首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We investigated whether maternal fat intake alters amniotic fluid and fetal intestine phospholipid n-6 and n-3 fatty acids. Female rats were fed a 20% by weight diet from fat with 20% linoleic acid (LA; 18:2n-6) and 8% alpha-linolenic acid (ALA; 18:3n-3) (control diet, n = 8) or 72% LA and 0.2% ALA (n-3 deficient diet, n = 7) from 2 wk before and then throughout gestation. Amniotic fluid and fetal intestine phospholipid fatty acids were analyzed at day 19 gestation using HPLC and gas-liquid chromotography. Amniotic fluid had significantly lower docosahexaenoic acid (DHA; 22:6n-3) and higher docosapentaenoic acid (DPA; 22:5n-6) levels in the n-3-deficient group than in the control group (DHA: 1.29 +/- 0.10 and 6.29 +/- 0.33 g/100 g fatty acid; DPA: 4.01 +/- 0.35 and 0.73 +/- 0.15 g/100 g fatty acid, respectively); these differences in DHA and DPA were present in amniotic fluid cholesterol esters and phosphatidylcholine (PC). Fetal intestines in the n-3-deficient group had significantly higher LA, arachidonic acid (20:4n-6), and DPA levels; lower eicosapentaenoic acid (EPA; 20:5n-3) and DHA levels in PC; and significantly higher DPA and lower EPA and DHA levels in phosphatidylethanolamine (PE) than in the control group; the n-6-to-n-3 fatty acid ratio was 4.9 +/- 0.2 and 32.2 +/- 2.1 in PC and 2.4 +/- 0.03 and 17.1 +/- 0.21 in PE in n-3-deficient and control group intestines, respectively. We demonstrate that maternal dietary fat influences amniotic fluid and fetal intestinal membrane structural lipid essential fatty acids. Maternal dietary fat can influence tissue composition by manipulation of amniotic fluid that is swallowed by the fetus or by transport across the placenta.  相似文献   

2.
Energy metabolism during embryonic development of snakes differs in several respects from the patterns displayed by other reptiles. There are, however, no previous reports describing the main energy source for development, the yolk lipids, in snake eggs. There is also no information on the distribution of yolk fatty acids to the tissues during snake development. In eggs of the water python (Liasis fuscus), we report that triacylglycerol, phospholipid, cholesteryl ester and free cholesterol, respectively, form 70.3%, 14.1%, 5.7% and 2.1% of the total lipid. The main polyunsaturate of the yolk lipid classes is 18:2n-6. The yolk phospholipid contains 20:4n-6 and 22:6n-3 at 13.0% and 3.6% (w/w), respectively. Approximately 10% and 30% of the initial egg lipids are respectively recovered in the residual yolk and the fat body of the hatchling. A major function of yolk lipid is, therefore, to provision the neonate with large energy reserves. The proportion of 22:6n-3 in brain phospholipid of the hatchling is 11.1% (w/w): this represents only 0.24% of the amount of 22:6n-3 originally present in the egg. This also contrasts with values for free-living avian species where the proportion of DHA in neonatal brain phospholipid is 16–19%. In the liver of the newly hatched python, triacylglycerol, phospholipid and cholesteryl ester, respectively, form 68.2%, 7.7% and 14.3% of total lipid. This contrasts with embryos of birds where cholesteryl ester forms up to 80% of total liver lipid and suggests that the mechanism of lipid transfer in the water python embryo differs in some respects from the avian situation.Abbreviations ARA arachidonic acid - DHA docosahexaenoic acidCommunicated by G. Heldmaier  相似文献   

3.
This study examines the transfer of lipids from the yolk to the embryo of the king penguin, a seabird with a high dietary intake of n-3 fatty acids. The concentrations of total lipid, triacylglycerol (TAG), and phospholipid (PL) in the yolk decreased by ~80% between days 33 and 55 of development, indicating intensive lipid transfer, whereas the concentration of cholesteryl ester (CE) increased threefold, possibly due to recycling. Total lipid concentration in plasma and liver of the embryo increased by twofold from day 40 to hatching due to the accumulation of CE. Yolk lipids contained high amounts of C(20-22) n-3 fatty acids with 22:6(n-3) forming 4 and 10% of the fatty acid mass in TAG and PL, respectively. Both TAG and PL of plasma and liver contained high proportions of 22:6(n-3) ( approximately 15% in plasma and >20% in liver at day 33); liver PL also contained a high proportion of 20:4(n-6) (14%). Thus both 22:6(n-3) and 20:4(n-6), which are, respectively, abundant and deficient in the yolk, undergo biomagnification during transfer to the embryo.  相似文献   

4.
Since the yolk lipids of the king penguin (Aptenodytes patagonicus) are rich in n-3 fatty acids, which are potentially susceptible to peroxidative damage, the yolk contents and yolk-to-embryo transfer of antioxidants and lipid-soluble vitamins were investigated under conditions of natural incubation in the wild. The concentration of vitamin E in the unincubated egg was 155 microg/g wet yolk, of which 88% was alpha-tocopherol and the rest was gamma-tocopherol. Vitamin A (2.9 microg/g) was present in the yolk entirely as retinol; no retinyl esters were detected. Throughout the latter half of the incubation period, vitamins E and A were taken up from the yolk into the yolk sac membrane (YSM) and later accumulated in the liver, with vitamin A being transferred in advance of vitamin E. In the YSM, vitamin A was present almost entirely as retinyl ester, indicating that the free retinol of the yolk is rapidly esterified following uptake. Retinyl esters were also the predominant form in the liver. The retinyl esters of the liver and YSM displayed different fatty acid profiles. At hatching, the brain contained relatively little vitamin E (4.7 microg/g) compared to the much higher concentration in the liver (482.9 microg/g) at this stage. Ascorbic acid was not detected in the yolk but was present at a high concentration in the brain at day 27 (404.6 microg/g), decreasing to less than half this value by the time of hatching. This report is the first to delineate the yolk-to-embryo transfer of lipid-soluble vitamins for a free-living avian species. The yolk fatty acids of the king penguin provide an extreme example of potential oxidative susceptibility, forming a basis for comparative studies on embryonic antioxidant requirements among species of birds whose yolk lipids differ in their degree of unsaturation.  相似文献   

5.
This study examines the metabolic fate of total and individual yolk fatty acids (FA) during the embryonic development of the king penguin, a seabird characterized by prolonged incubation (53 days) and hatching (3 days) periods, and a high n-3/n-6 polyunsaturated FA ratio in the egg. Of the approximately 15 g of total FA initially present in the egg lipid, 87% was transferred to the embryo by the time of hatching, the remaining 13% being present in the internalized yolk sac of the chick. During the whole incubation, 83% of the transferred FA was oxidized for energy, with only 17% incorporated into embryo lipids. Prehatching (days 0-49), the fat stores (triacylglycerol) accounted for 58% of the total FA incorporated into embryo lipid. During hatching (days 49-53), 40% of the FA of the fat stores was mobilized, the mobilization of individual FA being nonselective. At hatch, 53% of the arachidonic acid (20:4n-6) of the initial yolk had been incorporated into embryo lipid compared with only 15% of the total FA and 17-24% of the various n-3 polyunsaturated FA. Similarly, only 32% of the yolk's initial content of 20:4n-6 was oxidized for energy during development compared with 72% of the total FA and 58-66% of the n-3 polyunsaturated FA. The high partitioning of yolk FA toward oxidization and the intense mobilization of fat store FA during hatching most likely reflect the high energy cost of the long incubation and hatching periods of the king penguin. The preferential partitioning of 20:4n-6 into the structural lipid of the embryo in the face of its low content in the yolk may reflect the important roles of this FA in tissue function.  相似文献   

6.
The salient feature of the fatty acid profile of kestrel eggs collected in the wild was the very high proportion of arachidonic acid (15.2%+/-0.7% of fatty acid mass, n=5) in the phospholipid fraction of the yolk. Kestrels in captivity fed on day-old chickens produced eggs that differed from those of the wild birds in a number of compositional features: the proportion of linoleic acid was increased in all the lipid fractions; the proportion of arachidonic acid was increased in yolk phospholipid and cholesteryl ester; the proportion of alpha-linolenic acid was decreased in all lipid classes, and that of docosahexaenoic acid was decreased in phospholipid and cholesteryl ester. Partridge eggs from the wild contained linoleic acid as the main polyunsaturate of all the yolk lipid fractions. Captive partridges maintained on a formulated diet very rich in linoleic acid produced eggs with increased levels of linoleic, arachidonic, and n-6 docosapentaenoic acids in the phospholipid fraction; reduced proportions of alpha-linolenic acid were observed in all lipid classes, and the proportion of docosahexaenoic acid was markedly reduced in the phospholipid fraction. Thus, captive breeding of both the kestrel and the partridge increases the n-6/n-3 polyunsaturate ratio of the yolk lipids.  相似文献   

7.
The switch from yolk to food (myctophid fishes) as the nutrient source for the newly hatched chick of the king penguin ( Aptenodytes patagonicus) results in a profound change in the pattern of fatty acid provision. This is characterized by major increases in the proportionate intake of n-3 polyunsaturates (20:5n-3 and 22:6n-3) and long chain (C(20-24)) monounsaturates, accompanied by relatively lower levels of n-6 polyunsaturates (18:2n-6 and 20:4n-6). The effects of this change on the fatty acid composition of tissue lipids during the first month of growth, a period of tissue maturation leading to thermal emancipation, were determined. The composition of adipose tissue triacylglycerol responded rapidly to the switch in nutrient source, the proportion of long chain monounsaturates (mainly 20:1n-9 and 22:1n-11) increasing five-fold between hatch and emancipation while the relative levels of 20:5n-3 and 22:6n-3 also increased significantly, by 3- and 1.2-fold, respectively. At emancipation, the fatty acid profile of adipose tissue triacylglycerol was essentially identical to that of the diet. At hatch, the main polyunsaturates of muscle phospholipid were 20:4n-6, 20:5n-3, and 22:6n-3, respectively, forming (w/w of fatty acids) 13.2%, 5.0%, and 12.0%. By emancipation, 20:4n-6 had decreased to 4.8%, 20:5n-3 increased to 10.9%, and 22:6n-3 at 11.4% showed little change. The main polyunsaturate in brain phospholipid at hatch was 22:6n-3 (19.3%): this remained almost constant until day 15 but then increased significantly to 23.6% by emancipation. Significant but minor changes in the proportions of 20:4n-6 (from 5.2% at hatch to 3.5% at emancipation) and 20:5n-3 (from 3.0% to 3.9%) were also observed in brain phospholipid. The data do not allow us to completely distinguish changes that are solely diet driven from those which are a consequence of tissue differentiation. Nevertheless, it is evident that, whereas the fatty acid composition of adipose tissue responds faithfully to the change in nutrient source, the phospholipids of muscle and, especially, of brain are much more refractory to the effects of diet during this period of tissue maturation.  相似文献   

8.
Cattle, pig and sheep oocytes isolated from healthy cumulus-oocyte complexes were pooled, within species, to provide samples of immature denuded oocytes with intact zona pellucida (n = 1000 per sample) for determination of fatty acid mass and composition in total lipid, constituent phospholipid and triglyceride. Acyl-containing lipid extracts, transmethylated in the presence of a reference penta-decaenoic acid (15:0), yielded fatty acid methyl esters which were analysed by gas chromatograph. Mean (+/- SEM) fatty acid content in samples of pig oocytes (161 +/- 18 micrograms per 1000 oocytes) was greater than that in cattle (63 +/- 6 micrograms; P < 0.01) and sheep oocytes (89 +/- 7 micrograms; P < 0.05). Of 24 fatty acids detected, palmitic (16:0; 25-35%, w/w), stearic (18:0; 14-16%) and oleic (18:1n-9; 22-26%) acids were most prominent in all three species. Saturated fatty acids (mean = 45-55%, w/w) were more abundant than mono- (27-34%) or polyunsaturates (11-21%). Fatty acids of the n-6 series, notably linoleic (18:2n-6; 5-8%, w/w) and arachidonic acid (20:4n-6; 1-3%), were the most abundant polyunsaturates. Phospholipid consistently accounted for a quarter of all fatty acids in the three species, but ruminant oocytes had a lower complement of polyunsaturates (14-19%, w/w) in this fraction than pig oocytes (34%, w/w) which, for example, had a three- to fourfold greater linoleic acid content. An estimated 74 ng of fatty acid was sequestered in the triglyceride fraction of individual pig oocytes compared with 23-25 ng in ruminant oocytes (P < 0.01). It is concluded that the greater fatty acid content of pig oocytes is primarily due to more abundant triglyceride reserves. Furthermore, this species-specific difference, and that in respect of polyunsaturated fatty acid reserves, may underlie the contrasting chilling, culture and cryopreservation sensitivities of embryos derived from pig and ruminant (cattle, sheep) oocytes.  相似文献   

9.
Rhesus monkeys given pre- and postnatal diets deficient in n-3 essential fatty acids develop low levels of docosahexaenoic acid (22:6 n-3, DHA) in the cerebral cortex and retina and impaired visual function. This highly polyunsaturated fatty acid is an important component of retinal photoreceptors and brain synaptic membranes. To study the turnover of polyunsaturated fatty acids in the brain and the reversibility of n-3 fatty acid deficiency, we fed five deficient juvenile rhesus monkeys a fish oil diet rich in DHA and other n-3 fatty acids for up to 129 weeks. The results of serial biopsy samples of the cerebral cortex indicated that the changes of brain fatty acid composition began as early as 1 week after fish oil feeding and stabilized at 12 weeks. The DHA content of the phosphatidylethanolamine of the frontal cortex increased progressively from 3.9 +/- 1.2 to 28.4 +/- 1.7 percent of total fatty acids. The n-6 fatty acid, 22:5, abnormally high in the cerebral cortex of n-3 deficient monkeys, decreased reciprocally from 16.2 +/- 3.1 to 1.6 +/- 0.4%. The half-life (t 1/2) of DHA in brain phosphatidylethanolamine was estimated to be 21 days. The fatty acids of other phospholipids in the brain (phosphatidylcholine, -serine, and -inositol) showed similar changes. The DHA content of plasma and erythrocyte phospholipids also increased greatly, with estimated half-lives of 29 and 21 days, respectively. We conclude that monkey cerebral cortex with an abnormal fatty acid composition produced by dietary n-3 fatty acid deficiency has a remarkable capacity to change its fatty acid content after dietary fish oil, both to increase 22:6 n-3 and to decrease 22:5 n-6 fatty acids. The biochemical evidence of n-3 fatty acid deficiency was completely corrected. These data imply a greater lability of the fatty acids of the phospholipids of the cerebral cortex than has been hitherto appreciated.  相似文献   

10.
Although substantial information is available regarding the fatty acid composition of lipids of the yolk and of the developing tissues of the chicken embryo, there is little knowledge on this topic for other avian species. The aim of the present study was to compare the yolk and embryonic tissue fatty acid profiles for a species selecting its food in the wild (the lesser black backed gull) with one fed on a standard commercial diet (the commercially reared pheasant). The fatty acid compositions of the yolk lipids were determined, and major differences were observed between the two species. In particular, the phospholipid of the gull yolk was enriched in 20:4n-6 and 22:6n-3 (18.8 and 7.1%, respectively, by weight of total fatty acids) in comparison with the pheasant (4.0 and 4.1%, respectively). The fatty acid compositions of the embryonic tissues were determined using eggs incubated in the laboratory. For the liver and heart, the fatty acid composition of the lipids in the two species reflected the initial yolk composition, with the gull tissue lipids generally containing higher proportions of 20:4n-6 and 22:6n-3 than those of the pheasant. In contrast, the fatty acid profiles of the brain phospholipid were essentially identical in the two species, with 20:4n-6 and 22:6n-3 comprising approximately 9 and 17%, respectively, of total fatty acids in both cases.  相似文献   

11.
Composition, accumulation and utilization of yolk lipids in teleost fish   总被引:13,自引:0,他引:13  
Lipid reserves in teleost eggs are stored in lipoprotein yolk and, in some species, a discrete oil globule. Lipoprotein yolk lipids are primarily polar lipids, especially phosphatidylcholine and phosphatidylethanolamine (PE), and are rich in (n–3) polyunsaturated fatty acids, especially 22:6(n–3) (docosahexaenoic acid, DHA). Oil consists of neutral lipids and is rich in monounsaturated fatty acids (MUFA). Egg lipids are derived from dietary fatty acid, fatty acid mobilized from reserves and possibly fatty acid synthesized de novo. There is selective incorporation of essential fatty acids, particularly DHA, into yolk lipids and discrimination against incorporation of 22:1(n–11). Lipid is delivered to the oocyte by vitellogenin, which is rich in polar lipids, and likely also by other lipoproteins, especially very low density lipoprotein, which is rich in triacylglycerol (TAG). All classes of lipid may be used as fuel during embryonic and larval development and MUFA are preferred fatty acids for catabolism by embryos. Catabolism of oil globules is frequently delayed until latter stages of development. In some species, DHA derived from hydrolysis of phospholipid may be conserved by transfer to the neutral lipid. Recent work has expanded knowledge of the role of DHA in membrane structure, especially in neural tissue, and molecular species analysis has indicated that PE containing sn-1 oleic acid is a prime contributor to membrane fluidity. The results of this type of study provide an explanation for the selection pressures that influence yolk lipid composition. Future work ought to expand knowledge of specific roles of individual fatty acids in embryos along with knowledge of the ecological physiology of ovarian recrudescence, environmental influences on vitellogenin and yolk lipid composition, and the control of yolk lipid accumulation and utilization.  相似文献   

12.
Fat-1 transgenic mice endogenously convert n-6 to n-3 polyunsaturated fatty acids (PUFA). The aims of this study were to test whether a) fish oil feeding can attain similar brain n-3 PUFA levels as the fat-1 mouse, and b) fat-1 mouse brain docosahexaenoic acid (22:6n-3; DHA) levels can be potentiated by fish oil feeding. Fat-1 mice and their wildtype littermates consumed either a 10% safflower oil (SO) or a 2% fish oil and 8% safflower oil chow (FO). Brain total lipid and phospholipid fraction fatty acids were analyzed using GC-FID. Wildtype mice fed FO chow had similar brain levels of DHA as fat-1 mice fed SO chow. Fat-1 mice fed FO chow had similar brain n-3 PUFA levels as fat-1 mice fed SO chow. In conclusion, brain levels of DHA in the fat-1 mouse can be obtained by and were not further augmented with fish oil feeding.  相似文献   

13.
During gestation in the viviparous lizard Pseudemoia entrecasteauxii, the fetus obtains nutrients from two sources: uptake of yolk components from the retained egg (lecithotrophy) and transfer of nutrients from the maternal circulation via the placenta (placentotrophy). Although net placentotrophy in this species is indicated by the observation that the neonate contains 1.7 times more dry matter than the egg, the placental transfer of lipid has not been previously demonstrated. Lipid analysis was performed on newly ovulated eggs and on neonates. The weight of total lipid per neonate (8.2+/-0.5 mg) is significantly (P=0.049) greater than that in the egg (6.8+/-0.4 mg), indicating that the placenta must contribute some lipid to the fetus. On the assumption that 50% of the lipid delivered to the fetus from either source is oxidized for energy, it is calculated that the placenta accounts for 58.5% of the fetal lipid requirements, with the remaining 41.5% being derived from the egg. The fatty acid compositions of the triacylglycerol and phospholipid recovered in the neonatal tissue differ substantially from those of the egg. In particular, the proportions of 18:2n-6 and 18:3n-3 are far lower in the neonatal lipids compared with the egg lipids. On the other hand, the proportion of 22:6n-3 in the phospholipid of the neonate is six times higher than in the phospholipid of the egg. The absolute amount (mg) of 22:6n-3 recovered in the total lipid of the neonate is 3.8 times greater than the amount initially present in the egg. By comparison, the amount of total fatty acid in neonatal lipid is 1.2 times greater than the amount in the egg. Thus, there is a preferential use of 22:6n-3 for tissue phospholipid synthesis during development. We conclude that there is net transfer of fatty acids across the placenta to the fetus of P. entrecasteauxii and a high degree of selectivity in the use of the various fatty acids for fetal tissue lipid synthesis.  相似文献   

14.
About 50% of the fatty acids in retinal rod outer segments is docosahexaenoic acid [22:6(n-3)], a member of the linolenic acid [18:3(n-3)] family of essential fatty acids. Dietary deprivation of n-3 fatty acids leads to only modest changes in 22:6(n-3) levels in the retina. We investigated the mechanism(s) by which the retina conserves 22:6(n-3) during n-3 fatty acid deficiency. Weanling rats were fed diets containing 10% (wt/wt) hydrogenated coconut oil (no n-3 or n-6 fatty acids), linseed oil (high n-3, low n-6), or safflower oil (high n-6, less than 0.1% n-3) for 15 weeks. The turnover of phospholipid molecular species and the turnover and recycling of 22:6(n-3) in phospholipids of the rod outer segment membranes were examined after the intravitreal injection of [2-3H]glycerol and [4,5-3H]22:6(n-3), respectively. Animals were killed on selected days, and rod outer segment membranes, liver, and plasma were taken for lipid analyses. The half-lives (days) of individual phospholipid molecular species and total phospholipid 22:6(n-3) were calculated from the slopes of the regression lines of log specific activity versus time. There were no differences in the turnover rates of phospholipid molecular species among the three dietary groups, as determined by the disappearance of labeled glycerol. Thus, 22:6(n-3) is not conserved through a reduction in phospholipid turnover in rod outer segments. However, the half-life of [4,5-3H]22:6(n-3) in the linseed oil group (19 days) was significantly less than in the coconut oil (54 days) and safflower oil (not measurable) groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We investigated the possibilities that the proportion of docosahexaenoic acid (DHA) in phospholipids of brain and skeletal muscle at hatch, and the ontogenetic timing of the DHA accretion spurt in these tissues, might serve as indices of neonatal functional maturity that discriminate between precocial and altricial avian developmental modes. Comparison of the fatty acid profiles of the initial and residual yolks of two free-living altricial species, the swallow (Hirundo rustica) and the sparrow (Passer domesticus), reveals that, in contrast to precocial birds, there is no preferential uptake of DHA from the yolk during embryonic development. At hatch, the proportions of DHA in brain phospholipid (wt.% of fatty acids) of the swallow and sparrow, at 8.1% and 5.0%, respectively, are far lower than the values (16.9-19.6%) reported for non-altricial species. This reflects a marked difference in the timing of the brain DHA accretion spurt, which occurs during the first half of the embryonic period of precocial birds, but is largely delayed until after hatching in the altricial species. By the time of fledging, the proportion of DHA in the swallow brain phospholipid has increased to 14.3%. For non-altricial birds, the brain DHA concentration at hatch shows little interspecies variation, despite major differences in yolk DHA content. The proportions of DHA in leg muscle phospholipid of the newly hatched swallow and sparrow, at 2.9% and 2.5%, respectively, are far lower than the value (6.7%) for the precocial chicken. Again, this relates to differences in developmental timing, with muscle DHA accretion occurring in the first half of the chicken's embryonic period, whereas, in the swallow, this increase is delayed until after hatching. By the time of fledging in the swallow, DHA forms 9.3% of muscle phospholipid fatty acids, equivalent to the level attained in chicken muscle at the mid-embryo stage. The results indicate a clear distinction between altricial and non-altricial avian species in the timing of tissue DHA accretion during development, presumably reflecting differences in neonatal functional maturity.  相似文献   

16.
A method utilizing electrospray ionization coupled with tandem mass spectrometry was developed as a facile and rapid method to identify and quantify lipid remodeling in vivo. Electrospray/tandem mass spectrometric analyses were performed on lipids isolated from liver tissue and resident peritoneal cells from essential fatty acid sufficient and deficient mice. Essential fatty acid deficiency was chosen as the paradigm to evaluate the methodology because it epitomizes the most extreme dietary means of altering fatty acid composition of virtually all cellular lipid species. Qualitative and quantitative changes were measured in the phospholipid and cholesterol ester species directly in the chloroform/methanol lipid extract without any prior chromatographic separation. Lipid remodeling in liver and peritoneal cells from essential fatty acid deficient mice was qualitatively similar in cholesterol ester, phosphatidylcholine, and phosphatidylethanolamine. The monoenoic fatty acids palmitoleic acid (16:1 n-7) and oleic acid (18:1 n-9) were increased markedly, whereas all n-6 and n-3 polyunsaturated fatty acids were nearly depleted in phospholipid and cholesterol ester species. The n-9 polyunsaturated fatty acid surrogate, Mead acid (20:3 n-9), substituted for arachidonic acid (20:4 n-6) and docosahexaenoic acid (22:6 n-3) in phospholipid, but not in cholesterol ester, species. Another notable difference was that adrenic acid (22:4 n-6) and docosapentaenoic acid (22:5 n-6), both metabolites of arachidonic acid, accumulated in phospholipid and cholesterol ester species of peritoneal cells, but not in liver cells, of essential fatty acid sufficient mice. The overall body of data presented illustrates the implementation of electrospray/tandem mass spectrometry as a method for facile and direct quantification of changes in lipid species during lipid metabolic studies.  相似文献   

17.
Seasonal variations in lipid classes and fatty acid composition of triacylglycerols and phospholipids in the digestive gland of Pecten maximus were studied over a period of 16 months. Acylglycerols predominated (19-77% of total lipids), in accordance with the role of the digestive gland as an organ for lipid storage in scallops. Seasonal variations were mainly seen in the acylglycerol content, while phospholipids (2.5-10.0% of total lipids) and sterols (1.9-7.4% of total lipids) showed only minor changes. The most abundant fatty acids were 14:0, 16:0, 18:0, 16:1(n-7), 18:1(n-9), 18:1(n-7), 18:4(n-3), 20:5(n-3) and 22:6(n-3) and these showed similar seasonal profiles in both, triacylglycerol and phospholipid fractions. In contrast to the phospholipid fraction, the triacylglycerol fraction contained more 20:5(n-3) than 22:6(n-3). In three phospholipid samples we noted a high percentage of a 22-2-non-methylene-interrupted fatty acid, previously described to have a structural role in several bivalve species. The main polyunsaturated fatty acids displayed important seasonal variations parallel to those of the acylglycerols, suggesting good nutritional conditions. A positive correlation existed between the level of saturated fatty acids and temperature, whereas the levels of polyunsaturated fatty acids correlated negatively with temperature.  相似文献   

18.
Lipid peroxidation is generally thought to be a major mechanism of cell injury in aerobic organisms subjected to oxidative stress. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. However, birds have special adaptations for preventing membrane damage caused by reactive oxygen species. This study examines fatty acid profiles and susceptibility to lipid peroxidation in liver and heart mitochondria obtained from Adelie penguin (Pygoscelis adeliae). The saturated fatty acids in these organelles represent approximately 40-50% of total fatty acids whereas the polyunsaturated fatty acid composition was highly distinctive, characterized by almost equal amounts of 18:2 n-6; 20:4 n-6 and 22:6 n-3 in liver mitochondria, and a higher proportion of 18:2 n-6 compared to 20:4 n-6 and 22:6 n-3 in heart mitochondria. The concentration of total unsaturated fatty acids of liver and heart mitochondria was approximately 50% and 60%, respectively, with a prevalence of oleic acid C18:1 n9. The rate C20:4 n6/C18:2 n6 and the unsaturation index was similar in liver and heart mitochondria; 104.33 +/- 6.73 and 100.09 +/- 3.07, respectively. Light emission originating from these organelles showed no statistically significant differences and the polyunsaturated fatty acid profiles did not change during the lipid peroxidation process.  相似文献   

19.
n-3 fatty acids reduce the risk of cardiovascular disease via a number of possible mechanisms. Despite this, there has been concern that these fatty acids may increase lipid peroxidation. The data in vivo are inconclusive, due in part to limitations in the methodologies. In this regard, the measurement of F2-isoprostanes provides a reliable assessment of in vivo lipid peroxidation and oxidant stress. This study aimed to assess the effects of supplementation with purified eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), the two major n-3 fatty acids, on urinary F2-isoprostanes and markers of inflammation, in type 2 diabetic patients. In a double-blind, placebo controlled trial of parallel design, 59 nonsmoking, treated-hypertensive, type 2 diabetic subjects, were randomized to 4 g daily of purified EPA, DHA, or olive oil for 6 weeks, while maintaining their usual diet. F2-isoprostanes, measured using gas chromatography-mass spectrometry in 24 h urines and C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), were measured before and after intervention. Thirty-nine men and 12 women aged 61.2 +/- 1.2 years, with body mass index (BMI), 29.5 +/- 0.5 kg/m2; 24 h blood pressure, 138/73 mmHg; HbA1c, 7.3 +/- 0.1% and fasting glucose, 7.9 +/- 0.2 mmol/l completed the intervention. Baseline urinary F2-isoprostanes were positively associated with HbA1c (p=.011) and fasting glucose (p=.032). Relative to the olive oil group, postintervention urinary F2-isoprostanes were decreased 19% by EPA (p=.017) and 20% by DHA (p=.014). There were no significant changes in CRP, IL-6, and TNF-alpha following EPA or DHA supplementation. In regression analysis, Delta F2-isoprostanes were positively associated with Delta HbA1c (p=.007) independent of treatment group; and with Delta TNF-alpha (p=.034) independent of age, gender, BMI, and treatment group. There were no associations with Delta CRP or Delta IL-6. This study is the first report demonstrating that either EPA or DHA reduce in vivo oxidant stress without changing markers of inflammation, in treated hypertensive, type 2 diabetic subjects.  相似文献   

20.
The desaturation of [1-(14)C] 18:3n-3 to docosahexaenoic acid (DHA; 22:6n-3) is enhanced in an essential fatty acid deficient cell line (EPC-EFAD) in comparison with the parent cell line (EPC) from carp. In the present study, the effects of DHA on lipid and fatty acid compositions, and the metabolism of [1-(14)C]18:3n-3 were investigated in EPC-EFAD cells in comparison with EPC cells. DHA supplementation had only relatively minor effects on lipid content and lipid class compositions in both EPC and EPC-EFAD cells, but significantly increased the amount of DHA, 22:5n-3, eicosapentaenoic acid (EPA; 20:5n-3), total n-3 polyunsaturated fatty acids (PUFA), total PUFA and saturated fatty acids in total lipid and total polar lipid in both cell lines. Retroconversion of supplemental DHA to EPA was significantly greater in EPC cells. Monounsaturated fatty acids, n-9 and n-6PUFA were all decreased in total lipid and total polar lipid in both cell lines by DHA supplementation. The incorporation of [1-(14)C]18:3n-3 was greater into EPC-EFAD compared to EPC cells but DHA had no effect on the incorporation of [1-(14)C]18:3n-3 in either cell line. In contrast, the conversion of [1-(14)C]18:3n-3 to tetraenes, pentaenes and total desaturation products was similar in the two cell lines and was significantly reduced by DHA supplementation in both cell lines. However, the production of DHA from [1-(14)C]18:3n-3 was significantly greater in EPC-EFAD cells compared to EPC cells and, whereas DHA supplementation had no effect on the production of DHA from [1-(14)C]18:3n-3 in EPC cells, DHA supplementation significantly reduced the production of DHA from [1-(14)C] 18:3n-3 in EPC-EFAD cells. Greater production of DHA in EPC-EFAD cells could be a direct result of significantly lower levels of end-product DHA in these cells' lipids compared to EPC cells. Consistent with this, the suppression of DHA production upon DHA supplementation was associated with increased cellular and membrane DHA concentrations in EPC-EFAD cells. However, an increase in cellular DHA content to similar levels failed to suppress DHA production in DHA-supplemented EPC cells. A possible explanation is that greatly increased levels of EPA, derived from retroconversion of the added DHA, acts to offset the suppression of the pathway by DHA by stimulating conversion of EPA to DHA in DHA-supplemented EPC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号