首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A rapid and simple method was developed for the separation and quantification of the anti nerve agent drug pyridostignmine bromide (PB; 3-dimethylaminocarbonyloxy-N-methyl pyridinium bromide) its metabolite N-methyl-3-hydroxypyridinium bromide, the insect repellent DEET (N,N-diethyl-m-toluamide), its metabolites m-toluamide and m-toluic acid, the insecticide permethrin (3-(2,2-dichloro-ethenyl)-2,2-dimethylcyclopropanecarboxylic acid(3-phenoxyphenyl)methylester), and two of its metabolites m-phenoxybenzyl alcohol, and m-phenoxybenzoic acid in rat plasma and urine. The method is based on using C18 Sep-Pak® cartridges for solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) with reversed-phase C18 column, and gradient UV detection ranging between 208 and 230 nm. The compounds were separated using gradient of 1 to 99% acetonitrile in water (pH 3.20) at a flow-rate ranging between 0.5 and 1.7 ml/min in a period of 17 min. The retention times ranged from 5.7 to 14.5 min. The limits of detection were ranged between 20 and 100 ng/ml, while limits of quantitation were 150–200 ng/ml. Average percentage recovery of five spiked plasma samples were 51.4±10.6, 71.1±11.0, 82.3±6.7, 60.4±11.8, 63.6±10.1, 69.3±8.5, 68.3±12.0, 82.6±8.1, and from urine 55.9±9.8, 60.3±7.4, 77.9±9.1, 61.7±13.5, 68.6±8.9, 62.0±9.5, 72.9±9.1, and 72.1±8.0, for pyridostigmine bromide, DEET, permethrin, N-methyl-3-hydroxypyridinium bromide, m-toluamide, m-toluic acid, m-phenoxybenzyl alcohol and m-phenoxybenzoic acid, respectively. The relationship between peak areas and concentration was linear over the range between 100 and 5000 ng/ml. This method was applied to analyze the above chemicals and metabolites following their administration in rats.  相似文献   

2.
A reliable and sensitive method for the extraction and quantification of phenytoin (5,5′-diphenylhydantoin), its major metabolite, 5-(p-hydroxyphenyl)-5-phenylhydantoin (p-HPPH) and minor metabolite, 5-(m-hydroxyphenyl)-5-phenylhydantoin (m-HPPH) in horse urine and plasma is described. The method involves the use of solid-phase extraction (SPE), liquid–liquid extraction (LLE), enzyme hydrolysis (EH) and high-performance liquid chromatography (HPLC). The minor metabolite, 5-(m-hydroxyphenyl)-5-phenylhydantoin (m-HPPH) was not present in a reliably quantifiable concentration in all samples. The new method described was successfully applied in the pharmacokinetic studies and elimination profile of phenytoin and p-HPPH following oral or intravenous administration in the horse.  相似文献   

3.
An assay for the simultaneous quantitative determination of thioTEPA, TEPA and the recently identified metabolite N,N′-diethylene-N″-2-chloroethylphosphoramide (monochloroTEPA) in human urine has been developed. MonochloroTEPA was synthesized by incubation of TEPA with sodium chloride at pH 8. Thus, with this assay monochloroTEPA is quantified as TEPA equivalents. Analysis of the three analytes in urine was performed using gas chromatography with selective nitrogen–phosphorous detection after extraction with a mixture of 1-propanol and chloroform from urine samples. Diphenylamine was used as internal standard. Recoveries ranged between 70 and 100% and both accuracy and precision were less than 15%. Linearity was accomplished in the range of 25–2500 ng/ml for monochloroTEPA and 25–5000 ng/ml for thioTEPA and TEPA. MonochloroTEPA proved to be stable in urine for at least 4 weeks at −80°C. ThioTEPA, TEPA and monochloroTEPA cummulative urinary excretion from two patients treated with thioTEPA are presented demonstrating the applicability of the assay for clinical samples and that the excreted amount of monochloroTEPA exceeded that of thioTEPA on day 2 to 5 of urine collection.  相似文献   

4.
A HPLC method has been developed for the analogue of Ecstasy MDE and its major metabolites N-ethyl-4-hydroxy-3-methoxyamphetamine (HME) and 3,4-methylenedioxyamphetamine (MDA) in human plasma. In the course of our investigations we found that the methylenedioxyamphetamines and HME exhibit fluorescence at 322 nm. Therefore the detection could be carried out with a fluorescence (FL) detector. Solid-phase extraction was used for sample preparation and yielded high recovery rates greater than 95%. The limit of quantitation for MDE and its metabolites in the extracts was between 1.5 and 8.9 ng/ml and the method standard deviations were less than 5%. This sensitive, rapid and reliable analytical method has been used successfully in the quantitation of the substances in plasma samples obtained from 14 volunteers in two clinical studies after p.o. administration of 100 to 140 mg MDE*HCl. The maximum plasma concentrations were 235–465 ng/ml (MDE), 67–673 ng/ml (HME) and 7–33 ng/ml (MDA), respectively. Pharmacokinetic parameters have been investigated using the plasma concentration curves.  相似文献   

5.
A method based on reversed-phase HPLC is reported for the separation and quantification of various urinary aromatic metabolites: hippuric, phenylaceturic, salicyluric, benzoic, phenylacetic, salicylic. 3-phenylpropionic and cinnamic acids and several phenols in ruminant urine. In this method, a Nova-Pak C18 (4 μm) 150×3.9 mm I.D. column, two solvents [A: 15°b methanol in 20 mM acetic acid (pH 3.3); B: methanol] in a gradient mode at a flow-rate of 0.8 ml/min, and UV detection at 210 nm were used. Quantification of the total (free and conjugated) benzoic, phenylacetic and salicylic acids present in urine was achieved by hydrolysis of the samples in 3 M HCl at 100°C for 24 h prior to HPLC analysis. The lowest detection concentration was 50 μmol/I. This method is useful for scanning the profile of aromatic metabolites in urine of ruminants, which provides information on the diets the animals receive.  相似文献   

6.
A highly sensitive and selective method for determining 8-oxoguanine in plasma and urine was developed by high-performance liquid chromatography with electrochemical detection. The compound was separated by gradient elution on a C18 reversed-phase column with a mobile phase of acetonitrile and 0.1 M sodium acetate, pH 5.2. 8-Hydroxy-2′-deoxyguanosine was used as internal standard. 8-Oxoguanine was detected electrochemically by setting the potential to +300 mV vs. Pd reference. The sensitivity of the assay was 22 ng/ml with a signal-to-noise ratio of 7:1. The within-day relative standard deviations for 8-oxoguanine quality control samples with concentrations of 3340, 1340 and 84 ng/ml were 3.6, 4.3 and 5.7% for plasma, and 4.1, 4.6 and 6.2% for urine, respectively. The day-to-day relative standard deviations for the same samples were 3.8, 6.8 and 7.1% for plasma, and 3.9, 7.0 and 7.9% for urine, respectively. The method is designed to study the pharmacokinetics and metabolic fate of O6-benzylguanine in a phase I clinical trial. Previously, O6-benzyl-8-oxoguanine was identified as the primary metabolite of O6-benzylguanine in humans. We now demonstrate that 8-oxoguanine is a further metabolite of O6-benzylguanine.  相似文献   

7.
A column switching system for the determination of some polar pesticides and their main metabolites, such as aldicarb, aldicarb sulphoxide, aldicarb sulphone, carbofuran and 3-hydroxicarbofuran, in human urine has been developed. The limits of detection were between 0.3 and 1 μg/l. We used a simple solid-phase extraction with graphite carbon and a RPLC–LC analysis with UV detection yielding average recoveries between 84 and 110% (N=5) with RSD between 4 and 8%.  相似文献   

8.
A simple, rapid and sensitive reversed-phase ion-pair high-performance liquid chromatographic method for the determination of N-acetylneuraminic acid and 2-deoxy-2,3-dehydro-N-acetylneuraminic acid in biological fluids is described. Determination of N-acetylneuraminic acid released by acidic hydrolysis, in serum, urine and saliva, and 2-deoxy-2,3-dehydro-N-acetylneuraminic acid in urine, without hydrolysis, was accomplished by injecting the sample without derivatization, into the chromatograph. Measurements were carried out isocratically within 6 min using a C18 column and a mobile phase of aqueous solution of triisopropanolamine, as ion-pair reagent, 60 mM, pH 3.5 at room temperature with UV absorbance detection. The present method is reported for the first time for the determination of sialic acids in biological fluids. Recoveries in serum, urine and saliva ranged from 90 to 102% and the limits of detection were 60 nM and 20 nM for the two sialic acids, respectively. The method has been applied to normal and pathological sera from patients with breast, stomach, colon, ovarian and cervix cancers, to normal urine and urine from patient with sialuria and to normal saliva.  相似文献   

9.
An enantioselective high-performance liquid chromatography method was developed for the simultaneous determination of disopyramide (DP) and mono-N-dealkyldisopyramide (MND) enantiomers in plasma and urine. The drugs were extracted from plasma samples by liquid–liquid extraction with dichloromethane after protein precipitation with trichloroacetic acid; the urine samples were processed by liquid–liquid extraction with dichloromethane. The enantiomers were resolved on a Chiralpak AD column using hexane–ethanol (91:9, v/v) plus 0.1% diethylamine as the mobile phase and monitored at 270 nm. Under these conditions the enantiomeric fractions of the drug and of its metabolite were analyzed within 20 min. The extraction procedure was efficient in removing endogenous interferents and low values for the relative standard deviations were demonstrated for both within-day and between-day assays. The method described in this paper allows the determination of DP and MND enantiomers at plasma levels as low as 12.5 ng/ml and can be used in clinical pharmacokinetic studies.  相似文献   

10.
A rapid and sensitive method for the extraction and quantification of penicillin-G and procaine in horse urine and plasma samples has been successfully developed. The method involves the use of solid-phase extraction (SPE) for penicillin-G, liquid–liquid extraction (LLE) for procaine, and high-performance liquid chromatography (HPLC) for the quantification of penicillin-G and procaine. The new method described here has been successfully applied in the pharmacokinetic studies of procaine, penicillin-G and procaine–penicillin-G administrations in the horse.  相似文献   

11.
A high-performance liquid chromatographic method with electrochemical detection has been developed for the simultaneous determination of epirubicin, 13-S-dihydroepirubicin, doxorubicin and 13-S-dihydrodoxorubicin in human plasma. An aliquot of 200 μl plasma, spiked with internal standard, was extracted by solid-phase extraction using polymeric adsorbent columns. Chromatography was performed using a C18 reversed-phase column with a mobile phase consisting of water–acetonitrile (71:29, v/v) containing 0.05 M Na2HPO4 and 0.05% v/v triethylamine adjusted to pH 4.6 with citric acid. Linearity of the method was obtained in the concentration range of 1–500 ng/ml for all the analytes. Analytical recoveries of the analytes ranged from 89 to 93%. The assay can be used for the simultaneous determination of the four analytes, or for epirubicin and its metabolite or doxorubicin and its metabolite, using the other parent drug as an internal standard. The method was applied to analyze human plasma samples from patients treated with epirubicin using doxorubicin as an internal standard.  相似文献   

12.
A reversed-phase ion-pair high-performance liquid chromatographic method for the simultaneous determination of codeine and seven metabolites is described. The samples are purified by reversed-phase solid-phase extraction. Codeine, norcodeine, codeine-6-glucuronide, norcodeine-6-glucuronide and morphine-3-glucoronide are measured with UV detection. Detection limits are 3 nmol/l (morphine-3-glucuronide) to 20 nmol/l (codeine). Morphine, normorphine and morphine-6-glucuronide are measured with electrochemical detection. Detection limits are 0.4 nmol/l (morphine-6-glucuronide) to 1.0 nmol/l (normorphine). Correlation coefficients better than 0.998 are normally obtained for all compounds. The method was applied to the determination of the kinetics of codeine and its metabolites in plasma and urine samples from healthy volunteers.  相似文献   

13.
Nicotine and its main metabolites (cotinine, trans-3'-hydroxycotinine, trans-3'-hydroxycotinine glucuronide, nicotine-1'-N-oxide and 3-pyridylcarbinol) were analysed in urine after liquid—liquid extraction by high-performance liquid chromatography using norephedrine as internal standard, ultraviolet detection at 260 nm and scanning ultraviolet spectra with a photodiode-array detector. The conjugated trans-3'-hydroxycotinine was determined after enzymatic hydrolysis. Specific determination of 3-pyridylcarbinol was also carried out. Owing to its good selectivity, sensitivity and reproducibility, the method was applied to the analysis of urine samples from smokers and non-smokers. The results obtained suggest that the urinary markers used to assess active smoking or exposure to environmental tobacco smoke must be not only nicotine and cotinine, but also their main free and conjugated metabolites.  相似文献   

14.
A high-performance liquid chromatographic method for the determination of a new thymidine phosphorylase inhibitor, TPI, in dog and rat plasma is described. TPI was isolated from biological samples by solid-phase extraction on Bond Elut PRS columns. Chromatographic separation was achieved on a C18 column using a mobile phase consisting of acetonitrile–10 mM acetate buffer (pH 4.3) including hexanesulfonate, with UV detection at 276 nm. This method has been validated across the range of 50–50 000 ng/ml using a 0.1-ml plasma volume. The mean recoveries from spiked plasma were 93% for dog and 94% for rat, respectively. The accuracy, precision and specificity of the method were demonstrated to be acceptable, and it was applied to the toxicokinetic study of TPI in rats.  相似文献   

15.
An isocratic high-performance liquid chromatography (HPLC) method with ultraviolet detection for the simultaneous determination of clozapine and its two major metabolites in human plasma is described. Analytes are concentrated from alkaline plasma by liquid–liquid extraction with n-hexane–isoamyl alcohol (75:25, v/v). The organic phase is back-extracted with 150 μl of 0.1 M dibasic phosphate (pH 2.2 with 25% H3PO4). Triprolidine is used as internal standard. For the chromatographic separation the mobile phase consisted of acetonitrile–0.06 M phosphate buffer, pH 2.7 with 25% phosphoric acid (48:52, v/v). Analytes are eluted at a flow-rate of 1.0 ml/min, separated on a 250×4.60 mm I.D. analytical column packed with 5 μm C6 silica particles, and measured by UV absorbance detection at 254 nm. The separation requires 7 min. Calibration curves for the three analytes are linear within the clinical concentration range. Mean recoveries were 92.7% for clozapine, 82.0% for desmethylclozapine and 70.4% for clozapine N-oxide. C.V. values for intra- and inter-day variabilities were ≤13.8% at concentrations between 50 and 1000 ng/ml. Accuracy, expressed as percentage error, ranged from −19.8 to 2.8%. The method was specific and sensitive with quantitation limits of 2 ng/ml for both clozapine and desmethylclozapine and 5 ng/ml for clozapine N-oxide. Among various psychotropic drugs and their metabolites, only 2-hydroxydesipramine caused significant interference. The method is applicable to pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

16.
An HPLC assay is described for the determination of Z-butylidenephthalide (Z-Bdph) in plasma. Plasma samples were cleaned up by extraction with 2% chloroform in n-hexane. Z-Bdph was separated on a normal-phase silica column with a mobile phase of chloroform-n-hexane (1:1). The limit of quantitation with UV detection at 254 nm for Z-Bdph in plasma was 0.01 μg/ml. The recovery of Z-Bdph by organic solvent extraction of plasma was 99.5%. The intra-day and inter-day coefficients of variation and relative errors for Z-Bdph determination in plasma were both less than 10%. The present method was applied to pharmacokinetic studies of Z-Bdph in plasma after intravenous administration to rabbits.  相似文献   

17.
18.
The first method using high-performance liquid chromatography (HPLC) has been developed for the determination of trans-resveratrol in human plasma. The method involves a liquid–liquid extraction followed by reversed-phase HPLC with UV detection. The detection limit of trans-resveratrol in human plasma was 5.0 ng/ml. Standard curves are linear over the concentration range of 5.0–5000.0 ng/ml. Intra-assay variability ranged from 1.9 to 3.7% and inter-assay variability ranged from 2.5 to 4.0% at the concentration range of 15.0–4000.0 ng/ml.  相似文献   

19.
A high-performance liquid chromatographic method for the determination of free reduced cysteine and N-acetylcysteine in human plasma at the basal state and after oral administration of N-acetylcysteine is described. The method is based on acid-catalysed conversion of plasma thiols to the corresponding S-nitroso derivatives by excess of nitrite and their subsequent cation-pairing RP-HPLC with detection at 333 nm. Recovery rates of cysteine and N-acetylcysteine added to human plasma were 94.6 and 99.6%, respectively. Inter- and intra-day precision were below 6%. In healthy humans (n=5), free reduced cysteine was determined to be (mean±S.E.) 10.0±0.96 μM. No N-acetylcysteine was detected in plasma of these subjects above the limit of detection (e.g. 170 nM). The method was successfully applied to a pharmacokinetic study on orally administered N-acetylcysteine to healthy volunteers.  相似文献   

20.
A rapid and sensitive high-performance liquid chromatographic (HPLC) assay for the determination of alpha-naphthylisothiocyanate (1-NITC) and two metabolites alpha-naphthylamine (1-NA) and alpha-naphthylisocyanate (1-NIC) in rat plasma and urine has been developed. The chromatographic analysis was carried out using reversed-phase isocratic elution with a Partisphere C(18) 5-microm column, a mobile phase of acetonitrile-water (ACN-H(2)O 70:30, v/v), and detection by ultraviolet (UV) absorption at 305 nm. The lower limits of quantitation (LLQ) in rat plasma, urine, and ACN were 10, 30, and 10 ng/ml for 1-NITC; 30, 100, and 30 ng/ml for 1-NA; and 30 ng/ml in ACN for 1-NIC. At low (10 ng/ml), medium (500 ng/ml), and high (5000 ng/ml) concentrations of quality control samples (QCs), the range of within-day and between-day accuracies were 95-106 and 97-103% for 1-NITC in plasma, respectively. Stability studies showed that 1-NITC was stable at all tested temperatures in ACN, and at -20 and -80 degrees C in plasma, urine, and ACN precipitated plasma and urine, but degraded at room temperature and 4 degrees C. 1-NA was stable in all of the tested matrices at all temperatures. 1-NIC was unstable in plasma, urine, and ACN precipitated plasma and urine, but stable in ACN. The degradation product of 1-NITC and 1-NIC in universal buffer was confirmed to be 1-NA. 1-NITC and 1-NA were detected and quantified in rat plasma and urine, following the administration of a 25 mg/kg i.v. dose of 1-NITC to a female Sprague-Dawley rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号