首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abscisic acid (ABA) is thought to play a role in inhibiting or aborting kernel growth during water deficit. To test the responsiveness of early endosperm development to ABA concentrations, cylinders containing (±)ABA in a buffered agar medium were applied to the apical pericarp surface of kernels on intact, well‐watered maize ( Zea mays L. cv. Pioneer Brand 3925) plants from 5 to 11 days after pollination (DAP). Endosperm nuclei were analyzed by flow cytometry to assess effects on cell division and endoreduplication. ABA treatments of ≥ 100 µM substantially decreased endosperm cell numbers and fresh weight accumulation, but did not affect average cell size. ABA at ≥ 300 µM decreased the proportion of nuclei in the size classes ≥ 12C, indicating that the rate of transition to endoreduplication status was inhibited, and decreased the progressive advance from 12C to 24C to 48C, indicating that the rate of S‐phase cycling of endoreduplicating cells was inhibited. We conclude that cell division was more responsive to ABA concentrations than were endoreduplication or cell expansion growth.  相似文献   

2.
The mechanism by which the rate of cell proliferation is regulated in different regions of the root apical meristem is unknown. The cell populations comprising the root cap and meristem cycle at different rates, proliferation being particularly slow in the quiescent centre. In an attempt to detect the control points in the cell cycle of the root apical meristem of Zea mays L. (cv. LG 11), quiescent-centre cells were stimulated to synthesise DNA and to enter mitosis either by decapping or by immersing intact roots in an aqueous 3,3-dimethyl-glutaric acid buffer solution. From microdensitometric and flow-cytometric data, we conclude that, upon immersion, the G2 phase of the cell cycle of intact roots was shortened. However, when 50 M abscisic acid (ABA) was added to the immersion buffer, parameters of the cell cycle were restored to those characteristic of intact roots held in a moist atmosphere. On the other hand, decapping of primary roots preferentially shortened the G1 phase of the cell cycle in the quiescent centre. When supplied to decapped roots, ABA reversed this effect. Therefore, in our model, applied ABA retarded the completion of the cell cycle and acted upon the exit from either the G1 or the G2 phase. Immersion of roots in buffer alone seems to trigger cells to more rapid cycling and may do so by depleting the root of some ABA-like factor.Abbreviations ABA cis-abscisic acid - DGA 3,3-dimethyl-glutaric acid - DAPI 4,6-diamidino-2-phenylindole - LI labelling index We thank Pierre Zaech of the Ludwig Institute, Epalinges, Switzerland, for expert assistance in flow cytometry and Dr. Jean-Marcel Ribaut of our Institute for providing data on exodiffusion and metabolism of ABA.  相似文献   

3.
Han W  Zhang H  Wang MH 《BMB reports》2010,43(12):813-817
Plants undergo cell division throughout their life in order to maintain their growth. It is well known that root and shoot tip of plants possess meristems, which contain quiescent cells. Fluridone (1-methyl-3-phenyl-5-(3-trifluoromethyl (phenyl))-4-(1H)-pyridinone) is an established inhibitor of both ABA and carotenoid biosynthesis. However, the other functions of fluridone remain undiscovered. In this report, we provide experimental evidence that fluridone plays a role in the division of the quiescent centre of the Arabidopsis root meristem. This study examined the effects of exogenous fluridone and ABA on the development of the stem cell niche in Arabidopsis root. We show that fluridone promoted the division of stem cells in the quiescent centre, whereas exogenous ABA suppressed quiescent centre division. Furthermore, we established a novel regulatory function for fluridone by demonstrating that it plays an important role in postembryonic development.  相似文献   

4.
Summary The study of the cell division cycle by means of caffeine labelling inAllium roots, at 15° C, employing intact root and decapitated roots at several levels (0.5, 1.0, 1.5, 2.0, and 2.5 mm) has shown that the number of cycles developed by the cells is constant at each meristem level. This number and the durations of the cycles are not affected by the decapitation. It is suggested that the cell cycle is controlled in the meristematic cells by an intracellular programme which would be developed throughout the meristem.However, the larger the region decapitated is, the more decreases the growth rate of the roots. The removal of the root cap (about 0.5 mm) did not modify the rate of root growth, although it blocked the geotropic response. The quiescent center is proposed as a source of auxin controlling cell elongation.  相似文献   

5.
When growing roots are placed in a horizontal position gravity induces a positive curvature. It is classically considered to be the consequence of a faster elongation rate by the upper side compared to the lower side. A critical examination indicates that the gravireaction is caused by differential cell extension depending on several processes. Some of the endogenous regulators which may control the growth and gravitropism of elongating roots are briefly presented. The growth inhibitors produced or released from the root cap move preferentially in a basipetal direction and accumulate in the lower side of the elongation zone of horizontally maintained roots. The identity of these compounds is far from clear, but one of these inhibitors could be abscisic acid (ABA). However, indol-3y1 acetic acid (IAA) is also important for root growth and gravitropism. ABA may interact with IAA. Two other aspects of root cell extension have also to be carefully considered. An elongation gradient measured from the tip to the base of the root was found to be important for the growth of both vertical and horizontal gravireactive roots. It was changed significantly during the gravipresentation and can be considered as the origin of the differential elongation. Sephadex beads have been used as both growth markers and as monitors of surface pH changes when they contain some pH indicator. This technique has shown that the distribution of cell extension along the main root axis is related to a pH gradient, the proton efflux being larger for faster growing parts of roots. A lateral movement of calcium is obtained when Ca2+ is applied across the tips of horizontally placed roots with a preferential transport towards the lower side. Endogenous calcium, which may accumulate inside the endoplasmic reticulum of some cap cells, may also act in the gravireception. These observations and several others strongly suggest that calcium may play an essential role in controlling root growth and several steps of the root gravireaction.  相似文献   

6.
Grain filling is usually not adequate in later-flowering inferior spikelets in japonica/indica (J/I) hybrid rice (Oryza sativa) although it shows stronger hybrid vigor than indica/indica (I/I) hybrid. This study investigated the potential causes by examining changes in zeatin (Z) + zeatin riboside (ZR), indole-3-acetic acid (IAA), gibberellins (GAs, GA1 + GA4), and abscisic acid (ABA) in spikelets and roots during the grain filling period. The inferior spikelets of J/I hybrid exhibited low rate of endosperm cell division and slow grain filling. During the early grain filing period, they had less Z + ZR, IAA, and ABA, but more GAs, than the earlier-flowering superior spikelets. If compared to the inferior spikelets of the I/I hybrid, the J/I inferior spikelets also had less Z + ZR, IAA, and ABA. Rates of endosperm cell division and grain filling were positively and significantly correlated with Z + ZR and ABA contents in both grains and roots or IAA in grains, whereas not significantly correlated with GAs either in grains or roots or IAA in roots. Applications of kinetin, IAA, or ABA to spikelets, or kinetin and ABA to roots, enhanced cell division and grain filling in the inferior spikelets. Results suggest that low contents of cytokinins and ABA in both grains and roots and low contents of IAA in grains may result in the poor filling of inferior spikelets in the J/I hybrid.  相似文献   

7.
Multicellular organisms regulate cell numbers and cell fate by using asymmetric cell division (ACD) and symmetric cell division (SCD) during their development and to adapt to unfavorable environmental conditions. A stem cell self-renews and generates differentiated cells. In plants, various types of cells are produced by ACD or SCD; however, the molecular mechanisms of ACD or SCD and the cell division mode switch are largely unknown. The moss Physcomitrium (Physcomitrella) patens is a suitable model to study plant stem cells due to its simple anatomy. Here, we report the cell division mode switch induced by abscisic acid (ABA) in P. patens. ABA is synthesized in response to abiotic stresses and induces round-shape cells, called brood cells, from cylindrical protonemal cells. Although two daughter cells with distinct sizes were produced by ACD in a protonemal stem cell on ABA-free media, the sizes of two daughter cells became similar with ABA treatment. Actin microfilaments were spatially localized on the apices of apical stem cells in protonemata on ABA-free media, but the polar accumulation was lost under the condition of ABA treatment. Moreover, ABA treatment conferred an identical cell fate to the daughter cells in terms of cell division activity. Collectively, the results indicate ABA may suppress the ACD characteristics but evoke SCD in cells. We also noticed that ABA-induced brood cells not only self-renewed but regenerated protonemal cells when ABA was removed from the media, suggesting that brood cells are novel stem cells that are induced by environmental signals in P. patens.  相似文献   

8.
Henry Wilkins  R. L. Wain 《Planta》1975,126(1):19-23
Summary Exogeneous application of abscisic acid (ABA) to intact roots of LG 11 maize seedlings inhibits root elongation and induces bending of the root in response to gravity in darkness, even though the roots of these seedlings are not normally positively geotropic in the dark. ABA cannot, however, induce geotropic curvature in dark-exposed decapped roots, thus confirming that the root cap is the site of graviperception in the intact root.Abbreviation ABA abscissic acid  相似文献   

9.
The quiescent centre of primary roots of Zea mays L. (cvs LG 11 and Golden Bantam) consists of a population of slowly cycling diploid cells. These metabolically inactive cells may be triggered to synthesise DNA under specific conditions and constitute a good model for studying the regulation of the cell cycle. An excision and squash technique is described for the quiescent centre which, when coupled with Feulgen and fluorochrome staining, allows nuclear DNA contents to be determined by microdensitometry in less than a day. This technique was coupled with experiments in which excised quiescent centres were placed on solid culture medium into which hormones and radioactive DNA precursors were incorporated. In complementary and control experiments [methyl-3H]thymidine was supplied to intact roots (with or without root caps) by means of fibre-glass cubes as donors.
Progression of the cell cycle was followed by microdensitometry and autoradiography. Distribution of DNA content was similar in excised and squashed quiescent centres and in histological sections. Labelling experiments showed that the quiescent centre is made up of cells that differ in their cycle time. While some labelled cells had reached mitosis after 8 h, others were still in G2 after 16 h of continuous labelling. Excision and culture of the quiescent centre resulted in a dramatic activation of the cell cycle as shown by the labelling index that increased from 15% in intact roots fed during 16 h with [methyl-3H]thymidine to 31% in excised quiescent centres to which radioactive precursor was supplied during the same time. Supplying hormones (50 μ M abscisic acid [ABA], 0. 1 μ M zeatin, 1 μ M zeatin riboside) to quiescent centres via the culture medium restored their inactivity (labelling indices dropped to 1% after ABA. and to 11% after zeatin and zeatin riboside treatments. respectively).  相似文献   

10.
Tissue-6     
In order to study a possible involvement of cdc-like proteinkinases in cell development and tissue differentiation, a polyclonalantibody raised against the evolutionary conserved PSTAIR-regionof p34cdc2-homologue protein kinases (PSTAIR-proteins) was appliedto sections of the maize root apices. PSTAIR-proteins were localizedin the nuclei and the cytoplasm of cells in the root meristem,including the quiescent centre (QC), and of all dividing cellsthat form the lateral root primordia. In most root tissues,the amount of cytoplasmic PSTAIR-proteins progressively declinedwith increasing distance from the root cap junction, becomingrestricted to the nucleus after the cessation of cell divisions.This occurred much nearer to the root cap junction in cellsof the stele, especially in metaxylem cells, than in cells ofthe root cortex. Interesting exceptions were cells of the pericycle,endodermis and the outermost cell rows of stelar parenchyma,which exhibited relatively high levels of the cytoplasmic PSTAIR-proteinsthroughout all developmental zones. After root wounding, rapid cytoplasmic accumulation of PSTAIR-proteinsin cells adjacent to the wound was observed in all tissues ofthe meristem and of the elongation zone. This wound response,which was usually followed by newly-induced cell divisions,was delayed with increasing distance from the root cap junctionin a tissue-specific manner. Since PSTAIR-proteins were foundin the cell nuclei throughout all developmental zones, theyseem to have some nuclear functions which continue even aftercell division has stopped. Key words: Cell cycle, maize roots, cyclin-dependent protein kinases, wounding  相似文献   

11.
12.
Abstract

Exposure of Zea mays seedlings to a continuous electromagnetic field (EMF) for 30 h induced a 30% stimulation in the rate of root elongation compared with the controls. It also resulted in a significant increase of cell expansion, in both the acropetal (metaxylem cell lineage) and basipetal (root cap cells) direction. In addition, in EMF-exposed roots a precocious structural disorder was observed both in differentiating metaxylem cells and root cap cells. All these features may be consistent with an advanced differentiation of root cells that are programmed to die. EMF treatment also resulted in a significant reduction in the size of the quiescent centre in the root apical meristem. The extent to which these responses are causally linked is discussed.  相似文献   

13.
14.
The effects of wheat germ agglutinin (WGA) and phytohemagglutinin (PHA) at the concentration of 1 mg/l on the rate of cell division in the root apical meristem of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and common bean (Phaseolus vulgaris L.) seedlings were compared. WGA enhanced cell division in the roots of barley and rice approximately similarly as in wheat roots but did not affect division of meristematic cells in the roots of common bean seedlings. In contrast PGA enhanced mitotic activity in the root apical meristem of common bean seedlings but did not affect division in the wheat and barley roots. Seedling treatment with lectins shifted the hormonal balance in them toward accumulation of growth activators (IAA and cytokinins). The relationship between lectin and hormonal systems in the control of cell division is discussed.  相似文献   

15.
P. W. Barlow 《Planta》1969,88(3):215-223
Summary In the presence of 10-2 M hydroxyurea cell division is prevented but cell growth continues. The rate of cell growth varies within the apex, depending on the location of the cell. The rate of growth is low in the quiescent centre and non-dividing region of the root cap but higher elsewhere.Indolyl acetic acid causes a transient increase in the rate of cell enlargement but after about 12 hours has no further effect.  相似文献   

16.
The transport of14C-IAA and14C-ABA applied exogenously to root cap toward the elongation zone was investigated in gravi- and light-stimulated primary roots ofZea mays L. cv. Golden Cross Bantam 70. No significant difference of either IAA or ABA in radioactivities was observed between upper and lower halves of elongation zones during the latent period (0–60 min after the stimulation) of gravitropic response. When quantitative analysis of endogenous IAA and ABA by an internal standard method was carried out 60 min after gravi- and/or light-stimulation, no asymmetric redistribution of either IAA or ABA was observed between upper and lower halves of elongation zones. Light irradiation increased by 20% the contents of ABA in elongation zones. These results suggest that although both IAA and ABA are basipetally transportable and can transmit their information to the elongation zone during a latent period we cannot explain the gravitropic curvature by their redistributions between the two (upper and lower) halves of primary roots ofZea. On the basis of results from the present work and previous papers, the distribution of IAA and ABA in gravistimulatedZea roots is discussed. A part of this study was reported at the Eighth Annual Meeting of the IUPS Commission on Gravitational Physiology at Tokyo 1986.  相似文献   

17.
Steffens B  Wang J  Sauter M 《Planta》2006,223(3):604-612
Growth of adventitious roots is induced in deepwater rice (Oryza sativa L.) when plants become submerged. Ethylene which accumulates in flooded plant parts is responsible for root growth induction. Gibberellin (GA) is ineffective on its own but acts in a synergistic manner together with ethylene to promote the number of penetrating roots and the growth rate of emerged roots. Studies with the GA biosynthesis inhibitor paclobutrazol revealed that root emergence was dependent on GA activity. Abscisic acid (ABA) acted as a competitive inhibitor of GA activity. Root growth rate on the other hand was dependent on GA concentration and ABA acted as a potent inhibitor possibly of GA but also of ethylene signaling. The results indicated that root emergence and elongation are distinct phases of adventitious root growth that are regulated through different networking between ethylene, GA and ABA signaling pathways. Adventitious root emergence must be coordinated with programmed death of epidermal cells which cover root primordia. Epidermal cell death is also controlled by ethylene, GA and ABA albeit with cell-type specific cross-talk. Different interactions between the same hormones may be a means to ensure proper timing of cell death and root emergence and to adjust the growth rate of emerged adventitious roots.  相似文献   

18.
J. Nakielski  P. W. Barlow 《Planta》1995,196(1):30-39
The patterns of cell growth and division characteristic of the apex of tomato roots grown in vitro were simulated by computer using a growth tensor (GT). The GT was used to clarify the basis of the altered cell patterns found within apices of roots whose gibberellin levels had been depressed by mutation (at the GIB-1 locus) or through application of the gibberellin-biosynthesis inhibitor, 2S,3S paclobutrazol. At the pole of wild-type roots, where the cell files of the cortex converge, there are commonly only one or two tiers of cortical cells sandwiched between the pole of the stele and the cap initials. By contrast, root apices of the gib-1 mutant contain additional tiers in this region. The development of these additional tiers is suppressed when roots of the mutant are grown in the presence of gibberellic acid (GA3), but could be induced in wild-type roots when they are grown in 2S,3S paclobutrazol. The wild-type cell pattern can be simulated using the GT and by the application of appropriate rules that govern cell growth and division. The induced variations in cell pattern are interpreted as being due to displacements, within the apex, of the principal directions of growth (PDGs), which are represented, in part, by the set of periclines and anticlines seen in the cell wall network; these, in turn, are utilized in the specification of the GT. During normal (wild-type) root growth, the PDGs maintain a stable pattern and the corresponding cell pattern is also stable. However, in order to interpret the cellular behaviour found in wild-type roots grown in 2S, 3S paclobutrazol, simulation using the GT shows that, if the pattern of PDGs is destabilized and displaced distally along the root axis, the cell pattern reorganizes into that typical of gib-1 mutant roots. Conversely, the cell pattern of gib-1 roots, which reverts to wild-type upon exposure to GA3, can be simulated if the PDGs are displaced proximally to the inside of the apex whereupon the number of cortical tiers at the root pole decreases. These results suggest a link between endogenous gibberellin level and the specification of the PDGs in the growing tomato root apex. Furthermore, the evidence of cell patterns from gib-1 roots suggests that, in order to achieve stability of PDGs with concomitant stable cellular patterning, an optimal gibberellin level is necessary. In practice, this can be attained by culturing the mutant roots in medium containing 1 M GA3.Abbreviations GA3 gibberellic acid - GT growth tensor - NCS natural coordinate system - PDG principal direction of growth - QC quiescent centre - RERG relative elemental rate of growth We are grateful to the former Agricultural and Food Research Council for financial support under the International Scientific Interchange Scheme to enable J.N. to work at Long Ashton Research Station, and to K. Kurczyski (Silesian University, Katowice, Poland) for help in writing a computer program for cell proliferation. Preparation of the model for growth and division was supported in part by a grant from the Committee for Scientific Research, Poland.  相似文献   

19.
Summary We have isolated a number of temperature conditional cell division cycle mutants of the unicellular plantChlamydomonas reinhardtii that are defective in single nuclear genes. Cells grow and divide normally at the permissive temperature (21 °C), but arrest in division at the restrictive temperature (33 °C). We have characterized these mutants using DNA probes and immunofluorescence techniques to localize cytoskeletal and microtubule organizing centre proteins. We describe here 3 broad classes of cell cycle mutation which result in cell cycle arrest with: unreplicated DNA (G1 arrest), duplicated DNA (G2 arrest) and multiple nuclei due to defective cytokinesis (cytokinesis arrest). The continuation of nuclear division in mutants blocked in cytokinesis provides support of an earlier hypothesis that stage specific events in theChlamydomonas cell cycle are arranged in separate dependent sequences. The mutants isolated in the present study provide insights into the role of cytoskeletal proteins in the coordination of plant cell division and the means to investigate the molecular mechanisms whereby division by multiple fission is controlled in the unicellular plantChlamydomonas.Abbreviations BB basal bodies - EMS ethylmethane sulphonate - MT microtubule - MTOC Microtubule organizing centre - NBBC nucleus-basal body connector - PAR photosynthetically active radiation  相似文献   

20.
To analyze the temporal relationship of poly(adenosine diphosphate [ADP]-ribosylation) signal with DNA replication and cell divisions, the effect of 3 aminobenzamide (3ABA), an inhibitor of the poly(ADP-ribose)synthetase, was determined in vivo during the first cleavage division of sea urchins. The incorporation of 3H-thymidine into DNA was monitored and cleavage division was examined by light microscopy. The poly(ADP-ribose) neosynthesized on CS histone variants was measured by labeling with 3H-adenosine during the two initial embryonic cell cycles and the inhibitory effect of 3ABA on this poly(ADP-ribosylation) was determined. The results obtained indicate that the CS histone variants are poly(ADP-ribosylated) de novo during the initial cell cycles of embryonic development. The synthesis of poly(ADP-ribose) is decreased but not abolished by 20 mM of 3ABA. The incubation of zygotes in 3ABA at the entrance into S1 phase decreased 3H-thymidine incorporation into DNA in phase S2, while S1 was unaltered. Alternatively, when the same treatment was applied to zygotes at the exit of S1 phase, a block of the first cleavage division and a retardation of S2 phase were observed. The inhibitory effect of 3ABA on both DNA replication and cell division was totally reversible by a release of the zygotes from this inhibition. Taking together these observations it may be concluded that the poly(ADP-ribosylation) signals related to embryonic DNA replication are not contemporaneous with S phase progression but are a requirement before its initiation. These results also indicate that a poly(ADP-ribosylation) signal is required for cell division; such signal is temporally different from that related to S phase initiation and occurs at the exit of S phase. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号