首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seed dispersal by vertebrate animals is important for the establishment of many fleshy-fruited plant species. Different frugivorous species can provide different seed dispersal services according to their specific dietary preferences as well as behaviour and body traits (e.g. body size and beak size of birds). Our aim was to study redundancies and complementarities in seed dispersal and germination between the two main native seed disperser birds and the introduced silver pheasant Lophura nycthemera in the temperate Patagonian forests. For this, we collected fresh droppings from the studied species and analyzed seed content. We conducted germination trials for four plant species common in bird droppings; two native species (Aristotelia chilensis and Rhaphithamnus spinosus) and two invasive non-native species (Rubus ulmifolius and Rosa rubiginosa). Both native frugivorous birds and the silver pheasant dispersed fruits of non- native fleshy-fruited plants, but their roles were non-redundant in terms of species dispersed and effect on seed germination. The silver pheasant dispersed a proportionally high number of non-native seeds, while native birds dispersed a high number of native seeds. In addition, the effect of gut treatment in seed germination differed between seed dispersers. Native birds promoted the germination for the two native plant species studied, while the silver pheasant promoted the germination of one non-native plant. This suggests that seed dispersal by the silver pheasant may contribute to the spread of some invasive fleshy-fruited plants in the ecosystems that otherwise would not be dispersed by any other bird. The understanding of redundancies and complementarities on seed dispersal and germination between native and introduced birds will allow improving the management of fleshy-fruited non-native plants.  相似文献   

2.
Seed dispersal is a crucial process for the dynamics and maintenance of plant populations. Free-ranging animals are effective dispersal vectors because they can move between similar habitats and transport seeds into favourable environments. Dung samples from two species of common free-ranging mammals—deer and wild boar—were used to study endozoochorous dispersal of seeds in a military training area in western Bohemia. The area was abandoned after WWII, and the military training area was established in 1953. The vegetation consists of shrublands and dry grasslands. Data on the local species pool of grassland herbs and forbs were collected to compare the characteristics of dispersed versus non-dispersed plants. Deer and wild boar dispersed 84 plant species; however, species composition of seedlings emerging from dung samples showed significant differences between dispersal vectors and notable change across the growing season. 80% of all seedlings extracted from the dung samples belonged to stinging nettle, Urtica dioica. From trait analyses, seeds of endozoochorous plants had a higher longevity index in the soil seed bank than non-endozoochorous plants and more often possessed a mucilaginous surface. Our results show that deer and boar are successful, though not substitutable dispersers.  相似文献   

3.
Andresen E  Levey DJ 《Oecologia》2004,139(1):45-54
Seeds dispersed by tropical, arboreal mammals are usually deposited singly and without dung or in clumps of fecal material. After dispersal through defecation by mammals, most seeds are secondarily dispersed by dung beetles or consumed by rodents. These post-dispersal, plant-animal interactions are likely to interact themselves, as seeds buried by dung beetles are less likely to be found by rodents than unburied seeds. In a series of three experiments with seeds of 15 species in central Amazonia (Brazil), we determined (1) how presence and amount of dung associated with seeds influences long-term seed fate and seedling establishment, (2) how deeply dung beetles bury seeds and how burial depth affects seedling establishment, and (3) how seed size affects the interaction between seeds, dung beetles, and rodents. Our overall goal was to understand how post-dispersal plant-animal interactions determine the link between primary seed dispersal and seedling establishment. On average, 43% of seeds surrounded by dung were buried by dung beetles, compared to 0% of seeds not surrounded by dung (n=2,156). Seeds in dung, however, tended to be more prone than bare seeds to predation by rodents. Of seeds in dung, probability of burial was negatively related to seed size and positively related to amount of dung. Burial of seeds decreased the probability of seed predation by rodents three-fold, and increased the probability of seedling establishment two-fold. Mean burial depth was 4 cm (0.5–20 cm) and was not related to seed size, contrary to previous studies. Probability of seedling establishment was negatively correlated with burial depth and not related to seed size at 5 or 10 cm depths. These results illustrate a complex web of interactions among dung beetles, rodents, and dispersed seeds. These interactions affect the probability of seedling establishment and are themselves strongly tied to how seeds are deposited by primary dispersers. More generally, our results emphasize the importance of looking beyond a single type of plant-animal interaction (e.g., seed dispersal or seed predation) to incorporate potential effects of interacting interactions.  相似文献   

4.
Oceanic islands have been colonized by numerous non-native and invasive plants and animals. An understanding of the degree to which introduced rats (Rattus spp.) may be spreading or destroying seeds of invasive plants can improve our knowledge of plant-animal interactions, and assist efforts to control invasive species. Feeding trials in which fruits and seeds were offered to wild-caught rats were used to assess the effects of the most common rat, the black rat (R. rattus), on 25 of the most problematic invasive plant species in the Hawaiian Islands. Rats ate pericarps (fruit tissues) and seeds of most species, and the impacts on these plants ranged from potential dispersal of small-seeded (≤1.5 mm length) species via gut passage (e.g., Clidemia hirta, Buddleia asiatica, Ficus microcarpa, Miconia calvescens, Rubus rosifolius) to predation where <15% of the seeds survived (e.g., Bischofia javanica, Casuarina equisetifolia, Prosopis pallida, Setaria palmifolia). Rats consumed proportionally more seed mass of the smaller fruits and seeds than the larger ones, but fruit and seed size did not predict seed survival following rat interactions. Although invasive rat control efforts focus on native species protection, non-native plant species, especially those with small seeds that may pass internally through rats, also deserve rat control in order to help limit the spread of such seeds. Black rats may be facilitating the spread of many of the most problematic invasive plants through frugivory and seed dispersal in Hawaii and in other ecosystems where rats and plants have been introduced.  相似文献   

5.
In 1924, 14 American bison (Bison bison) were introduced to Santa Catalina Island, California and sporadically supplemented thereafter with additional animals. To reduce the herd and its impact on native vegetation, over 2000 animals have been exported during the past four decades. Today, the herd is estimated to contain around 250 individuals. Genetic analysis was performed on 98 animals removed from the island in 2004. Forty-four samples (45%) had domestic cattle mitochondrial DNA (mtDNA), 12 (12%) had previously reported bison haplotypes and 42 (43%) had a new haplotype differing by one base pair from a previously reported bison haplotype. A complement of five restriction enzymes was found to be useful in identifying bison with domestic cattle mtDNA.  相似文献   

6.
Aim Large‐bodied vertebrates often have a dramatic role in ecosystem function through herbivory, trampling, seed dispersal and nutrient cycling. The iconic Galápagos tortoises (Chelonoidis nigra) are the largest extant terrestrial ectotherms, yet their ecology is poorly known. Large body size should confer a generalist diet, benign digestive processes and long‐distance ranging ability, rendering giant tortoises adept seed dispersers. We sought to determine the extent of seed dispersal by Galápagos tortoises and their impact on seed germination for selected species, and to assess potential impacts of tortoise dispersal on the vegetation dynamics of the Galápagos. Location Galápagos, Ecuador. Methods To determine the number of seeds dispersed we identified and counted intact seeds from 120 fresh dung piles in both agricultural and national park land. To estimate the distance over which tortoises move seeds we used estimated digesta retention times from captive tortoises as a proxy for retention times of wild tortoises and tortoise movement data obtained from GPS telemetry. We conducted germination trials for five plant species to determine whether tortoise processing influenced germination success. Results In our dung sample, we found intact seeds from > 45 plant species, of which 11 were from introduced species. Tortoises defecated, on average, 464 (SE 95) seeds and 2.8 (SE 0.2) species per dung pile. Seed numbers were dominated by introduced species, particularly in agricultural land. Tortoises frequently moved seeds over long distances; during mean digesta retention times (12 days) tortoises moved an average of 394 m (SE 34) and a maximum of 4355 m over the longest recorded retention time (28 days). We did not find evidence that tortoise ingestion or the presence of dung influenced seed germination success. Main conclusions Galápagos tortoises are prodigious seed dispersers, regularly moving large quantities of seeds over long distances. This may confer important advantages to tortoise‐dispersed species, including transport of seeds away from the parent plants into sites favourable for germination. More extensive research is needed to quantify germination success, recruitment to adulthood and demography of plants under natural conditions, with and without tortoise dispersal, to determine the seed dispersal effectiveness of Galápagos tortoises.  相似文献   

7.
Species-rich, winter-rainfall, microphyllous Renosterveld vegetation in the Western Cape Province of South Africa has largely been transformed for production of wheat and wine. Remaining fragments thus have high conservation value. Abandoned old fields adjacent to natural vegetation fragments could potentially be restored as corridors and habitat for indigenous flora and fauna. We hypothesised that indigenous antelope maintained in a matrix of natural vegetation and abandoned field could play a role in restoration of Renoserveld via seed dispersal.We collected dung of indigenous ungulates in an abandoned field at various distances from natural Renosterveld vegetation, in order to assess the potential of large herbivores to contribute to restoration of plant diversity through seed dispersal. Emerged seedlings from the collected dung represented 29 forb, 13 grass, four sedge, four geophyte and one shrub species. The most abundant emerging seedlings were lawn grass Cynodon dactylon (38%), alien pasture grasses (31%) and indigenous geophyte Romulea rosea (12%). Whereas seeds of annual forbs and grasses were dispersed, only one shrub species was dispersed at very low density. We concluded that large herbivores could retard the rate of recovery of Renosterveld vegetation because viable seeds of herbaceous plants, particularly alien annual grasses and lawn-grasses were more abundant in the dung than the shrub, geophyte or perennial tussock grass species that characterise this vegetation type.  相似文献   

8.
Most plants with fleshy fruits have seeds that are ingested by animals, but a less well-understood mode of seed dispersal involves fleshy fruits containing seeds that are discarded by frugivorous animals because they are too large or toxic to be ingested. We studied the seed dispersal biology of Haemanthus deformis, an amaryllid lily species found in a mosaic of bush clumps in a grassland matrix in South Africa. We asked whether seed dispersal is directed in and among bush clumps and whether germination and survival are greater for seeds dispersed to bush clumps than for those dispersed into grassland. Using camera trapping, we found that fruits are consumed mainly by birds and rodents. The pulp was removed from the seeds which were then discarded without ingestion. While many seeds were dispersed close to the parent plant, most (c. 78.5%) were dispersed further than 1 m away from the parent plant. Longer distance dispersal resulted mainly from birds flying off with fruits in their bill or from rodents engaging in scatter-hoarding behavior. Seedling survival was most successful within bush clumps as compared to grasslands and shade was identified as a primary requirement for seedling survival. Seeds from which the fruit pulp had been removed germinated faster than those in intact fruits. Haemanthus deformis deploys a system of directed seed dispersal, whereby both birds and rodents contribute to the dispersal of seeds within patchy bush clumps that are favorable for seedling survival.  相似文献   

9.
We report the occurrence of the brown seaweed Sargassum filicinum Harvey in southern California. Sargassum filicinum is native to Japan and Korea. It is monoecious, a trait that increases its chance of establishment. In October 2003, Sargassum filicinum was collected in Long Beach Harbor. In April 2006, we discovered three populations of this species on the leeward west end of Santa Catalina Island. Many of the individuals were large, reproductive and senescent; a few were small, young but precociously reproductive. We compared the sequences of the mitochondrial cox3 gene for 6 individuals from the 3 sites at Catalina with 3 samples from 3 sites in the Seto Inland Sea, Japan region. The 9 sequences (469 bp in length) were identical. Sargassum filicinum may have been introduced through shipping to Long Beach; it may have spread to Catalina via pleasure boats from the mainland.  相似文献   

10.

In altered communities, novel species’ interactions may critically impact ecosystem functioning. One key ecosystem process, seed dispersal, often requires mutualistic interactions between frugivores and fruiting plants, and functional traits, such as seed width, may affect interaction outcomes. Forests of the Hawaiian Islands have experienced high species turnover, and introduced galliforms, the largest of the extant avian frugivores, consume fruit from both native and non-native plants. We investigated the roles of two galliform species as seed dispersers and seed predators in Hawaiian forests. Using captive Kalij Pheasants (Lophura leucomelanos) and Erckel’s Francolins (Pternistis erckelii), we measured the probability of seed survival during gut passage and seed germination following gut passage. We also examined which seeds are being dispersed in forests on the islands of O’ahu and Hawai’i. We found that galliforms are major seed predators for both native and non-native plants, with less than 5% of seeds surviving gut passage for all plants tested and in both bird species. Gut passage by Kalij Pheasants significantly reduced the probability of seeds germinating, especially for the native plants. Further, larger-seeded plants were both less likely to survive gut passage and to germinate. In the wild, galliforms dispersed native and non-native seeds at similar rates. Overall, our results suggest the introduced galliforms are a double-edged sword in conservation efforts; they may help reduce the spread of non-native plants, but they also destroy the seeds of some native plants. Broadly, we show mutualism breakdown may occur following high species turnover, and that functional traits can be useful for predicting outcomes from novel species’ interactions.

  相似文献   

11.
The role of the Orii’s flying-fox (Pteropus dasymallus inopinatus) as a pollinator and a seed disperser on Okinawa-jima Island was investigated by direct observations and radio-tracking from October 2001 until January 2006. We found that Orii’s flying-fox potentially pollinated seven native plant species. Its feeding behavior and plant morphological traits suggested that this species is an important pollinator of Schima wallichii liukiuensis and Mucuna macrocarpa. The flying-fox also dispersed the seeds of 20 native plant species. The seeds of all plants eaten by the flying-fox were usually dropped beneath the parent tree, although large fruits of four plant species were occasionally brought to the feeding roosts in the mouth, with the maximum dispersal distance—for Terminalia catappa—estimated to be 126 m. Small seeds of 11 species (mostly Ficus species) were dispersed around other trees, during the subsequent feeding session, through the digestive tracts, with the mean dispersal distance for ingested seeds estimated at 150 ± 230.3 m (±SD); the maximum dispersal distance was 1833 m. A comparison of the seed dispersal of available fruits according to the size of flying-foxes and other frugivores suggested that the seed dispersal of eight plant species producing large fruits mostly depended on Orii’s flying-fox. On Okinawa-jima Island, the Orii’s flying-fox plays an important role as a pollinator of two native plants and as a long-distance seed disperser of Ficus species, and it functions as a limited agent of seed dispersal for plants producing large fruits on Okinawa-jima Island.  相似文献   

12.
Primates are confronted with an array of constraints in feeding on fruit, including the removal of adhesive, energy-rich pulp from seeds. In this paper, I discuss how primates meet this challenge and present data on the fruit-processing and seed-handling behavior of chimpanzees and redtail monkeys in Kibale National Park, Uganda. These data are then related to these species' services as seed dispersers. Particular attention was paid to the methods by which primates removed pulp from seeds, the density of seed clumps that they deposited (by spitting, dropping, or defecating) to the forest floor, and the distance seeds were moved from parent trees. Distance and density differences in chimpanzee and redtail seed dispersal resulted from distinct fruit-processing and seed-handling methods. It was observed, in general, that redtail monkeys engaged in fine oral processing and were seed spitters: most seeds were dispersed in close proximity to parent trees (84% of spat seeds <10 m of parent tree), and deposited singly (100% seeds spat singly). In contrast, chimpanzees were coarse fruit processors and seed swallowers: seeds were defecated in denser clumps (e.g., a mean of 149 large seeds/dung sample and hundreds of small seeds/dung sample), far from parent trees. I evaluate the factors that shape patterns of fruit processing in hominoids and cercopithecines, and argue that the observed seed handling differences can be attributed to differences in digestive retention times, oral anatomy, and alternative mechanisms by which to avoid the cost of seed ballast. Am J Phys Anthropol 109:365–386, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

13.
Dry forests are among the most endangered natural communities in the Hawaiian Islands. Most have been reduced to isolated trees and small forest fragments in which native tree species reproduce poorly. The replacement of native birds by introduced generalists may be contributing to dry forest decline through modification of seed dispersal patterns. To document seed dispersal by introduced birds, we conducted foraging observations on fleshy-fruited trees and measured seed rain under trees and in adjacent open areas for 1 year in a dry forest dominated by native trees. Although trees covered only 15.2 percent of the study area, 96.9 percent of the bird-dispersed seeds were deposited beneath them. The Japanese white-eye (Zosterops japonicus) was the principal dispersal agent. Among bird-dispersed seeds, those of the invasive tree Bocconia frutescens accounted for 75 percent of all seeds collected beneath trees (14.8 seeds/m2/yr) and the invasive shrub Lantana camara accounted for 17 percent. Although nearly 60 percent of the reserve's native woody species possess fleshy fruits, introduced birds rarely disperse their seeds. Native trees accounted for <8 percent of all bird-dispersed seeds and are consequently experiencing dispersal failure by falling directly under parent trees. Smaller-seeded non-native plants, in contrast, may be benefiting from dispersal by introduced birds. Current dispersal patterns suggest that these readily disseminated non-native plants may eventually replace the remaining native flora.  相似文献   

14.
Endozoochrous seed dispersal by herbivorous mammals has been verified repeatedly and its possible influence on the structure and function of herbaceous communities has been suggested. Quantitative studies, however, are lacking in the field of seed dispersal via the dung of herbivore guilds in little-altered environments. The present paper analyses seed dispersal via rabbit, fallow deer, red deer and cow dung in a Mediterranean dehesa (open woodland used for hunting and ranching) during the seeding season. Dung seed content was determined by the glasshouse cultivation of eight dung samples from each herbivore, collected fortnightly between February and August. The four herbivores disperse many seeds (spring averages are 6–15 seeds per gram of dry dung and maxima of 25–70) from a large number of species (totals between 52 and 78). Dispersal seems to be mainly determined by seed production of the plant comminity. This is reflected in (i) the dissemination of a high percentage of the species present in the dehesa, (ii) great seasonal variability, related to seed production, in the amount of seeds and number of species dispersed, and (iii) a high semi-quantitative similarity of seed content in the four types of herbivore dung throughout the year. There is also important quantitative variation that depends on animal traits and feeding habits. These results and the characteristics of species found in dung suggest the adaptation of plant species to the dispersal of their seeds via herbivore gut. This process may well have profound implications for vegetation dynamics and the evolution of plant traits.  相似文献   

15.
According to most studies on seed dispersal in tropical forests, mammals and birds are considered the main dispersal agents and the role played by other animal groups remains poorly explored. We investigate qualitative and quantitative components of the role played by the tortoise Chelonoidis denticulata in seed dispersal in southeastern Amazon, and the influence of seasonal variation in tortoise movement patterns on resulting seed shadows. Seed shadows produced by this tortoise were estimated by combining information on seed passage times through their digestive tract, which varied from 3 to 17 days, with a robust dataset on movements obtained from 18 adult C. denticulata monitored with radio transmitters and spoon-and-line tracking devices. A total of 4,206 seeds were found in 94 collected feces, belonging to 50 seed morphotypes of, at least, 25 plant genera. Very low rates of damage to the external structure of the ingested seeds were observed. Additionally, results of germination trials suggested that passage of seeds through C. denticulata’s digestive tract does not seem to negatively affect seed germination. The estimated seed shadows are likely to contribute significantly to the dispersal of seeds away from parent plants. During the dry season seeds were dispersed, on average, 174.1 m away from the location of fruit ingestion; during the rainy season, this mean dispersal distance increased to 276.7 m. Our results suggest that C. denticulata plays an important role in seed dispersal in Amazonian forests and highlight the influence of seasonal changes in movements on the resulting seed shadows.  相似文献   

16.
Based on limited research, the island loggerhead shrike, Lanius ludovicianus anthonyi has been considered a distinct subspecies endemic to the northern California Channel Islands. We used mtDNA control region sequences and microsatellite genotyping to compare loggerhead shrikes from the southern California mainland (L. l. gambeli), San Clemente Island (L. l. mearnsi), and the northern islands (L. l. anthonyi). Habitats on the islands are recovering due to the removal of non-native ungulates on the islands, but may be transitioning to habitats less supportive of loggerhead shrikes, so this evaluation comes at a critical time. We utilized 96 museum specimens that were collected over a century to evaluate both spatial and temporal genetic patterns. Analysis of multilocus microsatellite genotypes indicated that historical specimens of loggerhead shrikes (collected between 1897 and 1986) from the two northern islands of Santa Rosa and Santa Cruz are genetically distinct from adjacent mainland and island shrikes. Birds from Santa Catalina Island showed mixed ancestry and did not cluster with the northern island birds. Historical specimens of L. l. mearnsi from San Clemente Island also showed mixed ancestry. Our study provides evidence that a genetically distinct form of loggerhead shrikes, L. l. anthonyi, occurred on the islands of Santa Rosa and Santa Cruz.  相似文献   

17.
王树林  侯扶江 《生态学报》2023,43(11):4369-4389
成熟种子被动物采食和排泄后,沉积在粪便中的有活力的种子称为粪种子库。种子经动物消化道携带而实现传播的过程称为消化道传播,粪种子库是种子消化道传播的必经阶段和关键节点。粪种子库和种子消化道传播一直以来都是生态学家关注的热点。介绍了粪种子库的形成原因和理论基础,指出粪种子库是动-植物互作的结果;讨论了影响粪种子库结构和组成的因素,包括种子形态、动物种类和外界环境对粪种子库生态功能的调控作用;阐述了粪种子库的生态意义,主要表现为种子远距离传播、粪便物质返还以及促进植物群落更新和发展;最后指出将来关于粪种子库的研究需要重点关注的几个方面问题,以期为合理、全面认识粪种子库提供理论参考,并为深刻理解动-植物互作机制提供科学依据。  相似文献   

18.
Seed dispersal is a critical stage in the life history of plants. It determines the initial pattern of juvenile distribution, and can influence community dynamics and the evolutionary trajectories of individual species. Vertebrate frugivores are the primary vector of seed dispersal in tropical forests; however, most studies of seed dispersal focus on birds, bats and monkeys. Nevertheless, South America harbors at least 200 species of frugivorous fishes, which move into temporarily flooded habitats during lengthy flood seasons and consume fruits that fall into the water; and yet, we know remarkably little about the quality of seed dispersal they effect. We investigated the seed dispersal activities of two species of large-bodied, commercially important fishes (Colossoma macropomum and Piaractus brachypomus, Characidae) over 3 years in Pacaya-Samiria National Reserve (Peru). We assessed the diet of these fishes during the flood season, conducted germination trials with seeds collected from digestive tracts, and quantified fruit availability. In the laboratory, we fed fruits to captive Colossoma, quantified the proportion of seeds defecated by adult and juvenile fish, and used these seeds in additional germination experiments. Our results indicate that Colossoma and Piaractus disperse large quantities of seeds from up to 35% of the trees and lianas that fruit during the flood season. Additionally, these seeds can germinate after floodwaters recede. Overexploitation has reduced the abundance of our focal fish species, as well as changed the age structure of populations. Moreover, older fish are more effective seed dispersers than smaller, juvenile fish. Overfishing, therefore, likely selects for the poorest seed dispersers, thus disrupting an ancient interaction between seeds and their dispersal agents. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
We studied the relationship between the removal rate and the spatiotemporal availability of ripe fruits of the tropical deciduous shrub Erythroxylum havanense in western Mexico. We also evaluated the effects of dispersal on seed survival during the first stages of establishment. Fast and early dispersal should be favored in E. havanense, since propagules have more time to grow and accumulate resources before the beginning of the severe dry season. In general, high rates of fruit removal imply faster and earlier dispersal. Thus, plants producing large crops should benefit from high removal rates, which will increase the probability of successful establishment by their progeny. To characterize both individual and population fruiting patterns, we made daily counts of fruits on 51 plants arranged in six clumps of different sizes. The daily number of fruits removed per plant was higher for plants with larger initial crop sizes and larger numbers of ripe fruits on a given day, but decreased as clump size increased. Additionally, we monitored postdispersal survival and germination in an experiment manipulating seed density, distance from adult plants, and seed predation. Early establishment was independent of density or distance, and vertebrate seed predation was the main agent of seed mortality. Our results indicate that the critical variable with respect to fruit removal is the number of fruits a plant produces, large plants having higher dispersal rates. Large plants are also more likely to have more seeds escaping postdispersal seed predation.  相似文献   

20.
Anna Traveset 《Oecologia》1990,84(4):506-512
Summary Post-dispersal seed predation by the bruchid beetle Stator vachelliae was investigated in Santa Rosa National Park, Costa Rica. This insect finds the seeds of the leguminous Acacia farnesiana in the feces of horses, deer, and ctenosaur lizards, the current major dispersers. Patterns of oviposition and pre-adult survival of beetles in the seeds were investigated in a series of experiments using fresh horse dung. S. vachelliae never minded into the dung balls, attacking only those seeds located on the surface. Fresh horse dung did not attract insects more readily than dry dung. The proportion of seeds attacked was not related to their density in a defecation, and was similar in three areas with different densities of the host plant. In a fourth area with no fruiting A. farnesiana shrubs all seeds survived insect predation. Bruchids attacked a greater proportion of seeds at 1 m than at 5 m from the edge of the shrub's crown. Seeds were mainly removed from horse dung by rodents with similar intensity in all areas and at both distances; this seed removal interfered with bruchid oviposition and probably with bruchid survival. S. vachelliae oviposited less frequently on seeds in dung fully exposed to sun. When oviposition on a dung pile was high, the distribution of eggs on the seeds was clumped, suggesting that some seeds were preferred to others. By the end of the dry season, bruchids stopped attacking the seeds. The results show that the fate of both seeds and bruchids is greatly influenced by the location and time of defecation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号