首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
This study molecularly elucidates the basis for the dominant negative mechanism of the glucocorticoid receptor (GR) isoform hGRbeta, whose overexpression is associated with human glucocorticoid resistance. Using a series of truncated hGRalpha mutants and sequential mutagenesis to generate a series of hGRalpha/beta hybrids, we find that the absence of helix 12 is neither necessary nor sufficient for the GR dominant negative phenotype. Moreover, we have localized the dominant negative activity of hGRbeta to two residues and found that nuclear localization, in addition to heterodimerization, is a critical feature of the dominant negative activity. Molecular modeling of wild-type and mutant hGRalpha and hGRbeta provides structural insight and a potential physical explanation for the lack of hormone binding and the dominant negative actions of hGRbeta.  相似文献   

5.
BDNF activates trkB receptors to regulate neuronal survival, differentiation, and proliferation. Mutations in the BDNF gene, altered BDNF expression, and altered trkB expression are associated with degenerative and psychiatric disorders. The full-length trkB receptor (trkB.tk(+)) undergoes autophosphorylation to activate intracellular signaling pathways. The truncated trkB receptor (trkB.t1) is abundantly expressed in the brain but lacks the catalytic tyrosine kinase domain. TrkB.t1 is a dominant-negative receptor that inhibits trkB.tk(+) signaling. While this is an important function of trkB.t1, it is only one of its many functions. TrkB.t1 sequesters and translocate BDNF, induces filopodia and neurite outgrowth, stimulates intracellular signaling cascades, regulates Rho GTPase signaling, and modifies cytoskeletal structures. TrkB.t1 is an active signaling molecule with regulatory effects on neurons and astrocytes.  相似文献   

6.
7.
8.
Shin J  Park B  Lee S  Kim Y  Biegalke BJ  Kang S  Ahn K 《Journal of virology》2006,80(11):5397-5404
Human cytomegalovirus encodes four unique short (US) region proteins, each of which is independently sufficient for causing the down-regulation of major histocompatibility complex (MHC) class I molecules on the cell surface. This down-regulation enables infected cells to evade recognition by cytotoxic T lymphocytes (CTLs) but makes them vulnerable to lysis by natural killer (NK) cells, which lyse those cells that lack MHC class I molecules. The 22-kDa US3 glycoprotein is able to down-regulate the surface expression of MHC class I molecules by dual mechanisms: direct endoplasmic reticulum retention by physical association and/or tapasin inhibition. The alternative splicing of the US3 gene generates two additional products, including 17-kDa and 3.5-kDa truncated isoforms; however, the functional significance of these isoforms during viral infection is unknown. Here, we describe a novel mode of self-regulation of US3 function that uses the endogenously produced truncated isoform. The truncated isoform itself neither binds to MHC class I molecules nor prevents the full-length US3 from interacting with MHC class I molecules. Instead, the truncated isoform associates with tapasin and competes with full-length US3 for binding to tapasin; thus, it suppresses the action of US3 that causes the disruption of the function of tapasin. Our results indicate that the truncated isoform of the US3 locus acts as a dominant negative regulator of full-length US3 activity. These data reflect the manner in which the virus has developed temporal survival strategies during viral infection against immune surveillance involving both CTLs and NK cells.  相似文献   

9.
10.
11.
12.
13.
The H(4)R (histamine H(4) receptor) is the latest identified member of the histamine receptor subfamily of GPCRs (G-protein-coupled receptors) with potential functional implications in inflammatory diseases and cancer. The H(4)R is primarily expressed in eosinophils and mast cells and has the highest homology with the H(3)R. The occurrence of at least twenty different hH(3)R (human H(3)R) isoforms led us to investigate the possible existence of H(4)R splice variants. In the present paper, we report on the cloning of the first two alternatively spliced H(4)R isoforms from CD34+ cord blood-cell-derived eosinophils and mast cells. These H(4)R splice variants are localized predominantly intracellularly when expressed recombinantly in mammalian cells. We failed to detect any ligand binding, H(4)R-ligand induced signalling or constitutive activity for these H(4)R splice variants. However, when co-expressed with full-length H(4)R [H(4)R((390)) (H(4)R isoform of 390 amino acids)], the H(4)R splice variants have a dominant negative effect on the surface expression of H(4)R((390)). We detected H(4)R((390))-H(4)R splice variant hetero-oligomers by employing both biochemical (immunoprecipitation and cell-surface labelling) and biophysical [time-resolved FRET (fluorescence resonance energy transfer)] techniques. mRNAs encoding the H(4)R splice variants were detected in various cell types and expressed at similar levels to the full-length H(4)R((390)) mRNA in, for example, pre-monocytes. We conclude that the H(4)R splice variants described here have a dominant negative effect on H(4)R((390)) functionality, as they are able to retain H(4)R((390)) intracellularly and inactivate a population of H(4)R((390)), presumably via hetero-oligomerization.  相似文献   

14.
BACKGROUND: Estrogen receptors (ER) are expressed in about two thirds of human breast cancer, and are an important pharmacological target for treatment of these tumors. Dominant negative forms of the ER have been suggested as an alternative method to disrupt ER function. In this study, we examined the effect of dominant negative ER mutants (ER1-536 and L540Q) on ER-positive breast cancer cells in vitro and in vivo. MATERIALS AND METHODS: ER-positive T47D breast cancer cells were infected with adenoviral vectors expressing ER1-536 and L540Q to examine the effects of the mutants on gene expression and cell growth. Adenoviral vectors containing the wild type ER (AdwtER) and beta-galactosidase gene (AdGal) were used as controls. RESULTS: Ad1-536 or AdL540Q infection inhibited T47D cell growth and induced apoptosis, increasing Bax protein and phosphorylation of p38 mitogen-activated-protein kinase (MAPK). Consistent with the apoptotic effects in vitro, pre-infection of T47D cells with Ad1-536 or AdL540Q inhibited tumor formation when these cells were introduced into nude mice. In addition, injection of Ad1-536 and AdL540Q into pre-established T47D tumors induced tumor regression. Apoptosis, in conjunction with the activation of caspase-3 and phosphorylation of p38 MAPK, was detected in the shrinking tumors. Overexpression of wild-type ER by AdwtER infection also produced antiproliferative and apoptotic effects, but to a lesser extent than the ER1-536 and L540Q mutants. CONCLUSIONS: These results indicate that dominant negative ER mutants have the potential to induce apoptosis of T47D cells and regression of tumors. The delivery of dominant negative ERs by adenoviral vectors may provide a useful tool for targeted therapy of ER-positive breast cancer.  相似文献   

15.
The origin of and relationships among multiple forms of the estrogen receptor from rat uteri were investigated using electrophoretic and conventional hydrodynamic methods of analysis. Evidence is presented that the molybdate-stabilized, multimeric receptor (Stokes radius approximately 70A; S20,w approximately 9.5 S; Mr approximately 290,000) corresponds to an acidic form of the receptor that has relatively high electrophoretic mobility. This discrete form, which appears to represent the untransformed state that does not bind to DNA, was converted to a number of derived forms by exposure to conditions that result in receptor transformation and/or subunit dissociation. In crude cytosol, transformation always generated receptor forms that were excluded from polyacrylamide gels, and it was shown that these are large heterogeneous aggregates. This explains previous failed attempts to analyze the receptor by polyacrylamide gel electrophoresis. Transformation of partially purified, molybdate-stabilized receptor never led to aggregate formation, but resulted instead in the generation of two relatively basic estrogen-binding species of low electrophoretic mobility. These components may represent the free or dissociated estrogen-binding subunits. Together, the results suggest a model for the molybdate-stabilized receptor wherein at least one of its components is an acidic, nonestrogen-binding subunit.  相似文献   

16.
Selective estrogen receptor modulators (SERMs) act as either agonist or antagonist of estrogen receptor (ER) in a tissue selective manner and have been used in several diseases such as breast cancer, postmenopausal syndrome, osteoporosis, and cardiovascular diseases. However, current SERMs may also increase the risk of serious side effects and trigger drug resistance. Herein, a screening program, that was designed to search for novel SERMs, resulted in the identification of a series of 2-arylbenzofuran-containing compounds that are ligands for ERα, when applying the Gaussia-luciferase reporter assay. One of these compounds, 10-dehydrooxyglycyuralin E (T9) was chemically synthesized. T9 showed anti-estrogenic/proliferative activity in ERα-positive breast cancer cells. Pretreatment of T9 prevented the mRNA expression of GREB1, which is an estrogen response gene. Furthermore, by an in silico docking simulation study we demonstrated that T9 showed interactions directly to ERα. Taken together, these results demonstrated that T9 is a candidate of SERMs and a useful seed compound for the foundation of the selective activity of SERMs.  相似文献   

17.
18.
E Amaya  T J Musci  M W Kirschner 《Cell》1991,66(2):257-270
Peptide growth factors may play a role in patterning of the early embryo, particularly in the induction of mesoderm. We have explored the role of fibroblast growth factor (FGF) in early Xenopus development by expressing a dominant negative mutant form of the FGF receptor. Using a functional assay in frog oocytes, we found that a truncated form of the receptor effectively abolished wild-type receptor function. Explants from embryos expressing this dominant negative mutant failed to induce mesoderm in response to FGF. In whole embryos the mutant receptor caused specific defects in gastrulation and in posterior development, and overexpression of a wild-type receptor could rescue these developmental defects. These results demonstrate that the FGF signaling pathway plays an important role in early embryogenesis, particularly in the formation of the posterior and lateral mesoderm.  相似文献   

19.
TNF-alpha converting enzyme (TACE) is the protease responsible for processing proTNF from the 26-kDa membrane-anchored precursor to the secreted 17-kDa TNF-alpha. We show here that a deletion mutant of TACE (dTACE), lacking the pro and catalytic domains of the protease, acts as a dominant negative for proTNF processing in transfected HEK293 cells. We used the same system to test the effect of dTACE on TNFRII processing. Overexpression of dTACE with TNFRII resulted in >80% inhibition of TNFRII shedding. Although significant inhibition of TNF-alpha and TNFRII shedding was achieved with dTACE, we could not detect a cell surface accumulation of the noncleaved substrates above that observed in the absence of dTACE. Our results suggest that TNFRII is a substrate for TACE, and that dTACE is capable of interfering with the function of endogenous TACE, either by binding and sequestering TACE substrates via the disintegrin domain, transmembrane domain, or cytoplasmic tail, or by some other mechanism that has yet to be determined.  相似文献   

20.
Activation of many single-transmembrane receptors requires ligand-induced receptor oligomerization. We have examined the oligomerization of the atrial natriuretic peptide receptor, NPR-A, using epitope-tagged receptor in a co-immunoprecipitation assay. Unlike other single-transmembrane receptors, NPR-A oligomerized in a ligand-independent fashion. Extracellular receptor sequences were both necessary and sufficient for oligomer formation. NPR-A was also able to oligomerize with the related natriuretic peptide receptor, NPR-B. A truncated NPR-A lacking most of the cytoplasmic domain blocked activation of the full-length receptor, presumably through formation of an inactive heteromer. These results indicate that oligomerization of this single-transmembrane receptor is important for the transduction of a conformational change across the plasma membrane but are not consistent with models in which natriuretic peptide receptor oligomerization serves merely to bring intracellular domains together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号