首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Lipopolysaccharides (LPS) from the type strains of the anaerobic beer spoilage bacteria Pectinatus cerevisiiphilus and P. frisingensis were extracted with the 5:5:8 volume ratio modification of the phenolchloroform-petroleum ether method (H. Brade and C. Galanos, Eur. J. Biochem. 122:233-237, 1982). Sequential precipitations of LPS with water and acetone from the phenol phase yielded LPS which differed in that water-precipitable material (LPS-H2O; 0.1 to 0.4% of the dry weight of the cells) was rough-type LPS, whereas acetone-precipitable material (LPS-Ac; 4.6 to 5.8% of the dry weight) contained both rough-type LPS and high-molecular-weight material resembling smooth LPS. The LPS were chemically characterized, and they contained D-glucosamine, 4-amino-4-deoxy-L-arabinose, 3-deoxy-D-manno-2-octulosonic acid, D-fucose, D-galactose, D-glucose, D-mannose, and phosphate. D-Fucose was present mostly in LPS-Ac, suggesting that it is a constituent of the O antigen. The major fatty acids were ester- and amide-linked (R)-3-hydroxytridecanoic and ester-linked undecanoic acids, with minor amounts of ester-linked tridecanoic and (R)-3-hydroxyundecanoic acids. The chemical compositions of LPS-H2O and LPS-Ac suggested that they differ not only in their smooth or rough nature but also in the structure of their core regions. This may explain their different precipitabilities from the extraction mixture. The extraction method was also shown to be applicable to the isolation of smooth-type LPS from Salmonella enterica serovar Typhimurium. Extraction of two Typhimurium strains carrying chemically different O antigens resulted in high yields (8% of the dry weight) of LPS. Strain SH2183, which contains the relatively hydrophobic O-4,5,12 antigen yielded almost exclusively LPS-Ac, whereas the LPS of strain SH5770, which has a hydrophilic O-6,7 antigen, was exclusively LPS-H2O. No fractionation to smooth and rough LPS occurred with the Typhimurium strains.  相似文献   

2.
Z Yao  H Liu    M A Valvano 《Journal of bacteriology》1992,174(23):7500-7508
Most of the Shigella flexneri O-specific serotypes result from O-acetyl and/or glucosyl groups added to a common O-repeating unit of the lipopolysaccharide (LPS) molecule. The genes involved in acetylation and/or glucosylation of S. flexneri LPS are physically located on lysogenic bacteriophages, whereas the rfb cluster contains the biosynthesis genes for the common O-repeating unit (D.A.R. Simmons and E. Romanowska, J. Med. Microbiol. 23:289-302, 1987). Using a cosmid cloning strategy, we have cloned the rfb regions from S. flexneri 3a and 2a. Escherichia coli K-12 containing plasmids pYS1-5 (derived from S. flexneri 3a) and pEY5 (derived from S. flexneri 2a) expressed O-specific LPS which reacted immunologically with S. flexneri polyvalent O antiserum. However, O-specific LPS expressed in E. coli K-12 also reacted with group 6 antiserum, indicating the presence of O-acetyl groups attached to one of the rhamnose components of the O-repeating unit. This was confirmed by measuring the amounts of acetate released from purified LPS samples and also by the chemical removal of O-acetyl groups, which abolished group 6 reactivity. The O-acetylation phenotype was absent in an E. coli strain with an sbcB-his-rfb chromosomal deletion and could be restored upon conjugation of F' 129, which carries sequences corresponding to a portion of the deleted region. Our data demonstrate that E. coli K-12 strains possess a novel locus which directs the O acetylation of LPS and is located in the sbcB-rfb region of the chromosomal map.  相似文献   

3.
Previously we found that Klebsiella O3 lipopolysaccharide (KO3 LPS) isolated from culture supernatant of strain Kasuya (O3: K1) or its decapsulated mutant strain LEN-1 (O3: K1-) exhibited very strong adjuvant activity in augmenting antibody response and delayed-type hypersensitivity to protein antigens in mice. The preparation of KO3 LPS after deproteinization by four cycles of treatment with chloroform-butanol (5: 1) usually contained a small percentage of proteins and a definite amount of another antigen which was destroyed by heating at 100 C for 1 hr. This antigen proved to be derived from type 1 fimbriae which are responsible for mannose-sensitive hemagglutination of guinea pig erythrocytes. The preparation of KO3 LPS isolated from culture supernatant of the strains which did not produce type 1 fimbriae exhibited strong adjuvant activity similar to that of the preparation from those which produced them. The preparation of KO3 LPS treated with hot phenol water which is known to remove lipid A-associated proteins exhibited a similar strong adjuvant activity. The preparation of KO3 LPS after extensive deproteinizing, two cycles of pronase treatment followed by ten cycles of treatment with chloroform-butanol, no longer contained detectable amounts of proteins and the fimbrial antigen, but this preparation also exhibited similar strong adjuvant activity. Moreover, there was no difference in strength of the adjuvant activity between the preparation of KO3 LPS isolated from culture supernatant and that isolated by the phenol method from bacterial cells. The present study demonstrates that the strong adjuvant activity of the preparation of KO3 LPS does not depend in any way on proteins contaminating the preparation.  相似文献   

4.
The lipopolysaccharide (LPS) of Salmonella enteritidis has been implicated as a virulence factor of this organism. Therefore, the LPS from a stable virulent isolate, SE6-E21, was compared with that from an avirulent isolate, SE6-E5. The LPSs were extracted, and the high-molecular-weight (HMW) LPS was separated from the low-molecular-weight (LMW) LPS for both isolates. Both the HMW and LMW LPSs were characterized by glycosyl composition and linkage analyses. Immunochemical characterization was performed by Western blotting using factor 9 antiserum and using S. typhimurium antiserum which contains factors 1, 4, 5, and 12(2). In addition, the polysaccharides released by mild acid hydrolysis were isolated and subjected to hydrolysis by bacteriophage P22, which contains endorhamnosidase activity. The resulting oligosaccharides were purified by using Bio-Gel P4 gel permeation chromatography and characterized by nuclear magnetic resonance spectroscopy, fast atom bombardment mass spectrometry (FAB-MS), tandem MS-MS, and matrix-assisted laser desorption time of flight MS. The results show that the HMW LPS O-antigen polysaccharides from both isolates are comprised of two different repeating units, -[-->2)-[alpha-Tyvp-(1-->3)]beta-D-Manp-(1-->4)-alpha-L-R hap-(1-->3)-alpha-D-Galp-(1-->]- (structure I) and [-->2)-[alpha-Tyvp-(1-->3)]beta-D-Manp-(1-->4)-alpha--L-R hap-(1-->3)-[alpha-D-Glcp-(1-->4)]alpha-D-Galp-(1-->]- (structure II). The LMW LPSs from both isolates contains truncated O-antigen polysaccharide which is comprised of only structure I. In the virulent SE6-E21 isolate, the HMW LPS has a structure I/II ratio of 1:1, while in the avirulent SE6-E5 isolate, this ratio is 7:1. While the 7:1 ratio represents the published level of glucosylation for S. enteritidis LPS as well as for S. enteritidis LPS purchased from Sigma Chemical Co., the 1:1 ratio found for the virulent SE6-E21 is identical to the high level of glucosylation reported for S. typhi LPS. Thus, the LPS from the virulent SE6-E21 isolate produces an S. typhi-like LPS. Furthermore, the amount of O-antigen polysaccharide in SE6-E21 was twice that in SE6-E5.  相似文献   

5.
In the present study, responses stimulated by phenol-extracted lipopolysaccharide (LPS(phenol)) and butanol-extracted LPS (LPS(butanol)) were used to assess the possibility that xid B cells might not be identical to the Lyb-5- B cells present in normal mice. It was found that xid B cells responded well only to LPS(butanol) whereas normal B cells responded well to both LPS(butanol) and LPS(phenol). Thus, LPS(butanol) appeared to be a TI-1 antigen and LPS(phenol) appeared to be a TI-2 antigen. In contrast to classical TI-2 responses, however, responses stimulated by LPS(phenol) did not exhibit a stringent requirement for accessory cells. Furthermore, if LPS(phenol) were a classical TI-2 antigen, it should only activate Lyb-5+ B cells. To determine if the responsiveness of normal B cells to LPS(phenol) were due, at least in part, to the stimulation of normal Lyb-5- B cells, the responsiveness of normal neonatal B cells and normal adult B cells that had been pretreated with anti-Lyb-5.1 + C was assessed. It was found that both normal neonatal B cells and normal adult Lyb-5- B cells did respond well to LPS(phenol). Thus, even though LPS(phenol) does not stimulate xid B cells, these data demonstrate that LPS(phenol) is different from other TI-2 antigens. More importantly, these data also demonstrate that xid B cells and normal Lyb-5- B cells are not identical. It is hypothesized that the normal Lyb-5- B cell subpopulation is heterogeneous, consisting of an Lyb-5(1)- and an Lyb-5(2)-B cell subset with the xid mutation blocking the differentiation of Lyb-5(1)-B cells into Lyb-5(2)-B cells.  相似文献   

6.
Mutants of Pseudomonas aeruginosa PAC1R (serotype O:3) which were resistant to bacteriophage D were isolated and shown to react with O:5d, O:9 and O:13 antisera as well as O:3. Antisera to the parent strain and to the three polyagglutinating (PA) mutants also showed cross-reactions. The mutants differed from the parent strain in their lipopolysaccharide (LPS) composition. The LPS from two of the three mutants yielded high molecular weight polysaccharide fractions. Although the high molecular weight fraction from one of the mutants contained the amino sugars and other components characteristic of the O:3 serotype strains, its mobility on Sephadex G75 was different from that of the parent strain. The high molecular weight material from the second mutant lacked the O-antigenic determinants but these were present in a semi-rough LPS fraction. The third mutant appeared rough and completely lacked the O-antigenic components. These three mutants were compared with the parent strain and with a non-agglutinating LPS-defective mutant which lacked both O-antigenic side chains and all neutral sugars in the outer core. Agglutination with absorbed sera and haemagglutination using purified LPS and ELISA detection suggested that wall components other than LPS were responsible for some of the cross-reactions observed. The components responsible were detected after SDS-PAGE of crude outer membrane fractions by a combination of Coomassie blue and silver-staining and antigenic components were detected by immunoelectrophoresis and ELISA-linked immunoblotting of the gels. The main antigenic determinants detected by antiserum to the parent strain were in the high molecular weight O-polysaccharide fractions and in the semirough fractions of the LPS, with some activity due to the H protein of the outer membrane. O:5d antisera reacted with unidentified high molecular weight polysaccharide fractions. Cross-reactions with the O:9 antiserum appeared to be due mainly to the F porin and, to a lesser extent, to the G and E proteins of the outer membrane. O:13 antiserum reacted with high molecular weight polysaccharide fractions but also with the rough core and F and H protein. Cross-reactivity of the other three mutant antisera could largely be interpreted in terms of the outer membrane components exposed in each strain. One reacted strongly with the F porin and the rough core, while the others reacted with a number of protein and LPS-derived fractions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Adjuvant activity of Klebsiella O3 lipopolysaccharide (KO3 LPS) in augmenting antibody response and delayed-type hypersensitivity to protein antigens in SMA mice was much stronger than that of LPS from Escherichia coli O55 and O127 (EO55 LPS and EO127 LPS). Relationship between strength of the adjuvant activity and that of the ability to induce interleukin-1 (IL-1) secretion by peritoneal macrophages from C3H/HeN or SMA mice was investigated using these three kinds of LPS. When supernatant samples of macrophages cultured at 37 °C for 24 hr in the presence of 5 μg/ml LPS were assayed by their mitogenic effect on thymocytes from C3H/HeJ mice, KO3 LPS induced the secretion of about four to six times greater amounts of IL-1 activity than did EO127 LPS. When concentration of LPS used for stimulation of macrophages was varied from 0.1 to 50 μg/ml, KO3 LPS induced the secretion of definitely greater amounts of IL-1 activity than did EO55 LPS and EO127 LPS throughout the LPS concentrations tested. Nearly the same amount of IL-1 activity as that produced by 10 μg/ml EO55 LPS or 50 μg/ml EO127 LPS could be produced by 1.0 μg/ml or lower concentrations of KO3 LPS.  相似文献   

8.
Composition of O-antigenic lipopolysaccharides from Enterobacter cloacae   总被引:2,自引:0,他引:2  
Analyses have been carried out on lipopolysaccharides (LPS) from 14 strains of Enterobacter cloacae representing different O serotypes. All of the products appeared to have a composition and architecture typical of enterobacterial LPS, but points of interest include the absence of phosphate residues from the core oligosaccharide, the presence of both L-glycero-D-mannoheptose and D-glycero-D-mannoheptose (ratio usually about 4:1), and the presence in lipid A of small amounts of fatty acids with odd numbers of carbon atoms (mainly C13) in addition to tetradecanoic acid and 3-hydroxytetradecanoic acid. Monosaccharides identified as components of polymeric fractions from the LPS were glucose, galactose, mannose, rhamnose, glucosamine, galactosamine, fucosamine, and galacturonic acid. Most polymeric fractions also probably contained an O-acetyl substituent. Closely similar chemotypes found for the polymeric fractions from the LPS of cross-reacting serotypes support the view that these fractions contain the O-antigenic determinants and represent the side chains of the LPS.  相似文献   

9.
This study was performed to screen probiotic bifidobacteria for their ability to bind and neutralize lipopolysaccharides (LPS) from Escherichia coli and to verify the relationship between LPS-binding ability, cell surface hydrophobicity (CSH), and inhibition of LPS-induced interleukin-8 (IL-8) secretion by HT-29 cells of the various bifidobacterial strains. Ninety bifidobacteria isolates from human feces were assessed for their ability to bind fluorescein isothiocyanate (FITC)-labeled LPS from E. coli. Isolates showing 30-60% binding were designated LPS-high binding (LPS-H) and those with less than 15% binding were designated LPS-low binding (LPS-L). The CSH, autoaggregation (AA), and inhibition of LPS-induced IL-8 release from HT-29 cells of the LPS-H and LPS-L groups were evaluated. Five bifidobacteria strains showed high levels of LPS binding, CSH, AA, and inhibition of IL-8 release. However, statistically significant correlations between LPS binding, CSH, AA, and reduction of IL-8 release were not found. Although we could isolate bifidobacteria with high LPS-binding ability, CSH, AA, and inhibition of IL-8 release, each characteristic should be considered as strain dependent. Bifidobacteria with high LPS binding and inhibition of IL-8 release may be good agents for preventing inflammation by neutralizing Gram-negative endotoxins and improving intestinal health.  相似文献   

10.
The release of superoxide (O2-) by polymorphonuclear leukocytes (PMN) is an important function that contributes to microbial death. Controversy exists as to the effect of bacterial endotoxin (lipopolysaccharide, or LPS) on the production of O2-. We have injected rabbits with 25 micrograms Escherichia coli LPS intravenously and studied PMN function 18 to 24 hours later. Relative to PMN from saline-injected controls, PMN from LPS-treated rabbits released markedly greater amounts of O2- in response to 10 ng/ml phorbol myristate acetate (PMA) as measured by nmol cytochrome C reduced in 20 minutes (40.8 +/- 7.8 for LPS-treated PMN versus 10.1 +/- 1.6 for control, p less than 0.01). LPS injection, however, significantly reduced O2- release in response to C (complement) 5a (1.4 +/- 0.6 nmole/20 minutes for LPS-treated PMN versus 5.6 +/- 1.3 nmole/20 minutes for control, p less than 0.01). O2- release in response to a third stimulus, n-formyl-methionyl-leucyl-phenylalanine (10(-7) to 10(-9) M), was not affected by LPS. O2- release in response to PMA was enhanced over a wide range of PMA concentrations (10 to 300 ng/ml). Kinetic studies over 30 minutes indicated that, after a brief initial latency in measurable response, LPS enhanced responsiveness to PMA at all time points observed. The reduced responsiveness to C5a corresponds to a previously reported down regulation of receptors for this ligand after intravenous LPS. The observations indicate that intravenous LPS can alter a critical function of PMN for at least 24 hours in a stimulus-specific manner.  相似文献   

11.
Microsomal superoxide anion (O2-) production was detected using the chemiluminigenic probe, bis-N-Methylacridinium nitrate (lucigenin). Superoxide dismutase (SOD) inhibited 55% of the light emission but in the presence of a detergent (Triton X100) SOD inhibited the light emission by 94%. Lucigenin chemiluminescence from rat liver microsomes supplemented with NADPH was found to be selective and sensitive in detecting the O2- production. Treatment of rats with poly IC and LPS resulted in a decrease of the hepatic microsomal cytochrome P450 content by 44% and 37% respectively. The decrease in the cytochrome P450 contents was accompanied by a decrease in LgCl from the hepatic microsomal fractions by 61% for the poly IC and by 51% for the LPS treated rats. This is the first report to demonstrate that decreased P450 in the presence of normal amounts of cytochrome P450(c) reductase produce correspondingly less O2- from the microsomes.  相似文献   

12.
In order to examine the immunochemistry of the core-lipid A region of Pseudomonas aeruginosa lipopolysaccharide (LPS), monoclonal antibodies (MAbs) specific for this region were produced in mice. Immunogen was prepared by coating a rough mutant of P. aeruginosa with column-purified core oligosaccharide fractions in order to enhance the immune response to the LPS core-lipid A region. Fourteen hybridoma clones were isolated, characterized, and further divided into three groups on the basis of their reactivities to rough LPS antigens in both enzyme-linked immunosorbent assays and Western immunoblots. In addition, another MAb, 18-19, designated group 1, was included in this study for defining core-lipid A epitopes. MAb 18-19 recognizes the LPS core-plus-one O-repeat unit of the serologically cross-reactive P. aeruginosa O2, O5, and O16. Group 2 MAbs are specific for the LPS outer core region and reacted with P. aeruginosa O2, O5, O7, O8, O10, O16, O18, O19, and O20, suggesting that these serotypes share a common outer core type. Group 3 MAbs recognize the inner core region and reacted with all 20 P. aeruginosa serotypes as well as with other Pseudomonas species, revealing the conserved nature of this region. Group 4 MAbs are specific for lipid A and reacted with all gram-negative organisms tested. Immunoassays using these MAbs and well-defined rough mutants, in addition to the recently determined P. aeruginosa core structures, have allowed us to precisely define immunodominant epitopes within the LPS core region.  相似文献   

13.
Lipopolysaccharides (LPS) of Vibrio parahaemolyticus O2 and O-untypable (OUT) strain (KX-V212) isolated from an individual patient were shown to contain 5,7-diamino-3,5,7,9-tetradeoxy-non-2-ulosonic acid (NonlA), which was readily released from LPS by mild acid hydrolysis. In the present study, we investigated the chemical and serological properties of NonlA isolated from LPS of V. parahaemolyticus O2 and OUT KX-V212. GC-MS and NMR analysis identified the NonlA from LPS of O2 to be 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid (5NAc7NAcNonlA) and that from LPS of KX-V212 to be 5-acetamido-7-(N-acetyl-D-alanyl)amido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid (5NAc7NAlaNAcNonlA). In ELISA inhibition analysis, 5NAc7NAcNonlA inhibited the O2 LPS/anti-O2 antiserum system, whereas, 5NAc7NAlaNAcNonlA did not show any inhibitory activity. However, after N-deacylation of 5NAc7NAlaNAcNonlA followed by N-acetylation, the product (5NAc7NAcNonlA) inhibited the O2 LPS/anti-O2 antiserum system to the same extent as that of 5NAc7NAcNonlA obtained from O2 LPS. These results suggest that 5NAc7NAcNonlA might be related to the serological specificity of O2 LPS as one of main epitope(s) involved in O2 LPS.  相似文献   

14.
Abstract A lipopolysaccharide (LPS) fraction was isolated from Prochlorothrix hollandica by hot phenol/water extraction. Negatively stained preparations of an aqueous LPS dispersion showed the triple-layered appearance of the LPS aggregates. Glucose (main sugar), rhamnose, fucose, galactose, mannose, xylose, and 3- O -methyl-xylose were found as the constituents of the polysaccharide moiety. Glucosamine and the 3-hydroxy fatty acids, 3-OH-16:0, 3-OH-14:0, and the rarely detected iso-3-OH-15:0, constitute the lipid A of the LPS. l -glycero- d -manno-heptose and 3-deoxy- d -manno-2-octulosonic acid (dOclA), typical components of inner core oligosaccharides from enterobacterial LPS, were lacking in the isolated LPS fraction from Prochlorothrix hollandica .  相似文献   

15.
Exposure of the lung to lipopolysaccharide (LPS) or silica results in an activation of alveolar macrophages (AMs), recruitment of polymorphonuclear leukocytes (PMNs) into bronchoalveolar spaces, and the production of free radicals. Nitric oxide (NO) is one of the free radicals generated by bronchoalveolar lavage (BAL) cell populations following either LPS or silica exposure. The purpose of the present study was to assess the relative contributions of AMs and PMNs to the amounts of NO produced by BAL cells following intratracheal (IT) instillation of either LPS or silica. Male Sprague Dawley rats (265-340 g body wt.) were given LPS (10 mg/100 g body wt.) or silica (5 mg/100 g body wt.). BAL cells were harvested 18-24 h post-IT and enriched for AMs or PMNs using density gradient centrifugation. Media levels of nitrate and nitrite (NOx; the stable decomposition products of NO) were then measured 18 h after ex vivo culture of these cells. Following IT exposure to either LPS or silica, BAL cell populations were approximately 20% AMs and approximately 80% PMNs. After density gradient centrifugation of BAL cells from LPS- or silica-treated rats, cell fractions were obtained which were relatively enriched for AMs (approximately 60%) or PMNs (approximately 90%). The amounts of NOx produced by the AM-enriched fractions from LPS- or silica-treated rats were approximately 2-4-fold greater than that produced by the PMN-enriched fractions. Estimations of the relative contribution of AMs or PMNs to the NOx produced indicated that: (i) following LPS treatment, 75%-89% of the NOx was derived from AMs and 11%-25% from PMNs; and (ii) following silica treatment, 76%-100% of the NOx was derived from AMs and 0-24% from PMNs. Immunohistochemistry for inducible NO synthase on lung tissue sections supported these findings. We conclude that AMs are the major source of the NO produced by BAL cells during acute pulmonary inflammatory responses to LPS or silica.  相似文献   

16.
Heterogeneity of Rhizobium lipopolysaccharides.   总被引:5,自引:18,他引:5       下载免费PDF全文
The lipopolysaccharides ( LPSs ) from strains of Rhizobium leguminosarum, Rhizobium trifolii, and Rhizobium phaseoli were isolated and partially characterized by mild acid hydrolysis and by polyacrylamide gel electrophoresis. Mild acid hydrolysis results in a precipitate which can be removed by centrifugation or extraction with chloroform. The supernatant contains polysaccharides which, in general, are separated into two fractions ( LPS1 and LPS2 ) by Sephadex G-50 gel filtration chromatography. The higher-molecular-weight LPS1 fractions among the various Rhizobium strains are highly variable in composition and reflect the variability reported in the intact LPSs (R. W. Carlson and R. Lee, Plant Physiol. 71:223-228, 1983; Carlson et al., Plant Physiol. 62:912-917, 1978; Zevenhuizen et al., Arch. Microbiol. 125:1-8, 1980). The LPS1 fraction of R. leguminosarum 128C53 has a higher molecular weight than all other LPS1 fractions examined. All LPS2 fractions examined are oligosaccharides with a molecular weight of ca. 600. The major sugar component of all LPS2 oligosaccharides is uronic acid. The LPS2 compositions are similar for strains of R. leguminosarum and R. trifolii, but the LPS2 from R. phaseoli was different in that it contained glucose, a sugar not found in the other LPS2 fractions or found only in trace amounts. Polyacrylamide gel electrophoretic analysis shows that each LPS contains two banding regions, a higher-molecular-weight heterogeneous region often containing many bands and a lower-molecular-weight band. The lower-molecular-weight bands of all LPSs have the same electrophoretic mobility, which is greater than that of lysozyme. The banding pattern of the heterogeneous regions varies among the different Rhizobium strains. In the case of R. leguminosarum 128C53 LPS, the heterogeneous region of a higher molecular weight than is this region from all other Rhizobium strains examined and consists of many bands separated from one another by a small and apparently constant molecular weight interval. When the heterogeneous region of R. Leguminosarum 128C53 LPS was cut from the gel and analyzed, its composition was found to be that of the intact LPS, whereas the lower-molecular-weight band contains only sugars found in the LPS2 oligosaccharide. In the case of R. leguminosarum 128C63 and R. trifolii 0403 LPSs, the heterogeneous regions are similar and consist of several band s separated by a large-molecular-weight interval with a the major band of these heterogeneous regions having the lowest molecular weight with an electrophoretic mobility near that of beta-lactoglobulin. The heterogeneous region from R. phaseoli 127K14 consists of several bands with electrophoretic mobilities near that of beta-lactoglobulin, whereas this region from R. trifolii 162S7 shows a continuous staining region, indicating a great deal of heterogeneity. The results described in this paper are discussed with regard to the reported properties of Escherichia coli and Salmonella LPSs.  相似文献   

17.
The lipopolysaccharide (LPS) of Bradyrhizobium japonicum 61A123 was isolated and partially characterized. Phenol-water extraction of strain 61A123 yielded LPS exclusively in the phenol phase. The water phase contained low-molecular-weight glucans and extracellular or capsular polysaccharides. The LPSs from B. japonicum 61A76, 61A135, and 61A101C were also extracted exclusively into the phenol phase. The LPSs from strain USDA 110 and its Nod- mutant HS123 were found in both the phenol and water phases. The LPS from strain 61A123 was further characterized by polyacrylamide gel electrophoresis, composition analysis, and 1H and 13C nuclear magnetic resonance spectroscopy. Analysis of the LPS by polyacrylamide gel electrophoresis showed that it was present in both high- and low-molecular-weight forms (LPS I and LPS II, respectively). Composition analysis was also performed on the isolated lipid A and polysaccharide portions of the LPS, which were purified by mild acid hydrolysis and gel filtration chromatography. The major components of the polysaccharide portion were fucose, fucosamine, glucose, and mannose. The intact LPS had small amounts of 2-keto-3-deoxyoctulosonic acid. Other minor components were quinovosamine, glucosamine, 4-O-methylmannose, heptose, and 2,3-diamino-2,3-dideoxyhexose. The lipid A portion of the LPS contained 2,3-diamino-2,3-dideoxyhexose as the only sugar component. The major fatty acids were beta-hydroxymyristic, lauric, and oleic acids. A long-chain fatty acid, 27-hydroxyoctacosanoic acid, was also present in this lipid A. Separation and analysis of LPS I and LPS II indicated that glucose, mannose, 4-O-methylmannose, and small amounts of 2,2-diamino-2,3-dideozyhexose and heptose were components of the core region of the LPS, whereas fucose, fucosmine, mannose, and small amounts of quinovosamine and glucosamine were components of the LPS O-chain region.  相似文献   

18.
At least 18 lipopolysaccharide (LPS) extraction methods are available, and no single method is universally applicable. Here, the LPSs from four R.etli, one R.leguminosarum bv. trifolii mutant, 24AR, and the R.etli parent strain, CE3, were isolated by hot phenol/water (phi;/W), and phenol/EDTA/triethylamine (phi/EDTA/TEA) extraction. The LPS in various preparations was quantified, analyzed by deoxycholate polyacrylamide gel electrophoresis (DOC-PAGE), and by immunoblotting. These rhizobia normally have two prominent LPS forms: LPS I, which has O-polysaccharide, and LPS II, which has none. The LPS forms obtained depend on the method of extraction and vary depending on the mutant that is extracted. Both methods extract LPS I and LPS II from CE3. The phi/EDTA/TEA, but not the phi/W, method extracts LPS I from mutants CE358 and CE359. Conversely, the phi;/W but not the phi;/EDTA/TEA method extracts CE359 LPS V, an LPS form with a truncated O-polysaccharide. phi/EDTA/TEA extraction of mutant CE406 gives good yields of LPS I and II, while phi/W extraction gives very small amounts of LPS I. The LPS yield from all the strains using phi/EDTA/TEA extraction is fairly consistent (3-fold range), while the yields from phi/W extraction are highly variable (850-fold range). The phi/EDTA/TEA method extracts LPS I and LPS II from mutant 24AR, but the phi/W method partitions LPS II exclusively into the phenol phase, making its recovery difficult. Overall, phi/EDTA/TEA extraction yields more forms of LPS from the mutants and provides a simpler, faster, and less hazardous alternative to phi/W extraction. Nevertheless, it is concluded that careful analysis of any LPS mutant requires the use of more than one extraction method.  相似文献   

19.
Variability in the lipopolysaccharide (LPS) of the two most prevalent Salmonella serotypes causing food-borne salmonellosis was assessed using gas chromatography analysis of neutral sugars from 43 Salmonella enterica serovar Enteritidis ( S . Enteritidis) and 20 Salmonella enterica serovar Typhimurium ( S . Typhimurium) isolates . Four substantially different types of O-chain chemotypes were detected using cluster analysis of sugar compositions; these were low-molecular-mass (LMM) LPS, glucosylated LMM LPS, high-molecular-mass (HMM) LPS and glucosylated HMM LPS. Nineteen out of 20 S . Typhimurium isolates yielded glucosylated LMM . In contrast, S . Enteritidis produced a more diverse structure, which varied according to the source and history of the isolate: 45.5% of egg isolates yielded glucosylated HMM LPS; 100% of stored strains lacked glucosylation but retained chain length in some cases; and 83.3% of fresh isolates from the naturally infected house mouse Mus musculus produced glucosylated LMM LPS. A chain length determinant ( wzz ) mutant of S . Enteritidis produced a structure similar to that of S . Typhimurium and was used to define what constituted significant differences in structure using cluster analysis. Fine mapping of the S . Enteritidis chromosome by means of a two-restriction enzyme-ribotyping technique suggested that mouse isolates producing glucosylated LMM LPS were closely related to orally invasive strains obtained from eggs, and that stored strains were accumulating genetic changes that correlated with suppression of LPS O-chain glucosylation. These results suggest that the determination of LPS chemotype is a useful tool for epidemiological monitoring of S . Enteritidis , which displays an unusual degree of diversity in its LPS O-chain.  相似文献   

20.
A comparative study of the lipopolysaccharides (LPS) isolated from Sinorhizobium meliloti SKHM 1-188 and two its LPS-mutants (Th29 and Ts22) with sharply decreased nodulation competitiveness was conducted. Polyacrylamide gel electrophoresis with sodium dodecyl sulfate revealed two forms of LPS in all the three strains: a higher molecular-weight LPS1, containing O-polysaccharide (O-PS), and a and lower molecular-weight LPS2 without O-PS. However, the LPS1 content in mutants was significantly smaller than in the parent strain. The LPS of the strains studied contained glucose, galactose, mannose, xylose, three nonidentified sugars--X1 (TGlc 0.53), X2 (TGlc 0.47), and X3 (TGlc 0.43), glucosamine, and ethanolamine, while the LPS of S. meliloti SKHM1-188 additionally contained galactosamine, glucuronic and galacturonic acids, and 2-keto-3-deoxyoctulosonic acid (KDO), as well as fatty acids, such as 3-OH C14:0, 3-OH C15:0, 3-OH C16:0, 3-OH C18:0, nonidentified hydroxy X (T3-OH C14:0 1.33), C18:0, and unsaturated C18:1 fatty acids. The LPS of both mutants were similar in the component composition but differed from the LPS of the parent strain by a lower X2, X3, and 3-OH C 14:0 content and a higher KDO, C18:0, and hydroxy X content. The LPS of all the strains were subjected to mild hydrolysis with 1% acetic acid and fractionated on a column with Sephadex G-25. The higher molecular weight fractions (2500-4000 Da) contained a set of sugars typical of intact LPS and, supposedly, corresponded to the LPS polysaccharide portion (PS1). In the lower molecular weight fractions (600-770 Da, PS2), glucose and uronic acids were the major components; galactose, mannose, and X1 were present in smaller amounts. The PS1/PS2 ratio for the two mutants was significantly lower than for strain SKHM1-188. The data obtained show that the amount of O-PS-containing molecules (LPS1) in the heterogeneous lipopolysaccharide complex of the mutants was smaller than in the SKHM1-188 LPS; this increases the hydrophobicity of the cell surface of the mutant bacteria. This supposedly contributes to their nonspecific adhesion on the roots of the host plant, thus decreasing their nodulation competitiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号