclear PAH-DNA adduct formation. Cultured human cervical keratinocytes exposed to 0, 0.153, or 0.331microM BPDE showed dose-dependent increases in r7,t8,t9-trihydroxy-c-10-(N(2)deoxyguanosyl)-7,8,9,10-tetrahydro-benzo[a]pyrene (BPdG) adducts. For BPdG adduct analysis, paraffin-embedded keratinocytes were stained by IHC with analysis of nuclear color intensity by Automated Cellular Imaging System (ACIS) and, in parallel cultures, extracted DNA was assayed by quantitative BPDE-DNA chemiluminescence immunoassay (CIA). For paraffin-embedded samples from carcinogenic HPV-infected women, normal-appearing cervical squamous epithelium suitable for scoring was found in samples from 75 of the 114 individuals, including 29 cases of cervical precancer or cancer and 46 controls. With a lower limit of detection of 20 adducts/10(8) nucleotides, detectable PAH-DNA adduct values ranged from 25 to 191/10(8) nucleotides, with a median of 75/10(8) nucleotides. PAH-DNA adduct values above 150/10(8) nucleotides were found in eight samples, and in three samples adducts were non-detectable. There was no correlation between PAH-DNA adduct formation and either smoking or case status. Therefore, PAH-DNA adduct formation as measured by this methodology did not appear related to the increased risk of cervical precancer and cancer among carcinogenic HPV-infected smokers.  相似文献   

2.
Human nucleotide excision repair processes carcinogen-DNA adducts at highly variable rates, even at adjacent sites along individual genes. Here, we identify conformational determinants of fast or slow repair by testing excision of N2-guanine adducts formed by benzo[a]pyrene diol epoxide (BPDE), a potent and ubiquitous mutagen that induces mainly G x C-->T x A transversions and frameshift deletions. We found that human nucleotide excision repair processes the predominant (+)-trans-BPDE-N2-dG adduct 15 times less efficiently than a standard acetylaminofluorene-C8-dG lesion in the same sequence. No difference was observed between (+)-trans- and (-)-trans-BPDE-N2-dG, but excision was enhanced about 10-fold by changing the adduct configurations to either (+)-cis- or (-)-cis-BPDE-N2-dG. Conversely, excision of (+)-cis- and (-)-cis- but not (+)-trans-BPDE-N2-dG was reduced about 10-fold when the complementary cytosine was replaced by adenine, and excision of these BPDE lesions was essentially abolished when the complementary deoxyribonucleotide was missing. Thus, a set of chemically identical BPDE adducts yielded a greater-than-100-fold range of repair rates, demonstrating that nucleotide excision repair activity is entirely dictated by local DNA conformation. In particular, this unique comparison between structurally highly defined substrates shows that fast excision of BPDE-N2-dG lesions is correlated with displacement of both the modified guanine and its partner base in the complementary strand from their normal intrahelical positions. The very slow excision of carcinogen-DNA adducts located opposite deletion sites reveals a cellular strategy that minimizes the fixation of frameshifts after mutagenic translesion synthesis.  相似文献   

3.
Limited sensitivity of existing assays has prevented investigation of whether Adriamycin–DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin–DNA adducts/104 bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin–DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [14C]Adriamycin–DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin–DNA adducts at clinically-relevant Adriamycin concentrations. [14C]Adriamycin treatment (25 nM) resulted in 4.4 ± 1.0 adducts/107 bp (~1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin–DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin–DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues.  相似文献   

4.
Limited sensitivity of existing assays has prevented investigation of whether Adriamycin-DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin-DNA adducts/10(4) bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin-DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [(14)C]Adriamycin-DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin-DNA adducts at clinically-relevant Adriamycin concentrations. [(14)C]Adriamycin treatment (25 nM) resulted in 4.4 +/- 1.0 adducts/10(7) bp ( approximately 1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin-DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues.  相似文献   

5.
The effects of secondary structure on DNA modification by (+/-)-7 beta, 9 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzol[a]pyrene [(+/-)BPDE I] were investigated. No differences in the total extent of (+/-) BPDE I binding to double- and single-stranded calf thymus DNA were found. High-performance liquid chromatography (LC) of the nucleoside adducts obtained from hydrolysates of native and denatured calf thymus, as well as from superhelical and linear plasmid DNA, indicated that in all cases the major adduct (60--80% of total adducts) was formed by reaction of the (+) enantiomer of BPDE I with the N-2 position of dG residues in the DNA. A minor adduct formed from the reaction of the (-) enantiomer with dG residues was also detected and was present in greater amounts in denautred DNA than in native DNA. Small amounts of BPDE I--dA and BPDE I--dC adducts were also detected in both the single- and double-stranded DNAs. Restriction enzyme analysis of BPDE I modified SV40 and phage lambda DNA provided evidence that the modification of DNA by this carcinogen is fairly random with respect to nucleotide sequence. Partial hydrolysis of modified plasmid DNA by the single-strand-specific S1 nuclease and LC analysis of the nucleoside adducts in the digested and undigested fractions of the DNA revealed no preferential excision by the S1 nuclease of the different BPDE I--deoxynucleoside adducts. Functional changes in BPDE I modified DNA were demonstrated. With increasing extents of modification, there was a decrease in the ability of plasmid DNA to transfect a receptive Escherichia coli strain to antibiotic resistance.  相似文献   

6.
The formation and removal of covalent adducts of racemic 7 beta, 8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE I) was studied in nucleosomal DNA of confluent cultures of normal human fibroblasts (NF). For this purpose NF were prelabeled in their DNA with [14C]-thymidine and treated with [3H]BPDE I. The adducts were composed of 77% (7R)-N2-(7 beta, 8 alpha, 9 alpha-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene-10-yl)deoxyguanosine, 12% of the corresponding 7S-enantiomer and of minor amounts of adducts to cytosine and adenine. The adduct composition did not change significantly in 24-h post treatment incubation. Bulk mononucleosomes were prepared from micrococcal nuclease digested nuclei and their DNA analyzed by gel electrophoresis. The adduct concentrations were determined in 145 base pair (b.p.) nucleosomal core-DNA, 165 b.p. chromatosomal DNA and in total nuclear DNA. From these data the concentration in nucleosomal linker-DNA was calculated. The initial adduct distribution was non-random and 6.3 times higher in 47 b.p. linker-DNA relative to 145 b.p. core-DNA and 9.2 times higher in 27 b.p. linker-DNA relative to 165 b.p. chromatosomal DNA. Adduct removal was very rapid during the first 8 h and more efficient from linker-DNA than from core-DNA. After this early phase the adducts located in 145 b.p. core-DNA became refractory to further excision and represent a major fraction of the adducts persisting in DNA of NF over a prolonged period. In contrast, further adduct removal was observed from nucleosomal linker-DNA.  相似文献   

7.
Hu W  Feng Z  Tang MS 《Biochemistry》2003,42(33):10012-10023
In the ras gene superfamily, codon 12 (-TGGTG-) of the K-ras gene is the most frequently mutated codon in human cancers. Recently, we have found that bulky chemical carcinogens preferentially form DNA adducts at codons 12 and 14 (-CGTAG-) in the K-ras gene in normal human bronchial epithelial (NHBE) cells. Furthermore, DNA adducts formed at codon 12 of the K-ras gene are poorly repaired compared with those at other codons including codon 14. These results suggest that targeted carcinogen-DNA adduct formation is a major reason for the observed high mutation frequency at codon 12 of the K-ras gene in human cancers. This preferential carcinogen-DNA adduct formation at codons 12 and 14 could result from effects of (1) primary sequences of these codons and their surrounding codons in the K-ras gene, (2) the chromatin structure, and/or (3) epigenetic factors such as C5 cytosine methylation or other DNA modifications at these codons and their surrounding codons. To distinguish these possibilities, we have introduced modifications with benzo[a]pyrene diol epoxide, N-hydroxy-2-aminofluorene, and aflatoxin B1 8,9-epoxide in (1) naked intact genomic DNA isolated from NHBE cells, (2) fragmented genomic DNA digested by restriction enzymes, and (3) in vitro synthesized DNA fragments containing the K-ras gene exon 1 sequence with or without methylation of the cytosines at CpG sites and the cytosines pairing with the guanines of codons 12 and 14. The distribution of carcinogen-DNA adducts in the K-ras gene was mapped at the nucleotide sequence level using the UvrABC nuclease incision method with or without the ligation-mediated polymerase chain reaction technique. We have found that carcinogens preferentially form adducts at codons 12 and 14 in the K-ras gene exon 1 in intact as well as in fragmented genomic DNA. In contrast, this preferential DNA adduct formation at codons 12 and 14 was not observed in PCR-amplified DNA fragments containing the K-ras gene exon 1 sequence. Methylation of the cytosine at the CpG site of codon 14, or the cytosine pairing with guanine of codon 14, greatly enhanced carcinogen-DNA adduct formation at codon 14 but did not affect carcinogen-DNA adduct formation at codon 12. Methylation of the cytosine pairing with the guanine of codon 12 also did not enhance carcinogen-DNA adduct formation at codon 12. Furthermore, we found that the cytosine at the CpG site of codon 14 is highly methylated in NHBE cells. These results suggest that cytosine methylation at the CpG site is the major reason for the preferential DNA damage at codon 14 and that epigenetic modification(s) other than cytosine methylation may contribute to the preferential DNA damage at codon 12 of the K-ras gene.  相似文献   

8.
Studies showing that different types of DNA adducts are repaired in human cells at different rates suggest that DNA adduct conformation is the major determinant of the rate of nucleotide excision repair. However, recent studies of repair of cyclobutane pyrimidine dimers or benzo[a]pyrene diol epoxide (BPDE)-induced adducts at the nucleotide level in DNA of normal human fibroblasts indicate that the rate of repair of the same adduct at different nucleotide positions can vary up to 10-fold, suggesting an important role for local DNA conformation. To see if site-specific DNA repair is a common phenomenon for bulky DNA adducts, we determined the rate of repair of 1-nitrosopyrene (1-NOP)-induced adducts in exon 3 of the hypoxanthine phosphoribosyltransferase gene at the nucleotide level using ligation-mediated PCR. To distinguish between the contributions of adduct conformation and local DNA conformation to the rate of repair, we compared the results obtained with 1-NOP with those we obtained previously using BPDE. The principal DNA adduct formed by either agent involves guanine. We found that rates of repair of 1-NOP-induced adducts also varied significantly at the nucleotide level, but the pattern of site-specific repair differed from that of BPDE-induced adducts at the same guanine positions in the same region of DNA. The average rate of excision repair of 1-NOP adducts in exon 3 was two to three times faster than that of BPDE adducts, but at particular nucleotides the rate was slower or faster than that of BPDE adducts or, in some cases, equal to that of BPDE adducts. These results indicate that the contribution of the local DNA conformation to the rate of repair at a particular nucleotide position depends upon the specific DNA adduct involved. However, the data also indicate that the conformation of the DNA adduct is not the only factor contributing to the rate of repair at different nucleotide positions. Instead, the rate of repair at a particular nucleotide position depends on the interaction between the specific adduct conformation and the local DNA conformation at that nucleotide.  相似文献   

9.
The technique of 32P postlabeling of DNA-carcinogen adducts is a useful and extremely sensitive method of detecting and quantitating DNA damage by carcinogens. We have adapted the 32P method to analysis by high-pressure liquid chromatography, making the procedure more rapid and convenient than when thin-layer chromatography is used. Following DNA isolation and hydrolysis, nucleotide-carcinogen adducts are enhanced relative to normal nucleotides by solvent extraction and then labeled with high-specific-activity [gamma-32P]ATP. The resulting 32P-postlabeled nucleotides are resolved by reverse-phase ion-pair HPLC. After as little as 3 h of exposure to carcinogens, DNA adducts can be demonstrated from 1 microgram or less of mouse hepatic DNA. Acetylated and nonacetylated adducts can be resolved from hepatic DNA of mice treated with 2-aminofluorene. Differences in DNA damage as measured by adduct formation were demonstrated between "rapid" and "slow" acetylator mouse strains. Rapid-acetylator C57BL/6J mice had three times the amount of hepatic DNA adducts as slow-acetylator A/J mice 3 h after a 60 mg/kg dose of 2-aminofluorene. 4-Aminobiphenyl and 2-naphthylamine each showed an adduct peak with retention time similar to that of the nonacetylated 2-aminofluorene adduct, while benzidine gave a major adduct that eluted somewhat earlier as would be expected for an acetylated adduct. The alkenylbenzenes, safrole and methyleugenol, also formed DNA adducts detectable by this method. DNA prepared from skin of mice painted with benzo[a]pyrene also contained carcinogen-DNA adducts detectable and resolvable by HPLC analysis following 32P postlabeling. The combination of HPLC with 32P postlabeling appears to be a useful technique for the rapid detection and quantitation of DNA damage caused by several classes of aromatic carcinogens.  相似文献   

10.
Prior work suggests that body size and fat content may influence carcinogen-DNA adduct levels measured in white blood cells. Here we consider energy balance more broadly by assessing the impact of body mass index (BMI), physical activity and calorie intake on the presence of benzo[a]pyrene-DNA (BP-DNA) adducts in white blood cell DNA. Our cross-sectional study employed subjects from a separately conducted intervention trial. Physical activity and food intake data were collected at 12 and 15 months of follow-up, respectively. BP-DNA adducts were measured by high-performance liquid chromatography (HPLC) in white blood cell samples collected at 12 months of follow-up. Complete data on all variables were available from 143 subjects. Logistic regression showed that BMI was inversely associated with the presence of detectable adducts (OR = 0.90, p=0.02), and that hours of moderate-intensity physical activity were positively associated with the presence of detectable adducts (OR = 1.04, p=0.04). These results provide further evidence that body fat content influences carcinogen-DNA adduct levels, probably by altering the distribution of the lipophilic parent compound.  相似文献   

11.
Prior work suggests that body size and fat content may influence carcinogen-DNA adduct levels measured in white blood cells. Here we consider energy balance more broadly by assessing the impact of body mass index (BMI), physical activity and calorie intake on the presence of benzo[a]pyrene-DNA (BP-DNA) adducts in white blood cell DNA. Our cross-sectional study employed subjects from a separately conducted intervention trial. Physical activity and food intake data were collected at 12 and 15 months of follow-up, respectively. BP-DNA adducts were measured by high-performance liquid chromatography (HPLC) in white blood cell samples collected at 12 months of follow-up. Complete data on all variables were available from 143 subjects. Logistic regression showed that BMI was inversely associated with the presence of detectable adducts (OR = 0.90, p=0.02), and that hours of moderate-intensity physical activity were positively associated with the presence of detectable adducts (OR = 1.04, p=0.04). These results provide further evidence that body fat content influences carcinogen-DNA adduct levels, probably by altering the distribution of the lipophilic parent compound.  相似文献   

12.
The two major metabolic pathways of benzo[a]pyrene (BP) that lead to DNA lesions are monooxygenation that results in diolepoxides (BPDE) and one-electron oxidation that yields a BP radical cation. These pathways result in formation of stable and depurinating DNA adducts, respectively. Most in vivo animal studies with BP, however, have employed dosage/DNA adduct levels several orders of magnitude higher than the DNA damage level expected from environmentally relevant exposures. Presented are results of experiments in which A/J strain mice were intraperitoneally exposed to 50-microg/g doses of BP. It is shown that non-line-narrowed fluorescence and fluorescence line-narrowing spectroscopies possess the selectivity and sensitivity to distinguish between helix-external, base-stacked, and intercalated conformations of DNA-BPDE adducts formed in lung tissue. Concentrations measured by 32P postlabeling 2 and 3 days after intraperitoneal injection were 420-430 and 600-830 amol BPDE-type adducts per microg DNA. The external and base-stacked conformations are attributed mainly to (+)-trans-anti-BPDE-N2dG and the intercalated conformations to (+)-cis-anti adducts. A stable adduct derived from 9-OH-BP-4,5-epoxide was also detected at a concentration about a factor of 10 lower than the above concentrations. The DNA supernatants were analyzed for the presence of depurinating BP-derived adducts by capillary electrophoresis laser-induced fluorescence and high-performance liquid chromatography mass spectrometry.  相似文献   

13.
Adducts of catechols and histidine, which are produced by reactions of 1,2-quinones and p-quinone methides with histidyl residues in proteins incorporated into the insect exoskeleton, were characterized using electrospray ionization mass spectrometry (ESMS), tandem electrospray mass spectrometry (ESMS-MS, collision-induced dissociation), and ion trap mass spectrometry (ITMS). Compounds examined included adducts obtained from acid hydrolysates of Manduca sexta (tobacco hornworm) pupal cuticle exuviae and products obtained from model reactions under defined conditions. The ESMS and ITMS spectra of 6-(N-3')-histidyldopamine [6-(N-3')-His-DA, pi isomer] isolated from M. sexta cuticle were dominated by a [M + H]+ ion at m/z 308, rather than the expected m/z 307. High-resolution fast atom bombardment MS yielded an empirical formula of C14H18N3O5, which was consistent with this compound being 6-(N-1')-histidyl-2-(3, 4-dihydroxyphenyl)ethanol [6-(N-1')-His-DOPET] instead of a DA adduct. Similar results were obtained when histidyl-catechol compounds linked at C-7 of the catechol were examined; the (N-1') isomer was confirmed as a DA adduct, and the (N-3') isomer identified as an (N-1')-DOPET derivative. Direct MS analysis of unfractionated cuticle hydrolysate revealed intense parent and product ions characteristic of 6- and 7-linked adducts of histidine and DOPET. Mass spectrometric analysis of model adducts synthesized by electrochemical oxidative coupling of N-acetyldopamine (NADA) quinone and N-acetylhistidine (NAcH) identified the point of attachment in the two isomers. A prominent product ion corresponding to loss of CO2 from [M + H]+ of 2-NAcH-NADA confirmed this as being the (N-3') isomer. Loss of (H2O + CO) from 6-NAcH-NADA suggested that this adduct was the (N-1') isomer. The results support the hypothesis that insect cuticle sclerotization involves the formation of C-N cross-links between histidine residues in cuticular proteins, and both ring and side-chain carbons of three catechols: NADA, N-beta-alanyldopamine, and DOPET.  相似文献   

14.
The minor groove of undistorted A-DNA provides a good binding site for planar, hydrophobic moieties such as unmetabolized polycyclic aromatic hydrocarbons (PAHs), and the base pairs at the ends of short oligodeoxynucleotide helices. It also accommodates the chief adduct derived from the metabolically activated form of the carcinogen benzo[a]pyrene. B-DNA lacks such a site. Computerized models have been generated for the major (N2-guanine-linked) adducts formed at this site by both + and - enantiomers of anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (anti-BPDE) with poly(dG).poly(dC) in the A-DNA conformation. The BPDE adducts lie in the shallow, relatively hydrophobic minor groove of the A-DNA after empirical potential energy minimization using the program AMBER. We term this binding mode "side-stacking." The side-stacked + anti-BPDE may constitute the chief carcinogenic lesion derived from benzo[a]pyrene.  相似文献   

15.
DNA adducts of the environmental carcinogen benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) interact stereospecifically with prokaryotic and eukaryotic polymerases in vitro. Toward understanding the capacity to replicate past different diastereomers of BPDE at specific sites in DNA, six deoxyoligonucleotides, each 33 bases long, were constructed with stereochemically defined BPDE adducts on adenine N6 at position two of the human N-ras codon 61. Four polymerases that were studied under single encounters with the template-primer complex terminated synthesis one base 3' to the lesion with all the adducted templates. When multiple encounters between polymerase and substrate were permitted, each of the polymerases analyzed revealed a unique pattern for a given adducted template. The general replication pattern was encompassed under two categories, reflecting the significance of the R and S configurations of C10 of the pyrenyl ring attached to the single-stranded DNA template. Furthermore, within each of these categories, every polymerase demonstrated distinct quantitative differences in product accumulation at a given site, for the various adducted templates. Among the polymerases utilized in this study, exonuclease-deficient Klenow fragment of polymerase I (exo- KF) exhibited the most efficient translesion synthesis resulting in approximately 16% full-length products with the modified templates bearing adducts with C10-S configuration. In contrast, chain elongation with bacteriophage T4 DNA polymerase bearing an active 3'-->5' exonucleolytic activity was most strongly inhibited by all six BPDE-adducted templates. Misincorporation of A opposite the adduct occurred in all the templates when polymerized with Sequenase, whereas exo- KF preferentially incorporated C opposite the C10-R BPDE adducts and A opposite the C10-S BPDE adducts.  相似文献   

16.
Phillips DH  Arlt VM 《Nature protocols》2007,2(11):2772-2781
32P-postlabeling analysis is an ultrasensitive method for the detection and quantitation of carcinogen-DNA adducts. It consists of four principal steps: (i) enzymatic digestion of DNA to nucleoside 3'-monophosphates; (ii) enrichment of the adduct fraction of the DNA digest; (iii) 5'-labeling of the adducts by transfer of 32P-orthophosphate from [gamma-32P]ATP mediated by polynucleotide kinase (PNK); (iv) chromatographic or electrophoretic separation of the labeled adducts or modified nucleotides and quantitation by measurement of their radioactive decay. The assay requires only microgram quantities of DNA and is capable of detecting adducts at frequencies as low as 1 in 10(10) nt, making it applicable to the detection of events resulting from environmental exposures, or experiments using physiological concentrations of agents. It has a wide range of applications in human, animal and in vitro studies, and can be used for a wide variety of classes of compound and for the detection of adducts formed by complex mixtures. This protocol can be completed in 3 d.  相似文献   

17.
Mutations induced by polycyclic aromatic hydrocarbons (PAH) are expected to be produced when error-prone DNA replication occurs across unrepaired DNA lesions formed by reactive PAH metabolites such as diol epoxides. The mutagenicity of the two PAH-diol epoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (+/-)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. We applied the (32)P-postlabelling assay to analyze adduct levels and the hprt gene mutation assay for monitoring mutations. It was found that the mutagenicity per target dose was 4 times higher for DBPDE compared to BPDE in NER proficient cells while in NER deficient cells, the mutagenicity per target dose was 1.4 times higher for BPDE. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the hprt gene. The results suggest that NER of BPDE lesions are 5 times more efficient than for DBPDE lesions, in NER proficient cells. However, DBPDE adducts block replication more efficiently and also induce 6 times more recombination events in the hprt gene than adducts of BPDE, suggesting that DBPDE adducts are, to a larger extent, bypassed by homologous recombination. The results obtained here indicate that the mutagenicity of PAH is influenced not only by NER, but also by replication bypass fidelity. This has been postulated earlier based on results using in vitro enzyme assays, but is now also being recognized in terms of forward mutations in intact mammalian cells.  相似文献   

18.
The dynamics of enzyme-catalyzed glutathione conjugation was studied by electrospray quadrupole/time-of-flight (Q-TOF) mass spectrometry with a nanospray interface. After incubation of human glutathione S-transferase A1-1 (GT) with glutathione (GSH) and an electrophilic substrate, electrospray indicated the presence of enzyme/product adducts such as [2GT + product], [2GT + GSH' + product], and [2GT + 2 products] as well as [2GT] and [2GT + GSH']. The relative abundance of GT/product adduct ions increased with incubation time. The wide m/z range of detection (m/z 300-5000) allowed the observation of product, suggested to be released from enzyme/product adducts, in the same mass spectrum. The noncovalent complexes of GT/product were completely replaced by GT/inhibitor complexes following the addition of GT inhibitor to the incubation mixture. Furthermore, a collision-activated decomposition analysis of these ion species provided us with useful information to interpret or identify ion species. The results suggest that electrospray Q-TOF mass spectrometry is a powerful approach for studying the dynamics of the enzyme reaction as well as the structure of enzyme complexes at high sensitivity.  相似文献   

19.
A new method was developed to determine the mutagenic efficacy of a suspected mutagen by employing green fluorescent protein (GFP) as a direct biosensor for mutation detection. Alterations in target gene (AcGFP1) expression after mutagen [(±)-7p,8a-dihydroxy-9a,10a-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)] treatment were measured to detect the mutagenic efficacy of the carcinogen. In contrast to mutagen treatment of the entire plasmid or cell culture, the target AcGFP1gene devoid of the plasmid backbone was exposed to BPDE (10–500 μM) to eliminate the need for an additional fusion gene. Shuttle vectors (pAcGFP-N1) were religated to the AcGFP1 gene with BPDE adducts (0–8.59 μM) and replicated in the eukaryotic host. This approach eliminated false-negative errors in target gene expression that arose from BPDE adduct formation in the residual plasmid backbone rather than in the AcGFP1 gene. Determination of the BPDE–AcGFP1 adducts allowed the quantitative mutagenic effect of the BPDE adducts on AcGFP1 gene expression to be monitored. The results obtained with flow cytometry and confocal microscopy validate our method and demonstrate efficient and direct use of GFP as a biosensor for mutation detection.  相似文献   

20.
A benzo[a]pyrene(BP)-Gua adduct was extracted in the urine of rats treated with BP. Some (0.15%) of the administered dose of BP was excreted as BP-Gua within 48 h. A double labelling experiment demonstrated that the excreted product contained both a BP and a Gua moiety. Partially hepatectomized rats treated with [14C]Gua during the regenerative phase were injected with [3H]BP and the urine collected and processed by chromatographic procedures. The adduct had similar chromatographic properties to the adduct released from human PLC/5 cells treated with 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and co-chromatographed with 7-BPDE-Gua released from BPDE-adducted DNA under aqueous conditions. Detection and quantitation of BP-Gua offers an alternative, non-invasive method of monitoring individuals exposed to carcinogenic polycyclic aromatic hydrocarbons (PAHs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号