首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of collagen by human fibroblasts and their SV40 transformants   总被引:11,自引:0,他引:11  
Synthesis of collagen was studied in human fibroblasts (WI26, WI38) and their SV40 transformants. Viral transformation decreased the amount of collagen synthesized by a factor of 8 during a 24 h pulse and affected the rate of conversion of procollagen to collagen. No change was observed in the proportions of type I and type III collagen, the degree of hydroxylation of α-chains of the newly synthesized collagen remained the same. The collagen of viral transformants contained substantial amounts of collagen molecules which were composed of α1(I)-chains only. Immunofluorescence analysis using specific antibodies for type I collagen and fibronectin showed less deposition of extracellular fibrils in the transformed cell layers than in the normal cells.  相似文献   

2.
A soluble form of type III collagen has been isolated from the 1.0 M NaCl neutral salt soluble extract of rat skin. This component has a molecular weight of 350,000 and is converted by reduction and alkylation to three identical α-chains with molecular weight 118,000. Segment-long-spacing precipitates produced from the renatured disulfide-linked component are about 300 Å longer than collagen with extensions at both the amino and carboxyl terminal ends. Pepsin treatment removes both amino and carboxyl terminal extensions. These and radioisotope incorporation data lead to the conclusion that this component is a precursor of the [αl(III)3] collagen.  相似文献   

3.
Aim and methodsCollagen is the most abundant protein found in animal body, which is widely used for biomedical and pharmaceutical applications. In the present study, acid soluble collagen (ASC) and pepsin soluble collagen (PSC) from the skin wastes of marine eel fish (Evenchelys macrura) were isolated and characterized.ResultsASC and PSC extracted from eel fish skin showed the yields of 80 and 7.10 percent (based on dry weight), respectively. ASC and PSC comprising different α-chains (α1, α2 and α3) were characterized as type I and exhibited high solubility in acidic pH (1–4) and were soluble in the presence of NaCl at concentration up to 3.0 and 4.0 percent (w/v) for ASC and PSC, respectively. Amino acids analysis of both ASC and PSC contained imino acid of 190 and 200 residues per 1000 residues, respectively. The present results of ASC and PSC from eel fish skin exhibited higher thermal stability of 39 °C and 35 °C, respectively. Similar, Fourier transform infrared (FTIR) spectra of ASC and PSC were observed and suggesting that pepsin hydrolysis did not affect the secondary structure of collagen, especially triple-helical structure.ConclusionThese results suggest that the marine eel fish skin collagen close to the Td (denaturation temperature) of mammalian collagen which could be used in the biomedical materials, food and pharmaceutical industries as an alternative source.  相似文献   

4.
The molecular characteristics of purified pepsin solubilized collagen from rat liver was studied in control and dimethylnitrosamine administered animals. The α- and β-chains of purified pepsin solubilized liver collagen were separated by subjecting the denatured collagen to SDS-polyacrylamide gel electrophoresis. The α1(III) chains were resolved from the α1(I) chains by interrupted electrophoresis with delayed reduction of the disulfide bonds of type III collagen. The aldehyde content of the purified pepsin solubilized collagen was estimated in control and experimental samples in order to assess the extent of collagen cross-links. Fibril formation curves were studied with purified pepsin solubilized collagen to see the rate of formation of cross-links within the fibrillar mesh. The results of the unreduced electrophoretic studies revealed a significant increase in the β-subunit of type I collagen with a remarkable decrease of α/β ratio in DMN treated animals. Reduction with β-mercaptoethanol indicated the presence of type III collagen in the electrophoretic field with a proportionate increase on the 21st day. A significant increase in the aldehyde content and an increased rate of fibril formation were noticed in DMN induced fibrotic liver collagen. The data of the present investigation revealed that the DMN induced fibrotic liver collagen is more cross-linked than normal liver collagen and the deposition of type III collagen is more prominent than type I collagen in early fibrosis.  相似文献   

5.
Hudson DM  Weis M  Eyre DR 《PloS one》2011,6(5):e19336
Recessive mutations that prevent 3-hydroxyproline formation in type I collagen have been shown to cause forms of osteogenesis imperfecta. In mammals, all A-clade collagen chains with a GPP sequence at the A1 site (P986), except α1(III), have 3Hyp at residue P986. Available avian, amphibian and reptilian type III collagen sequences from the genomic database (Ensembl) all differ in sequence motif from mammals at the A1 site. This suggests a potential evolutionary distinction in prolyl 3-hydroxylation between mammals and earlier vertebrates. Using peptide mass spectrometry, we confirmed that this 3Hyp site is fully occupied in α1(III) from an amphibian, Xenopus laevis, as it is in chicken. A thorough characterization of all predicted 3Hyp sites in collagen types I, II, III and V from chicken and xenopus revealed further differences in the pattern of occupancy of the A3 site (P707). In mammals only α2(I) and α2(V) chains had any 3Hyp at the A3 site, whereas in chicken all α-chains except α1(III) had A3 at least partially 3-hydroxylated. The A3 site was also partially 3-hydroxylated in xenopus α1(I). Minor differences in covalent cross-linking between chicken, xenopus and mammal type I and III collagens were also found as a potential index of evolving functional differences. The function of 3Hyp is still unknown but observed differences in site occupancy during vertebrate evolution are likely to give important clues.  相似文献   

6.
Examination of the collagens synthesized by pig aortic endothelial cells in culture and precipitated from either the cell layer or medium, following pepsin digestion, demonstrated that the major species was Type I together with some Type III collagen and α1 (I) trimer. Additional chains in the cell layer chromatographing with Type I α1-chains on CM cellulose may be partly derived from basement-membrane-associated collagen but in the medium would appear to be entirely derived from α1 (I) trimer. These results imply that the endothelial cell may secrete the Type III collagen located in the immediate subendothelial space and, in part at least, the Types I and III occurring in diffusely thickened intima and the atherosclerotic plaque.  相似文献   

7.
《Process Biochemistry》2007,42(4):542-546
The precise role of the α2-chain in collagen type I is of considerable scientific interest. Our recent studies demonstrated that the most noticeable difference between type I collagens, which were obtained from bovine hard tissues (bone, dentine) and soft tissues (tendon, skin), was presented in the position of β chain dimers using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The additional band observed both in the bone and dentine collagen was putatively identified as β22 dimer (made of by an intermolecular cross-linking between two α2-chains). Further investigations carried out on bovine bone and skin collagen, corresponding to hard tissue and soft tissue collagen respectively, confirmed this hypothesis. Successful separation of individual β22 dimer from bone collagen was achieved. The procedure involves molecular-sieve chromatography on a Sephacryl S-400 column followed by differential acetone precipitation. Identification was done by the widely used methods, such as SDS-PAGE and cyanogen bromide (CNBr)-cleaved peptide analysis. It was proposed that the dimer and consequently α2-chains may play important roles in the morphological and biological differences between hard and soft tissues.  相似文献   

8.
Procollagen and collagen were isolated from the culture medium and cell layer of line TSD4 (obtained from mouse teratocarcinoma OTT6050). SDS-polyacrylamide gel electrophoresis of the highly purified procollagen fraction demonstrated that the fraction is composed of θ chains (150,000 daltons), pro α chains (130,000 daltons), and α chains (100,000 daltons). Limited pepsin digestion of this fraction yielded a single species of collagen molecules having a chain composition (α1)3, as did collagen isolated from the cell layer. Each α1 chain appears to be slightly larger than α1 chains from calf or human type I and type III collagen. Amino acid analysis and cyanogen bromide peptide profiles of pepsin-treated TSD4 collagen demonstrated significant differences from those of other collagens (II, III, IV) of the type α1(X)3, although similar to that of the α1 chain of type I collagen, [α1(I)]2α2. Taken together, acrylamide gel electrophoresis, amino acid composition, electron microscopy, and cyanogen bromide peptide analysis indicate that this material represents a new molecular species of collagen not previously characterized, probably related to [α1(I)]3.  相似文献   

9.
We previously reported that Kirsten sarcoma virus transformed BALB 3T3 (Ki-3T3) cell cultures contained mainly type I collagen and about 30% of another type designated by us as Y and which appears to be type III collagen, [α1 (III)]3. Clones of BALB 3T3 which exhibited contact-inhibition were found to contain mainly type I collagen [α1(I)]2α2, and about 25% of another type (X) which was composed of three α1 chains differing from those of type III (Hata, R. and B. Peterkofsky, 1977 Proc. Nat. Acad. Sci. (U.S.A.), 74: 2933—2937). Since dibutyryl 3′:5′ cyclic adenosine monophosphate (dbcAMP) increases collagen synthesis and alters other transformation specific properties of Ki-3T3 cells, we determined whether treatment of Ki-3T3 cells with this compound restored the normal collagen phenotype. We also analyzed the collagen of a revertant of Ki-3T3 which exhibits properties similar to those of the dbcAMP treated transformant. Procollagen labeled with radioactive proline was isolated from the medium or cells of cultures and was converted to collagen with pepsin; the collagen was analyzed by carboxymethyl cellulose (CMC) chromatography or gel electrophoresis under denaturing conditions. Ki-3T3 cells treated with 0.5 mM dbcAMP continued to accumulate type III collagen but there was an increase in the number of α1 chains eluting from CMC columns in the same position as α1 (I) suggesting increased accumulation of type X collagen. Although the revertant was similar to dbcAMP treated cells in that it exhibited a flattened morphology and a high relative rate of collagen synthesis, the collagen profile was similar to that of the transformant, consisting mainly of types I and III. These results indicate that accumulation of type III collagen is unaffected by dbcAMP but suggest that cAMP may be involved in the regulation of type X collagen. The failure of dbcAMP or reversion to affect the occurrence of type III collagen supports the mechanism of cell selection as a means of explaining the specific occurrence of type III collagen in sarcoma virus transformed 3T3 cells.  相似文献   

10.
11.
Studies were performed to determine whether cultured odontogenic cells from rabbit tooth germ (RP cell) could synthesize dentine-like collagen. When cells were cultured with [14C]proline, 33% of the total incorporated proteins present were collagenous. Cultured RP cells were labelled with [14C]proline in the presence of β-aminopropionitrile. The resulting fractions, on analysis by CM-cellulose chromatography, contained three radioactive protein peaks, α1(I), [α1(III)]3, α2. From the radioactive measurements, RP cells synthesized a significant amount of type III collagen, comparable to type I collagen.DEAE-cellulose chromatography was used to separate collagen molecules from collagen precursors. The results showed that 60% of total collagen precursor was type III precursor and the remainder was type I precursor.CM-cellulose chromatography of CNBr peptides of collagen from culture medium and cell extract revealed the presence of type I and type III collagen. Thus, the RP cell, which is a diploid cell, is unique in the predominance of type III collagen in culture, differing thereby from the character of collagen in vivo.  相似文献   

12.
Hepatocytes were obtained from rat liver and maintained in primary culture for periods up to 14 days. Collagen synthesis was maximal after 3–5 days and declined thereafter. The rate of collagen production was appox. one-tenth that observed by the rat skin fibroblasts of the same animals after 3–5 passages. Type I procollagen, the major macromolecular collagenous species, was identified as a 450 000 dalton molecule which was converted to 120 000 dalton, denatured, reduced procollagen chains. Prior pepsin digestion of the native procollagen released 95 000 dalton collagen chains identified as α1(I) and α2(I) by co-migration with carrier rat skin type I collagen chains. The production of type III procollagen was also tentatively identified by DEAE-cellulose chromatography. This material was isolated and identified with type-specific antibodies developed against the amino-terminal extension peptide of bovine skin type III procollagen. The relative distribution of type I:type III procollagen was estimated at 7:3 similar to the ratio previously found in whole rat liver. No evidence of type IV or type V procollagen biosynthesis was observed. These results suggest that rat hepatocytes in primary culture are capable of interstitial type I and type III collagen biosynthesis in a ratio similar to that found in their parent hepatic tissue in situ. They also suggest that the less abundant type IV (basement membrane-associated) or type V are nor major collagenous products of these cells.  相似文献   

13.
Fibrillar collagens store, transmit and dissipate elastic energy during tensile deformation. Results of previous studies suggest that the collagen molecule is made up of alternating rigid and flexible domains, and extension of the flexible domains is associated with elastic energy storage. In this study, we model the flexibility of the alpha1-chains found in types I-III collagen molecules and microfibrils in order to understand the molecular basis of elastic energy storage in collagen fibers by analysing the areas under conformational plots for dipeptide sequences. Results of stereochemical modeling suggest that the collagen triple helix is made up of rigid and flexible domains that alternate with periods that are multiples of three amino acid residues. The relative flexibility of dipeptide sequences found in the flexible regions is about a factor of five higher than that found for the flexibility of the rigid regions, and the flexibility of types II and III collagen molecules appears to be higher than that found for the type I collagen molecule. The different collagen alpha1-chains were compared by correlating the flexibilities. The results suggest that the flexibilities of the alpha1-chains of types I and III collagen are more closely related than the flexibilities of the alpha1-chains in types I and II and II and III collagen. The flexible domains found in the alpha1-chains of types I-III collagen were found to be conserved in the microfibril and had periods of about 15 amino acid residues and multiples thereof. The flexibility profiles of types I and II collagen microfibrils were found to be more highly correlated than those for types I and III and II and III. These results suggest that the domain structure of the alpha1-chains found in types I-III collagen is an efficient means for storage of elastic energy during stretching while preserving the triple helical structure of the overall molecule. It is proposed that all collagens that form fibers are designed to act as storage elements for elastic energy. The function of fibers rich in type I collagen is to store and then transmit this energy while fibers rich in types II and III collagen may store and then reflect elastic energy for dissipation through viscous fibrillar slippage. Impaired elastic energy storage by extracellular matrices may lead to cellular damage and changes in signaling by mechanochemical transduction at the extracellular matrix-cell interface.  相似文献   

14.
Type I collagen extracted from tendon, skin, and bone of wild type and prolyl 3-hydroxylase 1 (P3H1) null mice shows distinct patterns of 3-hydroxylation and glycosylation of hydroxylysine residues. The A1 site (Pro-986) in the α1-chain of type I collagen is almost completely 3-hydroxylated in every tissue of the wild type mice. In contrast, no 3-hydroxylation of this proline residue was found in P3H1 null mice. Partial 3-hydroxylation of the A3 site (Pro-707) was present in tendon and bone, but absent in skin in both α-chains of the wild type animals. Type I collagen extracted from bone of P3H1 null mice shows a large reduction in 3-hydroxylation of the A3 site in both α-chains, whereas type I collagen extracted from tendon of P3H1 null mice shows little difference as compared with wild type. These results demonstrate that the A1 site in type I collagen is exclusively 3-hydroxylated by P3H1, and presumably, this enzyme is required for the 3-hydroxylation of the A3 site of both α-chains in bone but not in tendon. The increase in glycosylation of hydroxylysine in P3H1 null mice in bone was found to be due to an increased occupancy of normally glycosylated sites. Despite the severe disorganization of collagen fibrils in adult tissues, the D-period of the fibrils is unchanged. Tendon fibrils of newborn P3H1 null mice are well organized with only a slight increase in diameter. The absence of 3-hydroxyproline and/or the increased glycosylation of hydroxylysine in type I collagen disturbs the lateral growth of the fibrils.  相似文献   

15.
Summary Limited proteolysis with pepsin solubilized 25% of the insoluble gingival matrix as mainly soluble collagenous material. Fractional salt precipication at neutral pH resulted in the separation of types III and I at 1.8 and 2.6 M NaCl, respectively. In addition, a collagenous fraction accounting for 2% of the solubilized collagen and precipitating at 4.5 M NaCl was shown to be identical with type V collagen. Isolation and partial characterization of the constituent-α-chains of the 4.5 M PPT by gel filtration, ion exchange and hydroxylapatite chromatography as well as disc electrophoresis showed that gingival type V collagen contains αA and αB chains in a ratio αB/αA of 1.73–1.8. Electron microscopic examination of ATP-precipitates showed that this collagen type gave only one kind of SLS aggregates with asymmetric band pattern characteristically different from that of type I collagen. The data provide evidence that gingival AB collagen is a heteropolymer in which the αA and αB chains are assembled in the same macromolecule in a 1∶2 ratio.  相似文献   

16.
The predominant form of type V collagen is the [α1(V)]?α2(V) heterotrimer. Mutations in COL5A1 or COL5A2, encoding respectively the α1(V)- and α2(V)-collagen chain, cause classic EDS (Ehlers-Danlos syndrome), a heritable connective tissue disorder, characterized by fragile hyperextensible skin and joint hypermobility. Approximately half of the classic EDS cases remain unexplained. Type V collagen controls collagen fibrillogenesis through its conserved α1(V)-N-propeptide domain. To gain an insight into the role of this domain, a yeast two-hybrid screen among proteins expressed in human dermal fibroblasts was performed utilizing the N-propeptide as a bait. We identified 12 interacting proteins, including extracellular matrix proteins and proteins involved in collagen biosynthesis. Eleven interactions were confirmed by surface plasmon resonance and/or co-immunoprecipitation: α1(I)- and α2(I)-collagen chains, α1(VI)-, α2(VI)- and α3(VI)-collagen chains, tenascin-C, fibronectin, PCPE-1 (procollagen C-proteinase enhancer-1), TIMP-1 (tissue inhibitor of metalloproteinases-1), MMP-2 (matrix metalloproteinase 2) and TGF-β1 (transforming growth factor β1). Solid-phase binding assays confirmed the involvement of the α1(V)-N-propeptide in the interaction between native type V collagen and type VI collagen, suggesting a bridging function of this protein complex in the cell-matrix environment. Enzymatic studies showed that processing of the α1(V)-N-propeptide by BMP-1 (bone morphogenetic protein 1)/procollagen C-proteinase is enhanced by PCPE-1. These interactions are likely to be involved in extracellular matrix homoeostasis and their disruption could explain the pathogenetic mechanism in unresolved classic EDS cases.  相似文献   

17.
Cultured skin fibroblasts from seven consecutive cases of lethal perinatal osteogenesis imperfecta (OI) expressed defects of type I collagen metabolism. The secretion of [14C]proline-labelled collagen by the OI cells was specifically reduced (51-79% of control), and collagen degradation was increased to twice that of control cells in five cases and increased by approx. 30% in the other two cases. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed that four of the OI cell lines produced two forms of type I collagen consisting of both normally and slowly migrating forms of the alpha 1(I)- and alpha 2(I)-chains. In the other three OI cell lines only the 'slow' alpha (I)'- and alpha 2(I)'-chains were detected. In both groups inhibition of the post-translational modifications of proline and lysine resulted in the production of a single species of type I collagen with normal electrophoretic migration. Proline hydroxylation was normal, but the hydroxylysine contents of alpha 1(I)'- and alpha 2(I)'-chains purified by h.p.l.c. were greater than in control alpha-chains. The glucosylgalactosylhydroxylysine content was increased approx. 3-fold while the galactosylhydroxylysine content was only slightly increased in the alpha 1(I)'-chains relative to control alpha 1(I)-chains. Peptide mapping of the CNBr-cleavage peptides provided evidence that the increased post-translational modifications were distributed throughout the alpha 1(I)'- and alpha 2(I)'-chains. It is postulated that the greater modification of these chains was due to structural defects of the alpha-chains leading to delayed helix formation. The abnormal charge heterogeneity observed in the alpha 1 CB8 peptide of one patient may reflect such a structural defect in the type I collagen molecule.  相似文献   

18.
19.
Propagation in vitro of rat tibial osteoblasts (ROB) is accompanied by increased expression of the early osteogenic marker alkaline phosphatase (AP) and maturation of the osteogenic phenotype. In order to establish the pattern of the integrin expressed in ROB during progression to the mature osteoblastic phenotype, we have used biosynthetic, immunoblotting and immuno-histochemical assays. We immunoprecipitated from osteoblasts, expanded for 1.5- and 7.5-doubling, α5β1, αvβ3, α3β1, α6β1 and α1β1 integrin heterodimers; furthermore β5, α2 and α4 chains were detected by immunoblots and indirect immunofluorescence. αv, α1, α6 subunits in most cells, and β3 and β1 subunits in a minority, were found to be associated with adhesion plaques in osteoblasts of 1.5-, 4.5- and 7.5-doubling grown in the presence of FCS, while all other subunits stained diffusely all the cells. Adhesion to fibronectin (FN), laminin (LN), collagen type I (COL I) and III (COL III) by ROB at different doubling (1.5–11) was dependent on substratum concentration, and after 2.5h at 55nm 60% of the cells adhered to all substrata. Arg-Gly-Asp-Ser (RGDS) containing peptides inhibited adhesion of cells differentially, according to substratum; no dependence on extent of progation in vitro was observed. In conclusion, ROB cultured in vitro for 1.5- to 11-doubling had an unchanged pattern of expression of integrin subunits, heterodimer association and cellular distribution. Adhesion specificity and affinity were also unchanged. These results suggest that the phenotypic maturation, detected as an increase in AP expression, is not accompanied by major changes in the potential for cell—matrix interactions, and does not correspond to changes in the type of integrin subunits expressed by osteoblasts.  相似文献   

20.
Calf skin collagen was solubilized by incubating acid-extracted calf skin with pepsin at pH 2.0 and 25 degrees C, conditions that did not cause degradation of the triple helical region of collagen. Type III collagen was separated from type I collagen by differential salt precipitation at pH 7.5. The isolated type III collagen contained mainly gamma and higher molecular weight components cross-linked by reducible and/or non-reducible bonds. The isolated alpha1 (III) chains had an amino acid composition characteristic of type III collagen. Denatured but unreduced type III collagen, chromatographed on carboxymethyl-cellulose, eluted in the alpha 2 region, while after reduction and alkylation the alpha1 (III) chains eluted between the positions of alpha1 (I) and alpha2. The mid-point melting temperature temperature (tm) of type III collagen (35.1 degrees C) in a citrate buffer at pH 3.7 was somewhat lower than that of type I collagen (35.9 degrees C). Renaturation experiments at 25 degrees C showed that denatured type III collagen molecules with intact intramolecular disulfide bridges (gamma components) reform the triple helical structure of collagen much faster than reduced and carboxymethylated alpha1 (III) chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号