首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The amount of DNA in the nuclear genome (the DNA C-value) of eukaryotes varies at least 80,000-fold across species, and yet bears little or no relation to organismic complexity or to the number of protein-coding genes. This phenomenon is known as the C-value paradox. One explanation for the C-value paradox attributes the size of the nuclear genome to 'junk' (typically non-coding) genetic elements that accumulate until the costs to the organism of replicating excess DNA select against it. Across species, organisms that develop at a slower rate should tolerate more junk DNA. Alternatively, junk DNA may function as a nucleo-skeleton to maintain the volume of the nucleus at a size proportional to the volume of the cytoplasm in the cell. Across species, the DNA C-value is predicted to vary with the nuclear and cytoplasmic volumes of cells. Previous studies have not been able to distinguish between the skeletal-DNA and junk-DNA explanations for the C-value paradox. We report a study of DNA content in 24 salamander species which does. The size of the nuclear genome is correlated with developmental rate even after the effects of nuclear and cytoplasmic volume have been removed. However, genome size is not correlated with cytoplasmic volume after controlling for developmental rate. These results support the view that junk DNA accumulates in the nuclear genome until the costs of replicating it become too great, rather than that it functions as a nucleo-skeleton.  相似文献   

3.
For half a century, variation in genome size (C-value) has been an unresolved puzzle in evolutionary biology. While the initial "C-value paradox" was solved with the discovery of noncoding DNA, a much more complex "C-value enigma" remains. The present study focuses on one aspect of this puzzle, namely the small genome sizes of birds. Significant negative correlations are reported between resting metabolic rate and both C-value and erythrocyte size. Cell size is positively correlated with both nucleus size and C-value in birds, as in other vertebrates. These findings shed light on the constraints acting on genome size in birds and illustrate the importance of interactions among various levels of the biological hierarchy, ranging from the subchromosomal to the ecological. Following from a discussion of the mechanistic bases of the correlations reported and the processes by which birds achieved and/or maintain small genomes, a pluralistic approach to the C-value enigma is recommended.  相似文献   

4.
5.
6.
7.
The positions and general anatomical and histological characteristics of the gonads of Bipes biporus and B. canaliculatus are described. The amounts of DNA per haploid chromosome set have been measured in both species, the values being 1.83 and 2.0 pg for biporus and canaliculatus respectively. The karyotypes of both species are described on the basis of data from mitotic and meiotic metaphase chromosome sets and from lampbrush chromosomes. B. biporus has 10 macrochromosomes and 11 microchromosomes. B. canaliculatus has 11 macrochromosomes and 11 microchromosomes. The karyotypes of the two species differ distinctly with regard to the shapes of 3 of the macrochromosomes. Chiasma distribution is described for male meiosis in B. biporus. Studies of the lampbrush chromosomes of both species show the chiasma distribution in the female to be generally similar to that found in the male biporus. In B. canaliculatus, lampbrush chromosomes with maximally extended lateral loops are found in oocytes that are oblate spheroids measuring 0.7×1.0 mm along their short and long axes respectively, these being well before the start of the major phase of vitellogenesis. Smaller oocytes have more distinct chromomeres and shorter loops. Microchromosomes take the form of typical small lampbrush chromosomes in oocytes. There are at the most 1,000 chromomeres per haploid set of lampbrush chromosomes in B. canaliculatus. Chiasmata are described from lampbrush preparations in which the two half-bivalents are firmly attached to one another without evident association of their axes, indicating the possibility of chiasmate association between the DNA axes of lateral loops. There are remarkably few extrachromosomal nucleoli in Bipes oocytes, and its is suggested that this may indicate a level of ribosomal gene amplification that is much lower than that found in fish and Amphibia. The observations are particularly discussed in relation to current ideas concerning the structure and function of lampbrush chromosomes.  相似文献   

8.
9.
10.
There are two intriguing paradoxes in molecular biology--the inconsistent relationship between organismal complexity and (1) cellular DNA content and (2) the number of protein-coding genes--referred to as the C-value and G-value paradoxes, respectively. The C-value paradox may be largely explained by varying ploidy. The G-value paradox is more problematic, as the extent of protein coding sequence remains relatively static over a wide range of developmental complexity. We show by analysis of sequenced genomes that the relative amount of non-protein-coding sequence increases consistently with complexity. We also show that the distribution of introns in complex organisms is non-random. Genes composed of large amounts of intronic sequence are significantly overrepresented amongst genes that are highly expressed in the nervous system, and amongst genes downregulated in embryonic stem cells and cancers. We suggest that the informational paradox in complex organisms may be explained by the expansion of cis-acting regulatory elements and genes specifying trans-acting non-protein-coding RNAs.  相似文献   

11.
The loops which transcribe 5S ribosomal RNA in lampbrush chromosomes of the newt, Notophthalmus (Triturus) viridescens, were identified by hybridizing purified 5S DNA to nascent 5S RNA in situ. The genes which code for 5S RNA were found near the centromeres of chromosomes 1, 2, 6, and 7 by hybridizing iodinated 5S RNA to denatured lampbrush and mitotic chromosomes in situ. These genes and their intervening spacer DNA were isolated from Xenopus laevis using sequential silver-cesium sulfate equilibrium centrifugations. This purified 5S DNA was iodinated and hybridized to non-denatured lampbrush chromosomes in situ, where it bound to nascent 5S RNA on loops at the base of the centromeres of chromosomes 1, 2, 6, and 7. The number of 5S genes present in the haploid chromosome complement of N. viridescens was determined. — The 5S loops were chosen for study, since (1) the synthesis of 5S RNA has been demonstrated during the lampbrush stage, (2) both 5S RNA and 5S DNA could be isolated in pure form, and (3) the localization of the repetitive 5S genes could be verified by conventional in situ hybridization procedures. These methods may be applicable to the identification of other loops, leading to a better understanding of lampbrush chromosome function.  相似文献   

12.
On the basis of recent results a unified view of different aspects of the higher levels in the organization of chromatin in chromosomes is presented. Basic to these forms of organization is the arrangement of DNA in the complex with nucleosomes and recent studies suggest that at least some species of satellite DNA may maintain a fixed DNA sequence relationship to the phasing of nucleosomes. Special proteins such as the high-mobility group (HMG) proteins or other non-histone proteins could serve specific functions in the recognition of satellite DNA sequences.In the presence of histone H1 the 110 Å nucleosome fiber formed from the basic string of nucleosomes can be further condensed into a thicker 250–300 Å fiber formed by a solenoidal coiling of the 110 Å fiber with about 6–8 nucleosomes per turn and the available evidence suggests that these structures are found in mitotic chromosomes as well as other forms of inactive chromatin. A further level of coiling of the 250–300 Å solenoid has been suggested by our recent studies of disintegrated mitotic chromosomes consisting of a thin-walled tube with an outer diameter of 4000 Å referred to as the unit fiber. This structure would account for a factor of 1400 × contraction of DNA in mitotic chromosomes which in their intact state are only 5-fold more contracted. The recently described “scaffold” proteins could be responsible for this final coiling of the unit fibers in intact chromosomes.Meiotic chromosomes are generally less contracted than mitotic chromosomes. An extreme example of this are lampbrush chromosomes that apart from the axial segments which might contain some structural proteins appear to consist of naked DNA arranged in lateral loops. In the later stages of meiosis more condensed structures arise as exemplified by the synaptonemal complex during the pachytene stage in many organisms. The characteristic features of this structure are interpreted to suggest that the structure consists of lateral components containing two parallel 110 Å nucleosome fibers each representing the axial segments of two sister chromatids. From these paired regions loops protrude laterally in a manner which closely resembles the less condensed lampbrush chromosomes. The implication of this structure in the process of crossingover is discussed.Less is known about the organization of chromatin in interphase nuclei, but structures analogous to the loop-like structures in meiotic chromosomes are suggested on the basis of the isolation of supercoiled DNA loops constrained by RNA-DNA and protein-DNA interactions. The position of these loops is suggested to be fixed by specific repeated DNA sequences that could be associated with specific tenacious non-histone or HMG proteins.  相似文献   

13.
For 50 years now, one of the enigmas of molecular evolution has been the C-value paradox, which refers to the often massive, counterintuitive and seemingly arbitrary differences in genome size observed among eukaryotic organisms. For example, the genome of the fruitfly Drosophila melanogaster is 180 megabases (Mb), whereas that of the European brown grasshopper Podisma pedestris is 18,000 Mb. The difference in genome size of a factor of 100 is difficult to explain in view of the apparently similar levels of evolutionary, developmental and behavioural complexity of these organisms.  相似文献   

14.
Hydras belong to one of the earliest eumetazoan animal groups, but to date very little is known about their genome sizes, gene numbers, and chromosomes. Here we provide genome size estimates and corresponding karyotypes for five Hydra species. Nuclear DNA contents were assessed by slide-based Feulgen microphotometry. Hydra oligactis possesses the largest genome of 1450 Mbp, followed by similar 1 C capacities in H. carnea (1350 Mbp), H. vulgaris (1250 Mpb) and H. circumcincta (1150 Mbp). The smallest genome of 380 Mbp was determined in H. viridissima. While the number of chromosomes is identical in all five Hydra species (2n = 30), the size of the chromosomes is strictly correlated to the size of the genome, with H. viridissima having conspicuously small chromosomes. The taxonomic and evolutionary significance of the C-value and chromosomal size variation in this ancient group of metazoans as well as its impact on genomic organization and forthcoming genome projects are discussed.  相似文献   

15.
16.
17.
Variation in the amount of nuclear DNA, the C-value, does not correlate with differences in morphological complexity. There are two classes of explanations for this observation, which is known as the ''C-value paradox''. The quantity of DNA may serve a ''nucleotypic'' function that is positively selected. Alternatively, large genomes may consist of junk DNA, which increases until it negatively affects fitness. Attempts to resolve the C-value paradox focus on the link between genome size and fitness. This link is usually sought in life history traits, particularly developmental rates. I examined the relationship among two life history traits, egg size and embryonic developmental time and genome size, in 15 species of plethodontid salamanders. Surprisingly, there is no correlation between egg size and developmental time, a relationship included in models of life history evolution. However, genome size is positively correlated with embryonic developmental time, a result that is robust with respect to many sources of variation in the data. Without information on the targets of natural selection it is not possible with these data to distinguish between nucleotypic and junk DNA explanations for the C-value paradox.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号