首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of several secondary-structure prediction programs were combined to produce an estimate of the regions of alpha-helix, beta-sheet and reverse turn for both chicken skeletal-muscle and yeast enolase sequences. The predicted secondary-structure content of the chicken enzyme is 27% alpha-helix and less than 10% beta-sheet, whereas in the yeast enolase a similar helix content but virtually no sheet are predicted. These results are in fair agreement with published experimental estimates of the amount of secondary structure in the yeast enzyme. The enzyme appears to be formed from three domains.  相似文献   

2.
Secondary-structure-prediction algorithms have been used to find the segments of beta-lactoglobulin sequence most likely to fit the circular dichroism assignment of 15% alpha-helix, 50% beta-sheet, and 15-20% reverse turn. A number of segments may have an alpha-helical conformation but the most prominent region of alpha-helix is from residue 129 to 143. A further probable alpha-helix segment is residues 65-76. The number of residues predicted to occur in segments of beta-sheet structure is less than expected. However, the most likely segments are for residues 1-6, 11-16, 39-45, 80-85, 92-96, 101-107, 117-123, and 145-151. Predicted reverse-turn tetrapeptides are residues 7-10, 49-52, 61-64, 88-91, and 112-115. These predicted secondary structures are consistent with the low-resolution structure of the molecule determined by X-ray diffraction studies.  相似文献   

3.
The Na(+),K(+)-ATPase is an integral membrane protein which transports sodium and potassium cations against an electrochemical gradient. The transport of Na(+) and K(+) ions is presumably connected to an oscillation of the enzyme between the two conformational states, the E(1) (Na(+)) and the E(2) (K(+)) conformations. The E(1) and E(2) states have different affinities for ligand interaction. However, the determination of the secondary structure of this enzyme in its sodium and potassium forms has been the subject of much controversy. This study was designed to provide a quantitative analysis of the secondary structure of the Na(+),K(+)-ATPase in its sodium (E(1)) and potassium (E(2)) states in both H(2)O and D(2)O solutions at physiological pH, using Fourier transform infrared (FTIR) with its self-deconvolution and second derivative resolution enhancement methods, as well as curve-fitting procedures. Spectroscopic analysis showed that the secondary structure of the sodium salt of the Na(+),K(+)-ATPase in H(2)O solution contains alpha-helix 19.8+/-1%, beta-sheet 25.6+/-1%, turn 9.1+/-1%, and beta-anti 7.5+/-1%, whereas in D(2)O solution, the enzyme shows alpha-helix 16.8+/-1%, beta-sheet 24.5+/-1.5%, turn 10.9+/-1%, beta-anti 9.8+/-1%, and random coil 38.0+/-2%. Similarly, the potassium salt in H(2)O solution contains alpha-helix 16.6+/-1%, beta-sheet 26.4+/-1.5%, turn 8.9+/-1%, and beta-anti 8.1+/-1%, while in D(2)O solution it shows alpha-helix 16.2+/-1%, beta-sheet 24.5+/-1.5%, turn 10.3+/-1%, beta-anti 9.0+/-1%, and random coil 40+/-2%. Thus the main differences for the sodium and potassium forms of the Na(+),K(+)-ATPase are alpha-helix 3.2% in H(2)O and 0.6% in D(2)O, beta-sheet (pleated and anti) 1.5% in H(2)O and random structure 2% (D(2)O), while for other minor components (turn structure), the differences are less than 1%.  相似文献   

4.
The relative stability of alpha-helix and beta-sheet secondary structure in the solid state was investigated using poly(L-alanine) (PLA) as a model system. Protein folding and stability has been well studied in solution, but little is known about solid-state environments, such as the core of a folded protein, where peptide packing interactions are the dominant factor in determining structural stability. (13)C cross-polarization with magic angle spinning (CPMAS) NMR spectroscopy was used to determine the backbone conformation of solid powder samples of 15-kDa and 21.4-kDa PLA before and after various sample treatments. Reprecipitation from helix-inducing solvents traps the alpha-helical conformation of PLA, although the method of reprecipitation also affects the conformational distribution. Grinding converts the secondary structure of PLA to a final steady-state mixture of 55% beta-sheet and 45% alpha-helix at room temperature regardless of the initial secondary structure. Grinding PLA at liquid nitrogen temperatures leads to a similar steady-state mixture with 60% beta-sheet and 40% alpha-helix, indicating that mechanical shear force is sufficient to induce secondary structure interconversion. Cooling the sample in liquid nitrogen or subjecting it to high pressure has no effect on secondary structure. Heating the sample without grinding results in equilibration of secondary structure to 50% alpha-helix/50% beta-sheet at 100 degrees C when starting from a mostly alpha-helical state. No change was observed upon heating a beta-sheet sample, perhaps due to kinetic effects and the different heating rate used in the experiments. These results are consistent with beta-sheet approximately 260 J/mol more stable than alpha-helix in solid-state PLA.  相似文献   

5.
The secondary structure of the purified glucosamine-6-phosphate deaminase from Escherichia coli K12 was investigated by both circular dichroism (CD) spectroscopy and empirical prediction methods. The enzyme was obtained by allosteric-site affinity chromatography from an overproducing strain bearing a pUC18 plasmid carrying the structural gene for the enzyme. From CD analysis, 34% of alpha-helix, 9% of parallel beta-sheet, 11% of antiparallel beta-sheet, 15% turns and 35% of non-repetitive structures, were estimated. A joint prediction scheme, combining six prediction methods with defined rules using several physicochemical indices, gave the following values: alpha-helix, 37%; beta-sheet, 22%; turns, 18% and coil, 23%. The structure predicted showed also a considerable degree of alternacy of alpha and beta structures; 64% of helices are amphipathic and 90% of beta-sheets are hydrophobic. Overall, the data suggest that deaminase has as dominant motif, an alpha/beta structure.  相似文献   

6.
Structure of ubiquitin refined at 1.8 A resolution   总被引:35,自引:0,他引:35  
The crystal structure of human erythrocytic ubiquitin has been refined at 1.8 A resolution using a restrained least-squares procedure. The crystallographic R-factor for the final model is 0.176. Bond lengths and bond angles in the molecule have root-mean-square deviations from ideal values of 0.016 A and 1.5 degrees, respectively. A total of 58 water molecules per molecule of ubiquitin are included in the final model. The last four residues in the molecule appear to have partial occupancy or large thermal motion. The overall structure of ubiquitin is extremely compact and tightly hydrogen-bonded; approximately 87% of the polypeptide chain is involved in hydrogen-bonded secondary structure. Prominent secondary structural features include three and one-half turns of alpha-helix, a short piece of 3(10)-helix, a mixed beta-sheet that contains five strands, and seven reverse turns. There is a marked hydrophobic core formed between the beta-sheet and alpha-helix. The molecule features a number of unusual secondary structural features, including a parallel G1 beta-bulge, two reverse Asx turns, and a symmetrical hydrogen-bonding region that involves the two helices and two of the reverse turns.  相似文献   

7.
The accessibility of Escherichia coli melibiose permease to aqueous solvent was studied following hydrogen-deuterium exchange kinetics monitored by attenuated total reflection-Fourier transform infrared spectroscopy under four distinct conditions where MelB forms different complexes with its substrates (H(+), Na(+), melibiose). Analysis of the amide II band upon (2)H(2)O exposure discloses a significant sugar protection of the protein against aqueous solvent, resulting in an 8% less exchange of the corresponding H(+)*melibiose*MelB complex compared with the protein in the absence of sugar. Investigation of the amide I exchange reveals clear substrate effects on beta-sheet accessibility, with the complex H(+)*melibiose*MelB being the most protected state against exchange, followed by Na(+)*melibiose*MelB. Although of smaller magnitude, similar changes in alpha-helices plus non-ordered structures are detected. Finally, no differences are observed when analyzing reverse turn structures. The results suggest that sugar binding induces a remarkable compactness of the carrier's structure, affecting mainly beta-sheet domains of the transporter, which, according to secondary structure predictions, may include cytoplasmic loops 4-5 and 10-11. A possible catalytic role of these two loops in the functioning of MelB is hypothesized.  相似文献   

8.
The study is focused on the secondary structure of the external N-terminal segment of human erythrocyte glycophorin A (NN) which was determined by applying methods of CHOU et FASMAN and LIM. This hydrophilic glycophorin segment is assumed to consist of 48.5% ordered (alpha-helix, beta-sheet, beta-turn) and 51.5% unordered sequences. From the secondary structure suggestions are made concerning (i) peptide interaction and (ii) binding to the lipid bilayer of the N-terminal segment.  相似文献   

9.
A Dong  B Caughey  W S Caughey  K S Bhat  J E Coe 《Biochemistry》1992,31(39):9364-9370
The secondary structure of hamster female protein in aqueous solutions in the presence or absence of calcium and phosphorylcholine has been investigated using Fourier transform infrared spectroscopy. Our present studies provide the first evaluation of the secondary structure of FP and its calcium- and phosphorylcholine-dependent conformational changes. Quantitative analysis indicated that FP is composed of 50% beta-sheet, 11% alpha-helix, 29% beta-turn, and 10% random structures. Calcium- and phosphorylcholine-dependent infrared spectral changes were observed in regions assigned to beta-sheet, alpha-helix, turn, and random structures. The infrared-based secondary structure compositions were used as constraints to compute theoretical locations for the different secondary structures along the amino acid sequence of the FP protein. Two putative calcium-binding sites were proposed for FP (residues 93-109 and 150-168) as well as other members of the pentraxin family on the basis of the theoretical secondary structure predictions and the similarity in sequence between the pentraxins and EF-hand calcium-binding proteins. The changes in protein conformation detected upon binding of calcium and phosphorylcholine provide a mechanism for the effects of these ligands on physiologically important properties of the protein, e.g., activation of complement and association with amyloids.  相似文献   

10.
The far-ultraviolet circular dichroism (CD) spectra of the extracellular portion (papain-cleaved fragment) of the histocompatibility antigen H-2Kb and its noncovalently associated components, heavy chain and beta 2-microglobulin (beta 2m), indicate that the antigen is highly structured, containing about 30% alpha-helix, 41% beta-sheet, and 29% random coil. Separation of beta 2m from the heavy chain produced a decrease in heavy chain alpha-helix and beta-sheet structure which correlated with a loss of alloantigenic reactivity. Reconstitution of the heavy chain-beta 2m complex resulted in an increase in secondary structure which was greater than the sum of the free chains and the recovery of considerable alloantigenic reactivity. This suggests that some of the secondary structure and much of the alloantigenic reactivity may depend on conformation associated with the binding of beta 2m to heavy chain. A prediction of heavy chain secondary structure based on Chou-Fasman analysis of the primary amino acid sequence agreed with results from CD measurements and suggested that the segments of alpha-helix and beta-sheet structure are distributed throughout the molecule.  相似文献   

11.
MiRP1 (encoded by the KCNE2 gene) is one of a family of five single transmembrane domain voltage-gated potassium (Kv) channel ancillary subunits currently under intense scrutiny to establish their position in channel complexes and elucidate alpha subunit contact points, but its structure is unknown. MiRP1 mutations are associated with inherited and acquired cardiac arrhythmia. Here, synthetic peptides corresponding to human MiRP1 (full-length and separate domains) were structurally analyzed using FTIR and CD spectroscopy. The N-terminal (extracellular) domain was soluble and predominantly non-ordered in aqueous media, but predominantly alpha-helical in L-alpha-lysophosphatidylcholine (LPC) micelles. The MiRP1 transmembrane domain was predominantly a mixture of alpha-helix and non-ordered structure in LPC micelles, with a minor contribution from non-aggregated beta-strand. The intracellular C-terminal domain was insoluble in aqueous solution; reconstitution into non-aqueous environments resulted in solubility and adoption of increasing amounts of alpha-helix, with the solvent order sodium dodecyl sulphate < dimyristoyl L-alpha-phosphatidylcholine (DMPC) < LPC < trifluoroethanol. Correlation of secondary structure changes with lipid transition temperature during heating suggested that the MiRP1 C-terminus incorporates into DMPC bilayers. Full-length MiRP1 was soluble in SDS micelles and calculated to contain 34% alpha-helix, 23% beta-strand and 43% non-ordered structure in this environment, as determined by CD spectroscopy. Thus, MiRP1 is highly dependent upon hydrophobic interaction via lipid and/or protein contacts for adoption of ordered structure without nonspecific aggregation, consistent with a role as a membrane-spanning subunit within Kv channel complexes. These data will provide a structural framework for ongoing mutagenesis-based in situ structure-function studies of MiRP1 and its relatives.  相似文献   

12.
The secondary structure of the catalytic domain from protein kinase C zeta was studied using IR spectroscopy. In the presence of the substrate MgATP, there was a significant change in the secondary structure. After heating to 80 degrees C, a 14% decrease in the alpha-helix component was observed, accompanied by a 6% decrease in the beta-pleated sheet; no change was observed in the large loops or in 3(10)-helix plus associated loops. The maximum increase with heating was observed in the aggregated beta-sheet component, with an increase of 14%. In the presence of MgATP, and compared with the sample heated in its absence, there was a substantial decrease in the 3(10)-helix plus associated loops and an increase in alpha-helix. Synchronous 2D-IR correlation showed that the main changes occurred at 1617 cm(-1), which was assigned to changes in the intermolecular aggregated beta-sheet of the denaturated protein. This increase was mainly correlated with the change in alpha-helix. In the presence of MgATP, the main correlation was between aggregated beta-sheet and the large loops component. The asynchronous 2D-correlation spectrum indicated that a number of components are transformed in intermolecularly aggregated beta-sheet, especially the alpha-helix and beta-sheet components. It is interesting that changes in 3(10)-helix plus associated loops and in alpha-helix preceded changes in large loops, which suggests that the open loops structure exists as an intermediate state during denaturation. In summary, IR spectroscopy revealed an important effect of MgATP on the secondary structure and on the thermal unfolding process when this was induced, whereas 2D-IR correlation spectroscopy allowed us to show the establishment of the denaturation pathway of this protein.  相似文献   

13.
Values of four conformational properties, namely unperturbed dimension [r2]0, dipole moment [mu 2], mean squared optical anisotropy [gamma 2], and molar Kerr constant [mK], have been calculated for polyglycine chains allowing several combinations of the secondary structure with the aim of studying the dependence of these magnitudes on the secondary structure of the chain. Two different approaches to the secondary structure have been used. In the first, chains with all their units in a given conformation (random coil, alpha-helix or beta-sheet) are interrupted at several positions by one unit in a different conformation. In the second, chains with varying composition of two conformations alpha-helix/beta-sheet and beta-sheet/random coil were allowed and the results obtained compared with previous work for alpha-helix/random coil chains.  相似文献   

14.
15.
The secondary and tertiary structure of T4 bacteriophage dihydrofolate reductase is investigated by vacuum ultraviolet circular dichroism (CD) spectroscopy and probability analysis of the primary amino acid sequence. The far ultraviolet CD spectrum of the enzyme in the range of 260-178 nm is analyzed by the generalized inverse and variable selection methods developed by our laboratory. Variable selection yields an average content of 26% alpha-helix, 21% antiparallel beta-sheet, 10% parallel beta-sheet, 20% beta-turns, and 32% "other" structures within the T4 protein. The characteristic peaks of the CD spectrum indicate that the enzyme has a lot of antiparallel beta-sheet, which is typical of the alpha + beta tertiary class of globular proteins. The secondary structure of the protein is also analyzed by using four statistical methods on the amino acid sequence. Although the secondary structures predicted by each individual statistical method vary to a considerable extent, the fractions of each structure jointly predicted by a majority of the methods are in excellent agreement with our CD analysis. The alternating arrangement for some segments of alpha-helix and beta-sheet predicted from primary structure to be within the enzyme is characteristic of proteins containing parallel beta-sheet. This supports our conclusion that the protein contains both parallel and antiparallel beta-sheet structures, but finding both types of beta-sheet also means that the protein may have the variation on alpha/beta tertiary structure recently found in EcoRI endonuclease and thymidylate synthase. These observations, in conjunction with other physical properties of the T4 reductase, suggest that the enzyme perhaps shares an evolution in common with the dihydrofolate reductases derived from type I R-plasmids rather than with the host-cell protein.  相似文献   

16.
To further elucidate the role of the disulfide bonds in determining the protein folding of recombinant human epidermal growth factor (r-HuEGF) we studied the structure of reduced and oxidized r-HuEGF using circular dichroism (CD). The far UV CD spectrum of reduced r-HuEGF in 10 mM sodium phosphate pH 3.0 is very different from that of the oxidized molecule. The spectrum of the reduced molecule consists of a plateau from 225 to 200 nm, consistent with the presence of alpha-helix, beta-sheet, and unordered structure. The addition of the alpha-helix inducer trifluoroethanol to the reduced molecule resulted in an enhancement of alpha-helix, at the apparent expense of beta-sheet, while the oxidized molecule was unaffected by the presence of this reagent. Secondary structure predictions based on the amino acid sequence of EGF correlate most closely with the structure of the reduced molecule. From these results, it appears that the r-HuEGF has a more regular secondary structure in the absence of the disulfide bonds than in their presence. This suggests that the folding of EGF occurs by destroying the regular secondary structure that was present in the reduced state, and that the structure of the native molecule is dictated largely by disulfide bonding.  相似文献   

17.
Conformational and structural changes of lentil seedlings amine oxidase (LSAO) were studied in the presence of trifluoroethanol (TFE) by spectroscopic and analytical techniques. At TFE concentrations up to 5%, the induction of a structural transition from beta-sheet to alpha-helix and up to 10% TFE a structural transition from alpha-helix to beta-sheet as well as inactivation of the enzyme are observed. At TFE concentrations between 10-35%, LSAO proves to be prone to aggregation and beyond 35% TFE leads to a non-native protein structure with a high alpha-helix content. The obtained results revealed that the aggregation of LSAO is strongly linked to the nature of secondary structures.  相似文献   

18.
An amyloid(1-40) solution rich in coil, turn, and alpha-helix, but poor in beta-sheet, develops monolayers with a high beta-sheet content when spread at the air-water interface. These monolayers are resistant to repeated compression-dilatation cycles and interaction with trifluoroethanol. The secondary structure motifs were detected by circular dichroism (CD) in solution and with infrared reflection-absorption spectroscopy (IRRAS) at the interface. Hydrophobic influences are discussed for the structure conversion in an effort to understand the completely unknown reason for the natural change of the normal prion protein cellular (PrP(C)) into the abnormal prion protein scrapie (PrP(Sc)).  相似文献   

19.
The secondary structure of human fibrinogen and its plasmin-fragments have been studied by FTIR spectroscopy. The quantitative results for fibrinogen are in good agreement with previous studies using circular dichroism spectroscopy. After treatment of fibrinogen with plasmin in buffer containing Ca2+, two major fragments are produced: fragment E (Mw 45,000) and fragment D (Mw 100,000). Fragment E is shown to contain 50% alpha-helical values, attributed to its coiled-coil portions, and minor beta-strands and turn structures. Its deuteration gives evidence of the presence of solvent-exposed alpha-helical structures. On the other hand, fragment D contains a distribution of secondary structure values of 35% alpha-helix, 29% beta-sheet segments and 17% turn structures. Fragment D itself has two domains: a portion of the original coiled-coil and also a thermally labile globular domain. The coiled-coil portion (Mw 27,000) was isolated and showed a high alpha-helical content (around 70%). The globular domain is estimated to be rich in beta-sheet structures. The spectra of fibrin clots formed in Ca(2+)-containing buffer have a lower amide I/amide II ratio than fibrinogen spectra, which is interpreted as being due to aggregation.  相似文献   

20.
The hemagglutinin from the seeds of Moringa oleifera (MoL) agglutinates human as well as rabbit erythrocytes; the affinity for the latter is almost 250 times more than that for the former. MoL was inhibited by glycoproteins namely thyroglobulin, fetuin and holotransferin indicating the complex sugar specificity of the lectin. The protein is a homodimer with molecular mass of 14kDa, subunits (7.1kDa) linked by the disulfide bond(s). The secondary structure elements of MoL are alpha-helix, 28%; beta-sheet, 23%; turn 20% and unordered 28%. While the activity and secondary structure were not affected at extreme pH and high temperature, they were drastically affected in presence of dithiothreitol at and above pH 7.0, indicating that disulfide linkages hold the active conformation of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号