首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsomes were obtained from the zona glomerulosa of the bovine adrenal cortex. Contamination of microsomes with other cellular organelles was examined using various marker enzymes and the electron microscope. Distribution of cytochrome P-450 in the zona glomerulosa was studied using various fractions including microsomes, described above, and mitochondria. The amount of cytochrome P-450 in mitochondria and in microsomes was determined to be 0.73 and 0.32 nmol/mg protein, respectively. The CO difference spectrum was affected not only by the concentration of added deoxycholate but also by the incubation time after addition. Approximately 40–50% of cytochrome P-450 in the samples was converted to cytochrome P-420 within 20–30 sec of incubation with deoxycholate.The content of RNA, phospholipids, and cytochromeb 5 in microsomes obtained from the zona glomerulosa is also evaluated in comparison to that in microsomes obtained from the zona fasciculoreticularis.  相似文献   

2.
Studies were carried out to investigate the effects of prostaglandins (PG) in vitro on adrenal microsomal steroid and drug metabolism in the guinea pig. The addition of PGE1, PGE2, PGA1, PGF or PGF to isolated adrenal microsomes produced typical type I difference spectra. The sizes of the spectra (ΔA385–420) produced by prostaglandins were smaller than those produced by various steroids including progesterone, 17-hydroxyprogesterone and 11β-hydroxyprogesterone. However, the affinities of prostaglandins and steroids for adrenal microsomal cytochrome P-450, as estimated by the spectral dissociation constants, were similar. Prior addition of prostaglandins to isolated adrenal microsomes did not affect steroid binding to cytochrome P-450 or the rate of steroid 21-hydroxylation. In contrast, prostaglandins inhibited adrenal metabolism of ethylmorphine and diminished the magnitude of the ethylmorphine-induced spectral change in adrenal microsomes. The results indicate that prostaglandins inhibit adrenal drug metabolism by interfering with substrate binding to cytochrome P-450. Since 21-hydroxylation was unaffected by PG, different cytochrome P-450 moieties are probably involved in adrenal drug and steroid metabolism.  相似文献   

3.
Cytochrome P-450 was purified from microsomes of anaerobically grown yeast to a specific content of 12–15 nmoles per mg of protein with a yield of 10–30%. Upon sodium dodecylsulfate/polyacrylamide gel electrophoresis, the purified preparation yielded a major protein band having a molecular weight of about 51,000 together with a few faint bands. It was free from cytochrome b5, NADH-cytochrome b5 reductase, and NADPH-cytochrome c (P-450) reductase. In the oxidized state it exhibited a low-spin type absorption spectrum, and its reduced CO complex showed a Soret peak at 447–448 nm. It was reducible by NADPH in the presence of an NADPH-cytochrome c reductase preparation purified from yeast microsomes. Its conversion to the cytochrome P-420 form was much slower than that of hepatic cytochrome P-450.  相似文献   

4.
Limitations on the determination of the concentration of the major phenobarbital inducible form of cytochrome P-450 (P-450b) in hepatic microsomes by the metyrapone assay of Luu-The et al. (1) are reported. Compounds which bind to the Type I, II and IR binding sites, or convert cytochrome P-450 to P-420, decrease the apparent concentration of cytochrome P-450b by 20 to 100% in hepatic microsomes from untreated and pregnenolone-16α-carbonitrile or phenobarbital treated rats. It is calculated that errors of greater ca. 40% in the concentration of cytochrome P-450b can arise in the presence of appreciable quantities of the major pregnenolone-16α-carbonitrile or polycyclic hydrocarbon inducible forms of cytochrome P-450.  相似文献   

5.
NADPH:cytochrome P-450 (c) reductase is a microsomal enzyme which is involved in the cytochrome P-450-dependent biotransformation of many exogenous agents as well as of some endogenous molecules. Using cytochromec as a substrate, the kinetic parameters of this enzyme were determined in brain microsomes. The comparison of the NADPH:cytochrome P-450 reductase's Vmax values and cytochrome P-450 contents in both fractions, suggests a role of cerebral NADPH:cytochrome P-450 reductase in cytochrome P-450 independent pathways. This is also supported by the different developmental pattern of brain enzyme as compared to the liver enzyme, and by the presence of a relatively high NADPH:cytochrome P-450 reductase activity in immature rat brain and neuronal cultures, while cytochrome P-450 was hardly detectable in these preparations. The enzyme activity was not induced by a phenobarbital chronic treatment neither in the adult brain nor in cultured neurons, suggesting a different regulation of the brain enzyme expression.  相似文献   

6.
Cytochromes P-450 and P-448 in rat liver microsomes were solubilized with sodium cholate and were partially purified. The preparations contained 5.0–5.5 nmoles of cytochrome P-450 or P-448 per mg of protein; contamination with cytochrome P-420 and cytochrome b5, was less than 10% of the total heme content. The absolute spectra of Cytochromes P-450 and P-448 differed only slightly; both hemoproteins had a Soret peak at 418–419 nm in the oxidized absolute spectra and at 448 and 450 nm in the reduced plus CO absolute spectra. Both hemoproteins showed typical type I (benzphetamine) and type II (aniline) binding spectra but differed in their binding of hexobarbital (another type I substrate). The total phospholipid content of the preparation (per mg protein) has been reduced by approximately 90% relative to microsomes and the hemoprotein has been purified 20–25 fold with respect to phospholipid. The partially purified hemoprotein fractions, after combination with a reductase and lipid fraction, were capable of oxidizing a variety of substrates inluding drugs, steroids, and chemical carcinogens.  相似文献   

7.
Of the two characterized cytochrome P-450 subpopulations present in adult lung microsomes, only one (P-450II) appears to be present in the neonate. Both this subpopulation and a second subpopulation (P-450I) gradually increase over a period of several months, and account for most of the increase in lung cytochrome P-450 concentration during maturation. A third fraction of the cytochrome P-450, which is incapable of forming metabolic-intermediate complexes remains constant in concentration during maturation, thus decreasing from 60% of the total in the neonate to 20% in the adult. Metyrapone binding to lung cytochrome P-450 which increases during development does not correlate quantitatively with either of the two characterized subpopulations.  相似文献   

8.
Under anaerobic conditions the addition of halothane to NADPH-reduced liver microsomes from phenobarbital-pretreated male rats resulted in a pronounced inactivation of microsomal cytochrome P-450, presumably produced by covalent binding of reactive halothane metabolites such as the CF3CHCl-radical. Compared with microsomes from phenobarbital-pretreated rats, the loss of active cytochrome P-450 was markedly decreased in microsomes from both 3-methylcholanthrene-pretreated and untreated rats. Increasing the O2-partial pressure decreased the amount of cytochrome P-450 inactivated by halothane metabolites. At an O2-partial pressure of approximately 40 mm Hg the inactivation was virtually eliminated.  相似文献   

9.
Studies on the role of cytochrome P-450 in mouse, rat, and chick testis microsomes showed that this CO-binding hemoprotein is involved in the activity of the 17α-hydroxylase. A 70–80% inhibition by CO of the 17α-hydroxylase activity was detected in rat and chick testis microsomes. In the mouse testis, the level of the enzyme activity is ten times greater than that of the rat. This partly explains why an acceleration of NADPH oxidation by progesterone can be observed in mouse but not in rat testis microsomes. In rat testis microsomes, type I binding spectra of cytochrome P-450 was observed with pregnenolone, progesterone, 17-hydroxyprogesterone, androstenedione, and testosterone. The apparent Ks values for progesterone and 17-hydroxyprogesterone were 0.50 and 1.00 μm, respectively.When NADPH is used to measure cytochrome P-450 levels in rat testis microsomes, CO formation resulting from a stimulation in lipid peroxidation by phosphate or Fe2+ was sufficient to bind with 50% of the total amount of cytochrome P-450. Substitution of phosphate by Tris reduced the amount of lipid peroxidation to minimal levels. On a comparable basis, no CO formation was observed in avian testis microsomes.An increase in the testicular levels of cytochrome P-450 resulted upon the administration of HCG and cyclic-AMP to 1-day-old chicks. The lack of stimulation of the cytochrome P-450 levels by progesterone and pregnenolone suggest that the hormonal stimulation of the P-450 levels is not due to substrate induction.  相似文献   

10.
The role of cytochrome b5 in the NADPH-supported O-deethylation of p-nitrophenetole catalyzed by cytochrome P-450 was studied with reconstituted systems using two types of cytochrome P-450 (P-450PB and P-450MC) purified from rat liver microsomes. The O-deethylation by P-450PB absolutely required the presence of cytochrome b5, whereas the same reaction catalyzed by P-450MC did not require cytochrome b5. These effects of cytochrome b5 on the activities of reconstituted systems were confirmed by the use of antibodies to cytochrome b5. On the other hand, the oxidations of ethylmorphine and aniline by these two types of cytochrome P-450 did not show significant dependence on cytochrome b5. These observations suggest that the requirement for cytochrome b5 in NADPH-supported drug oxidations depends not only on the species of cytochrome P-450 catalyzing the reactions, but also on the substrates oxidized.  相似文献   

11.
Using inelastic laser light scattering we have determined the hydrodynamic diameters of a variety of hepatic microsomal preparations. Whole microsomes have a diameter of 3200 Å. Treatment of microsomes with deoxycholate or cholate and chromatography on DEAE-cellulose give three protein fractions: a “non-absorbed” fraction with particles 2650 Å in diameter, cytochrome P-420 1700 Å in diameter and cytochrome c reductase 760 Å in diameter. Preparation of cytochrome P-450 by (NH4)2SO4 precipitation from cholate solution gives particles 640 Å in diameter. All of these sizes are much too large to represent single molecular species, indicating that these fractions are aggregates of membrane proteins with varying concentrations of lipids.  相似文献   

12.
The cytochrome P-450-dependent 20-monooxygenation of ecdysone is catalyzed both by mitochondria and microsomes isolated from Musca domestica (L.) larvae; however, about 50% of the activity is associated with mitochondria, and 37% is associated with microsomes. Pretreatment of larvae with ecdysone results in an increase in Vmax and a decrease in Km values in mitochondria but not in microsomes. Phenobarbital, a known cytochrome P-450 inducer, increases the cytochrome P-450 levels in microsomes without affecting the 20-monooxygenase activity, but both the cytochrome P-450 levels and monooxygenase activity are depressed in mitochondria from phenobarbital-pretreated larvae. The ecdysone 20-monooxygenase activity is equally distributed between mitochondria and microsomes in adult insects. Pretreatment of the insects with ecdysone does not significantly modify the 20-monooxygenase activity of either mitochondrial or microsomal fractions, but the cytochrome P-450 levels are reduced in mitochondria. Phenobarbital also depresses the mitochondrial cytochrome P-450 levels while markedly increasing the microsomal cytochrome P-450 levels. However, no significant changes in ecdysone 20-monooxygenase activity are produced by phenobarbital pretreatment. The effects of ecdysone on adult cytochrome P-450 are mostly evidenced in mitochondria isolated from females, whereas in males the changes are not statistically significant. It is concluded that the mitochondrial ecdysone 20-monooxygenase is under regulatory control by ecdysone in the larval stage, which suggests that only the mitochondrial activity has a physiological role during insect development in M. domestica. In adults, both the mitochondrial and microsomal ecdysone 20-monooxygenase activities are not responsive to ecdysone, which, coupled to their high Km values, indicates that the reaction may not be of physiological importance in adult insects and that the mitochondrial cytochrome P-450 species being depressed by ecdysone in females are possibly not involved in ecdysone metabolism.  相似文献   

13.
Platelet microsomes were shown to contain cytochromes P-450 and b5 and their respective reductases, NADPH-cytochrome c reductase and NADH-cytochrome b5 reductase. Metyrapone and carbon monoxide (CO), two inhibitors of cytochrome P-450, inhibited both the arachidonic acid-induced platelet aggregation and the formation of aggregating factors from arachidonic acid by isolated microsomes. In addition metyrapone produced a type II spectral change with platelet microsomal cytochrome P-450. The data suggest that cytochrome P-450 may play a role in the complex enzyme systems which convert arachidonic acid to the platelet aggregating factors, cyclic endoperoxides and thromboxane A2.  相似文献   

14.
The electron transport components of the microsomal fraction of cauliflower buds and mung bean hypocotyls were investigated using split-beam and dual wavelength spectrophotometry under a variety of reducing conditions. Cauliflower microsomes were found to contain an ascorbate-reducible component, termed cytochrome b-559.5 [E'0 = +135 +/- 20 mV; lambdamax (reduced minus oxidised) = 559.5, 527 and 429 nm at 23 degrees C], cytochrome b5 [E'0 = -20 +/- 20 mV; lambdamax (reduced minus oxidised) = 556, 526 and 425 nm at 23 degrees C], cytochromes P-450 and P-420. On the basis of binding studies with ethyl isocyanide, degradation of cytochrome P-450 to P-420, redox potential, aniline binding, and relative rates of reduction by NADPH and NADH, it is suggested that the cytochrome P-450 system is analogous to that mammalian microsomes. Other components, reducible only by dithionite, may also be present. Mung bean microsomes were found to contain an ascorbate-reducible component, termed cytochrome b-562 [E'0 = +120 +/- 20 mV; lambdamax (reduced minus oxidised) = 562, 528 and 430 nm at 23 degrees C], cytochrome b5, and a low potential component which was reducible only by sodium dithionite. No cytochrome P-450 or P-420 could be detected. A general method of analysis of the cytochromes was developed and applied to the microsomes from a variety of plant sources. The results indicate that large variations, both in type and amount of components, occur between the microsomes from different plant materials.  相似文献   

15.
Summary Immunohistochemical localization of cytochrome P-450 in the colonic mucosa of 3-methylcholanthrene-pretreated and untreated rats was studied by indirect fluorescent antibody staining technique. A polyclonal antibody for cytochrome P-450MC purified from hepatic microsomes of 3-methylcholanthrene-pretreated rats was used for this experiment. A strong immunofluorescence was found to be localized in the cytoplasm of the surface epithelium of the mucosa in the colon of 3-methylcholanthrene-pretreated rats. A faint immunofluorescence was also observed in the epithelium of untreated rats. 7-Ethoxycoumarin O-deethylase activity of colonic microsomes was significantly enhanced by 3-methylcholanthrene-pretreatment in parallel with an increase in the intensity of immunostaining for cytochrome P-450MC in Western blotting analysis. This is the first report on the localization of cytochrome P-450 in the colonic mucosa.  相似文献   

16.
Highly-purified rat liver microsomal cytochrome P-450 converted cyclohexane to cyclohexanol in the presence of iodosobenzene. Oxygen from 18O-iodosobenzene was not incorporated into cyclohexanol but oxygen from H218O was readily incorporated. Cytochrome P-450 catalyzed the facile exchange of oxygen between iodosobenzene and water but neither cytochrome P-420 nor the apoenzyme did. Under these conditions cytochrome P-450 readily incorporated oxygen from 18O2 into cyclohexanol in the presence of NADPH-cytochrome P-450 reductase and NADPH. The results are interpreted in a mechanism in which cytochrome P-450 forms a common hydroxylating species in the presence of iodosobenzene or O2 plus NADPH.  相似文献   

17.
Cytochrome P-450 was purified to a content of over 17 nmoles per mg of protein from liver microsomes of phenobarbital-treated rabbits by fractionation with polyethylene glycol 6000, DEAE-cellulose column chromatography, and hydroxylapatite column chromatography in the presence of Renex 690, a nonionic detergent. The purified preparation exhibited a single polypeptide band (molecular weight, 49,000 daltons) when submitted to SDS-polyacrylamide gel electrophoresis. Cytochromes P-420 and b5 and NADPH-cytochrome c reductase were absent. The reconstituted system containing purified cytochrome P-450, reductase, and phosphatidylcholine catalyzed the hydroxylation of benzphetamine, cyclohexane, aniline, and laurate.  相似文献   

18.
Using isotope dilution—mass fragmentography as assay technique, it was shown that highly purified preparations of cytochrome P-450 from rat liver microsomes catalyzed 25-hydroxylation of vitamin D3 when combined with NADPH-cytochrome P-450 reductase and a phospholipid. The rate of conversion was approximately linear with the amount of cytochrome P-450, and was considerably higher than the rate of conversion obtained with crude liver microsomes. The possibility is discussed that the microsomal fraction contains inhibitors of 25-hydroxylase activity, which may be of regulatory importance in vitamin D3 metabolism.  相似文献   

19.
Expression of house fly cytochrome P-450lpr was examined using immunoblotting in male and female adult LPR house flies, mixed sex adult house flies at 12 different ages, larvae, and pupae. P-450lpr was expressed in both male and female adult house flies. P-450lpr was clearly present in all adult stages examined, was barely detectable in pupae, and could not be detected in larvae. Thus, cytochrome P-450lpr is developmentally regulated and present in both sexes of house fly. Expression of cytochrome P-450, immunologically homologous to house fly cytochrome P-450lpr was examined in other species using immunoblot analysis. Eleven animal species were tested in the orders Diptera, Hymenoptera, Lepidoptera, Orthoptera, Acari, and Rodentia, using microsomes in some species from both induced and noninduced animals or insecticide-resistant and susceptible strains. P-450lpr appears to be restricted to house flies, as none of these species contained cytochrome P-450 that reacted with antiserum to cytochrome P-450lpr.  相似文献   

20.
The cytochrome contents of rough endoplasmic reticulum (ER) of lactating bovine and rat mammary epithelial cells and of the membranes surrounding the fat globules in bovine and human milk (MFGM) were analyzed with spectrophotometric (at +20 °C and ?196 °C) and immunological methods. Two cytochrome components were found. One was identified as cytochrome b5 by the characteristic split of the α-band in reduced versus oxidized difference spectra at low temperature, by the reduction with NADH, which was insensitive against rotenone and antimycin, and by the solubility upon trypsin treatment. This component showed cross-reaction with the microsomal cytochrome b5 from rat hepatocytes using rabbit antibodies against the purified cytochrome b5 fragment released from rat liver microsomes by trypsin treatment. The in situ localization of cytochrome b5 in mammary epithelial cells was demonstrated by indirect immunofluorescence microscopy in both frozen sections of tissue and cultured cells. The second cytochrome component was identified as cytochrome P-420 by the characteristic spectral bands in the CO-difference spectrum and the dithionite-difference spectrum, by the reaction with cyanide, and by the insolubility upon trypsin treatment of the membranes. In addition, we found evidence for the existence of a form of cytochrome P-420 in these membranes which does not bind CO. The presence of cytochrome P-420 in mammary gland ER and MFGM fractions was not due to preparative artifacts. No cytochrome P-450 was observed in these membranes. The significance of the occurrence of these redox components in ER and surface membrane of mammary gland epithelium and other cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号