首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hasper HE  de Kruijff B  Breukink E 《Biochemistry》2004,43(36):11567-11575
The peptide antibiotic nisin was the first reported example of an antibiotic that kills bacteria via targeted pore formation. The specific target of nisin is Lipid II, an essential intermediate in the bacterial cell-wall synthesis. High-affinity binding of the antibiotic to Lipid II is followed by rapid permeabilization of the membrane. Here, we investigated the assembly and stability of nisin-Lipid II pore complexes by means of pyrene fluorescence and circular dichroism. We demonstrated that nisin uses all available Lipid II molecules in the membrane to form pore complexes. The pore complexes have a uniform structure and consist of 8 nisin and 4 Lipid II molecules. Moreover, the pores displayed a remarkable stability, because they were able to resist the solubilization of the membrane environment by mild detergents. Similar experiments with [N20P/M21P]nisin showed that the hinge region is essential for the assembly into stable pore complexes. The new insights were used to propose a refined model for nisin pore formation.  相似文献   

2.
The peptidoglycan layers surrounding bacterial membranes are essential for bacterial cell survival and provide an important target for antibiotics. Many antibiotics have mechanisms of action that involve binding to Lipid II, the prenyl chain-linked donor of the peptidoglycan building blocks. One of these antibiotics, the pore-forming peptide nisin uses Lipid II as a receptor molecule to increase its antimicrobial efficacy dramatically. Nisin is the first example of a targeted membrane-permeabilizing peptide antibiotic. However, it was not known whether Lipid II functions only as a receptor to recruit nisin to bacterial membranes, thus increasing its specificity for bacterial cells, or whether it also plays a role in pore formation. We have developed a new method to produce large amounts of Lipid II and variants thereof so that we can address the role of the lipid-linked disaccharide in the activity of nisin. We show here that Lipid II is not only the receptor for nisin but an intrinsic component of the pore formed by nisin, and we present a new model for the pore complex that includes Lipid II.  相似文献   

3.
Nisin, a peptide antibiotic, efficiently kills bacteria through a unique mechanism which includes inhibition of cell wall biosynthesis and pore formation in cytoplasmic membranes. Both mechanisms are based on interaction with the cell wall precursor lipid II which is simultaneously used as target and pore constituent. We combined two biosensor techniques to investigate the nisin activity with respect to membrane binding and pore formation in real time. Quartz crystal microbalance (QCM) allows the detection of nisin binding kinetics. The presence of 0.1 mol% lipid II strongly increased nisin binding affinity to DOPC (k(D) 2.68 x 10(-7) M vs. 1.03 x 10(-6) M) by a higher association rate. Differences were less pronounced while using negatively charged DOPG membranes. However, lipid II does not influence the absolute amount of bound nisin. Cyclic voltammetry (CV) data confirmed that in presence of 0.1 mol% lipid II, nanomolar nisin concentrations were sufficient to form pores, while micromolar concentrations were necessary in absence of lipid II. Both techniques suggested unspecific destruction of pure DOPG membranes by micromolar nisin concentrations which were prevented by lipid II. This model membrane stabilization by lipid II was confirmed by atomic force microscopy. Combined CV and QCM are valuable to interpret the role of lipid II in nisin activity.  相似文献   

4.
Nisin is a cationic antimicrobial peptide that belongs to the group of lantibiotics. It is thought to form oligomeric pores in the target membrane by a mechanism that requires the transmembrane electrical potential delta psi and that involves local pertubation of the lipid bilayer structure. Here we show that nisin does not form exclusively voltage-dependent pores: even in the absence of a delta psi, nisin is able to dissipate the transmembrane pH gradient (delta pH) in sensitive Lactococcus lactis cells and proteoliposomes. The rate of dissipation increases with the magnitude of the delta pH. Nisin forms pores only when the delta pH is inside alkaline. The efficiency of delta psi-induced pore formation is strongly affected by the external pH, whereas delta pH-induced pore formation is rather insensitive to the external pH. Nisin(1-12), an amino-terminal fragment of nisin, and (des-deltaAla5)-(nisin(1-32) amide have a strongly reduced capacity to dissipate the delta psi and delta pH in cytochrome c oxidase proteoliposomes and L. lactis cells. Both variants bind with reduced efficiency to liposomes containing negatively charged phospholipids, suggesting that both ring A and rings C to E play a role in membrane binding. Nisin(1-12) competes with nisin for membrane binding and antagonizes pore formation. These findings are consistent with the wedge model of nisin-induced pore formation.  相似文献   

5.
Unlike numerous pore-forming amphiphilic peptide antibiotics, the lantibiotic nisin is active in nanomolar concentrations, which results from its ability to use the lipid-bound cell wall precursor lipid II as a docking molecule for subsequent pore formation. Here we use genetically engineered nisin variants to identify the structural requirements for the interaction of the peptide with lipid II. Mutations affecting the conformation of the N-terminal part of nisin comprising rings A through C, e.g. [S3T]nisin, led to reduced binding and increased the peptide concentration necessary for pore formation. The binding constant for the S3T mutant was 0.043 x 10(7) m(-1) compared with 2 x 10(7) m(-1) for the wild-type peptide, and the minimum concentration for pore formation increased from the 1 nm to the 50 nm range. In contrast, peptides mutated in the flexible hinge region, e.g. [DeltaN20/DeltaM21]nisin, were completely inactive in the pore formation assay, but were reduced to some extent in their in vivo activity. We found the remaining in vivo activity to result from the unaltered capacity of the mutated peptide to bind to lipid II and thus to inhibit its incorporation into the peptidoglycan network. Therefore, through interaction with the membrane-bound cell wall precursor lipid II, nisin inhibits peptidoglycan synthesis and forms highly specific pores. The combination of two killing mechanisms in one molecule potentiates antibiotic activity and results in nanomolar MIC values, a strategy that may well be worth considering for the construction of novel antibiotics.  相似文献   

6.
乳链菌肽作用机制及其应用   总被引:1,自引:0,他引:1  
乳链菌肽作为高效、安全的天然食品防腐剂已得到广泛应用。成熟的乳链菌肽含有34个氨基酸残基,由5个硫醚桥组成独特的内环结构,是研究蛋白质结构与功能的一个很好的材料。本文论述了乳链菌肽的分子结构及其与细胞膜作用的分子机制,详细阐述了乳链菌肽的作用模型。  相似文献   

7.
8.
Many lantibiotics use the membrane bound cell wall precursor Lipid II as a specific target for killing Gram-positive bacteria. Binding of Lipid II usually impedes cell wall biosynthesis, however, some elongated lantibiotics such as nisin, use Lipid II also as a docking molecule for pore formation in bacterial membranes. Although the unique nisin pore formation can be analyzed in Lipid II-doped vesicles, mechanistic details remain elusive. We used optical sectioning microscopy to directly visualize the interaction of fluorescently labeled nisin with membranes of giant unilamellar vesicles containing Lipid II and its various bactoprenol precursors. We quantitatively analyzed the binding and permeation capacity of nisin when applied at nanomolar concentrations. Specific interactions with Lipid I, Lipid II and bactoprenol-diphosphate (C55-PP), but not bactoprenol-phosphate (C55-P), resulted in the formation of large molecular aggregates. For Lipid II, we demonstrated the presence of both nisin and Lipid II in these aggregates. Membrane permeation induced by nisin was observed in the presence of Lipid I and Lipid II, but not in the presence of C55-PP. Notably, the size of the C55-PP–nisin aggregates was significantly smaller than that of the aggregates formed with Lipid I and Lipid II. We conclude that the membrane permeation capacity of nisin is determined by the size of the bactoprenol-containing aggregates in the membrane. Notably, transmitted light images indicated that the formation of large aggregates led to a pinch-off of small vesicles, a mechanism, which probably limits the growth of aggregates and induces membrane leakage.  相似文献   

9.
In Listeria monocytogenes, nisin induced ATP efflux, reduced the intracellular ATP concentration within 1 min, and dissipated the proton motive force within 2 min. Efflux accounted for only 20% of the ATP depletion, suggesting that ATP hydrolysis also occurred. ATP efflux depended on nisin concentration and followed saturation kinetics. These results suggest that nisin breaches the membrane permeability barrier in a manner more consistent with pore formation than with a nonspecific detergent-like membrane destabilization.  相似文献   

10.
Lantibiotics, a group of lanthionine-containing peptides, display their antibiotic activity by combining different killing mechanisms within one molecule. The prototype lantibiotic nisin was shown to possess both inhibition of peptidoglycan synthesis and pore formation in bacterial membranes by interacting with lipid II. Gallidermin, which shares the lipid II binding motif with nisin but has a shorter molecular length, differed from nisin in pore formation in several strains of bacteria. To simulate the mode of action, we applied cyclic voltammetry and quartz crystal microbalance to correlate pore formation with lipid II binding kinetics of gallidermin in model membranes. The inability of gallidermin to form pores in DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) (C18/1) and DPoPC (1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine) (C16/1) membranes was related to the membrane thickness. For a better simulation of bacterial membrane characteristics, two different phospholipids with branched fatty acids were incorporated into the DPoPC matrix. Phospholipids with methyl branches in the middle of the fatty acid chains favored a lipid II–independent DPoPC permeabilization by gallidermin, while long-branched phospholipids in which the branch is placed near the hydrophilic region induced an identical lipid II–dependent pore formation of gallidermin and nisin. Obviously, the branched lipids altered lipid packing and reduced the membrane thickness. Therefore, the duality of gallidermin activity (pore formation and inhibition of the cell wall synthesis) seems to be balanced by the bacterial membrane composition.  相似文献   

11.
Nisin, a peptide antibiotic, efficiently kills bacteria through a unique mechanism which includes inhibition of cell wall biosynthesis and pore formation in cytoplasmic membranes. Both mechanisms are based on interaction with the cell wall precursor lipid II which is simultaneously used as target and pore constituent. We combined two biosensor techniques to investigate the nisin activity with respect to membrane binding and pore formation in real time. Quartz crystal microbalance (QCM) allows the detection of nisin binding kinetics. The presence of 0.1 mol% lipid II strongly increased nisin binding affinity to DOPC (kD 2.68 × 10− 7 M vs. 1.03 × 10− 6 M) by a higher association rate. Differences were less pronounced while using negatively charged DOPG membranes. However, lipid II does not influence the absolute amount of bound nisin. Cyclic voltammetry (CV) data confirmed that in presence of 0.1 mol% lipid II, nanomolar nisin concentrations were sufficient to form pores, while micromolar concentrations were necessary in absence of lipid II. Both techniques suggested unspecific destruction of pure DOPG membranes by micromolar nisin concentrations which were prevented by lipid II. This model membrane stabilization by lipid II was confirmed by atomic force microscopy. Combined CV and QCM are valuable to interpret the role of lipid II in nisin activity.  相似文献   

12.
The antimicrobial peptide nisin is a promising template for designing novel peptide-based antibiotics to improve its drug-like properties. First steps in that direction represent the synthesis of hybrid nisin derivatives that contain a native nisin ABC-part and synthesized cross-stapled DE-ring fragments and are described here. The biological activity of the newly synthesized nisin derivatives was evaluated in order to compare the bioactivity of the synthetic DE-ring containing mimic and native lanthionine-bridged DE-ring containing nisin. The native nisin ABC-ring system was obtained via chymotrypsin digestion of full-length nisin, and was subsequently functionalized at the C-terminal carboxylate with two different amino alkyne moieties. Next, nisin hybrids were successfully prepared using Cu(I)-catalyzed azide alkyne cycloaddition ‘click’ chemistry by chemo-selective ligation of the ABC-alkyne with the N-terminal azido functionalized dicarba-DE ring mimic. The newly synthesized compounds were active as potent lipid II binders and retained antimicrobial activity in a growth inhibition assay. However, pore formation was not observed, possibly either due to the different character of the ‘staples’ as compared to the parent sulfides, or due to the triazole moiety as a sub-optimal amide bond isostere.  相似文献   

13.
It is generally assumed that type A lantibiotics primarily kill bacteria by permeabilization of the cytoplasmic membrane. As previous studies had demonstrated that nisin interacts with the membrane-bound peptidoglycan precursors lipid I and lipid II, we presumed that this interaction could play a role in the pore formation process of lantibiotics. Using a thin-layer chromatography system, we found that only nisin and epidermin, but not Pep5, can form a complex with [14C]-lipid II. Lipid II was then purified from Micrococcus luteus and incorporated into carboxyfluorescein-loaded liposomes made of phosphatidylcholine and cholesterol (1:1). Liposomes supplemented with 0.05 or 0.1 mol% of lipid II did not release any marker when treated with Pep5 or epilancin K7 (peptide concentrations of up to 5 mol% were tested). In contrast, as little as 0.01 mol% of epidermin and 0.1 mol% of nisin were sufficient to induce rapid marker release; phosphatidylglycerol-containing liposomes were even more susceptible. Controls with moenomycin-, undecaprenol- or dodecaprenolphosphate-doped liposomes demonstrated the specificity of the lantibiotics for lipid II. These results were correlated with intact cells in an in vivo model. M. luteus and Staphylococcus simulans were depleted of lipid II by preincubation with the lipopeptide ramoplanin and then tested for pore formation. When applied in concentrations below the minimal inhibitory concentration (MIC) and up to 5–10 times the MIC, the pore formation by nisin and epidermin was blocked; at higher concentrations of the lantibiotics the protective effect of ramoplanin disappeared. These results demonstrate that, in vitro and in vivo , lipid II serves as a docking molecule for nisin and epidermin, but not for Pep5 and epilancin K7, and thereby facilitates the formation of pores in the cytoplasmic membrane.  相似文献   

14.
Mechanistic information about the bacteriocin nisin was obtained by examining the efflux of 5(6)-carboxy-fluorescein from Listeria monocytogenes-derived liposomes. The initial leakage rate (percentage of efflux per minute) of the entrapped dye was dependent on both nisin and lipid concentrations. At all nisin concentrations tested, 5(6)-carboxyfluorescein efflux plateaued before all of the 5(6)-carboxyfluorescein was released (suggesting that pore formation was transient), but efflux resumed when more nisin was added. Isotherms for the binding of nisin to liposomes constructed on the basis of the Langmuir isotherm gave an apparent binding constant of 6.2 x 10(5)M(-1) at pH 6.0. The critical number of nisin molecules required to induce efflux from liposomes at pH 6.0 was approximately 7,000 molecules per liposome. The pH affected the 5(6)-carboxyfluorescein leakage rates, with higher pH values resulting in higher leakage rates. The increased leakage rate observed at higher pH values was not due to an increase in the binding affinity of the nisin molecules towards the liposomal membrane. Rather, the critical number of nisin molecules required to induce activity was decreased (approximately 1,000 nisin molecules per liposome at pH 7.0). These data are consistent with a poration mechanism in which the ionization state of histidine residues in nisin plays an important role in membrane permeabilization.  相似文献   

15.
Nisin is an antimicrobial peptide produced by Lactococcus lactis and used as a food preservative in dairy products. The peptide kills Gram-positive bacteria via the permeabilization of the membrane, most probably via pore formation using the cell wall precursor Lipid II as its docking molecule. In this study, site-directed tryptophan spectroscopy was used to determine the topology of nisin in the Lipid II containing membrane, as a start to elucidate the mechanism of targeted pore formation. Three single tryptophan mutants were used, which are viable representatives of the wild-type peptide. The emission spectra of tryptophans located at the N-terminus, the center, and the C-terminus as well as quenching by acrylamide and spin-labeled lipids were investigated using model membrane vesicles composed of DOPC containing 1 mol % Lipid II. Nisin was shown to adopt an orientation where the most probable position of the N-terminus was found to be near the Lipid II headgroup at the bilayer surface, the position of the center of nisin was in the middle of the phospholipid bilayer, and the C-terminus was located near the interface between the headgroups and acyl chain region. These results were used to propose a model for the orientation of nisin in Lipid II containing membranes. Our findings demonstrated that Lipid II changes the overall orientation of nisin in membranes from parallel to perpendicular with respect to the membrane surface. The stable transmembrane orientation of nisin in the presence of Lipid II might allow us to determine the structure of the nisin-Lipid II pores in the lipid bilayer.  相似文献   

16.
Nisin interacts with target membranes in four sequential steps: binding, insertion, aggregation, and pore formation. Alterations in membrane composition might influence any of these steps. We hypothesized that cold temperatures (10 degrees C) and surfactant (0.1% Tween 20) in the growth medium would influence Listeria monocytogenes membrane lipid composition, membrane fluidity, and, as a result, sensitivity to nisin. Compared to the membranes of cells grown at 30 degrees C, those of L. monocytogenes grown at 10 degrees C had increased amounts of shorter, branched-chain fatty acids, increased fluidity (as measured by fluorescence anisotropy), and increased nisin sensitivity. When 0.1% Tween 20 was included in the medium and the cells were cultured at 30 degrees C, there were complex changes in lipid composition. They did not influence membrane fluidity but nonetheless increased nisin sensitivity. Further investigation found that these cells had an increased ability to bind radioactively labeled nisin. This suggests that the modification of the surfactant-adapted cell membrane increased nisin sensitivity at the binding step and demonstrates that each of the four steps can contribute to nisin sensitivity.  相似文献   

17.
Nisin, a 3.4 kDa antimicrobial peptide produced by some Lactococcus lactis strains is the most prominent member of the lantibiotic family. Nisin can inhibit cell growth and penetrates the target Gram-positive bacterial membrane by binding to Lipid II, an essential cell wall synthesis precursor. The assembled nisin-Lipid II complex forms pores in the target membrane. To gain immunity against its own-produced nisin, Lactococcus lactis is expressing two immunity protein systems, NisI and NisFEG. Here, we show that the NisI expressing strain displays an IC50 of 73±10 nM, an 8–10-fold increase when compared to the non-expressing sensitive strain. When the nisin concentration is raised above 70 nM, the cells expressing full-length NisI stop growing rather than being killed. NisI is inhibiting nisin mediated pore formation, even at nisin concentrations up to 1 µM. This effect is induced by the C-terminus of NisI that protects Lipid II. Its deletion showed pore formation again. The expression of NisI in combination with externally added nisin mediates an elongation of the chain length of the Lactococcus lactis cocci. While the sensitive strain cell-chains consist mainly of two cells, the NisI expressing cells display a length of up to 20 cells. Both results shed light on the immunity of lantibiotic producer strains, and their survival in high levels of their own lantibiotic in the habitat.  相似文献   

18.
Mutacin 1140 and nisin A are peptide antibiotics that belong to the lantibiotic family. N-Terminal rings A and B of nisin A and mutacin 1140 (lipid II-binding domain) share many structural and sequence similarities. Nisin A binds lipid II and thus disrupts cell wall synthesis and also forms transmembrane pores. Very little is known about mutacin 1140 in this regard. We performed fluorescence-based studies using a bacteria-mimetic membrane system. The results indicated that lipid II monomers are arranged differently in the mutacin 1140 complex than in the nisin A complex. These differences in complex formation may be attributed to the fact that nisin A uses lipid II to form a distinct pore complex, while mutacin 1140 does not form pores in this membrane system. Further experiments demonstrated that the mutacin 1140-lipid II and nisin A-lipid II complexes are very stable and capable of withstanding competition from each other. Transmembrane electrical potential experiments using a Streptococcus rattus strain, which is sensitive to mutacin 1140, demonstrated that mutacin 1140 does not form pores in this strain even at a concentration 8 times higher than the minimum inhibitory concentration (MIC). Circular complexes of mutacin 1140 and nisin A were observed by electron microscopy, providing direct evidence for a lateral assembly mechanism for these antibiotics. Mutacin 1140 did exhibit a membrane disruptive function in another commonly used artificial bacterial membrane system, and its disruptive activity was enhanced by increasing amounts of anionic phospholipids.  相似文献   

19.
Nisin is an example of type-A lantibiotics that contain cyclic lanthionine rings and unusual dehydrated amino acids. Among the numerous pore-forming antimicrobial peptides, type-A lantibiotics form an unique family of post-translationally modified peptides. Via the recognition of cell wall precursor lipid II, nisin has the capacity to form pores against Gram-positive bacteria with an extremely high activity in the nanomolar (nM) range. Here we report a high-resolution NMR spectroscopy study of nisin/lipid II interactions in SDS micelles as a model membrane system in order to elucidate the mechanism of molecular recognition at residue level. The binding to lipid II was studied through (15)N-(1)H HSQC titration, backbone amide proton temperature coefficient analysis, and heteronuclear (15)N[(1)H]-NOE relaxation dynamics experiments. Upon the addition of lipid II, significant changes were monitored in the N-terminal part of nisin. An extremely low amide proton temperature coefficient (Delta delta/Delta T) was found for the amide proton of Ala3 (> -0.1 ppb/K) in the complex form. This suggests tight hydrogen bonding and/or isolation from the bulk solvent for this residue. Large chemical shift perturbations were also observed in the first two rings. In contrast, the C-terminal part of nisin was almost unaffected. This part of the molecule remains flexible and solvent-exposed. On the basis of our results, a multistep pore-forming mechanism is proposed. The N-terminal part of nisin first binds to lipid II, and a subsequent structural rearrangement takes place. The C-terminal part of nisin is possibly responsible for the activation of the pore formation. In light of the emerging antibiotic resistance problems, an understanding of the specific recognition mechanism of nisin with lipid II at the residue specific level may therefore aid in the development of novel antibiotics.  相似文献   

20.
Brochocin-C is a two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754 that has a broad activity spectrum comparable to that of nisin. Brochocin-C has an inhibitory effect on EDTA-treated gram-negative bacteria, Salmonella enterica serovar Typhimurium lipopolysaccharide mutants, and spheroplasts of Typhimurium strains LT2 and SL3600. Brochocin-C treatment of cells and spheroplasts of strains of LT2 and SL3600 resulted in hydrolysis of ATP. The outer membrane of gram-negative bacteria protects the cytoplasmic membrane from the action of brochocin-C. It appears that brochocin-C is similar to nisin and possibly does not require a membrane receptor for its function; however, the difference in effect of the two bacteriocins on intracellular ATP indicates that they cause different pore sizes in the cytoplasmic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号