首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have determined the complete nucleotides sequence (2168 bases) of the immunoglobulin mu gene cloned from newborn mouse DNA. The cloned 13kb fragment contained the entire constant region gene sequence that is interrupted by three intervening sequences at the junction of domains as previously shown in the gamma 1, gamma 2 b and alpha genes. The amino acid sequence predicted by the nucleotide sequence agrees with that of the mu chain secreted by a myeloma MOPC104E except for 8 residues out of 448 residues. The homologous domains of the mu, gamma 1 and gamma 2b genes are more similar to each other than the different domains of the mu genes are. The result implicates that the class of the immunoglobulin heavy chain genes diverged after the heavy chain genes established the multi-domain structure. The short intervening sequences of the mu and gamma genes are more conserved than the coding sequences except for the COOH-terminal domains. The results implicate that the nucleotide sequence of the intervening sequence is under selective pressure, possibly to maintain a secondary structure of the nuclear RNA to be spliced.  相似文献   

2.
Synexin was isolated from bovine liver by high resolution cation exchange chromatography and fragmented with cyanogen bromide or trypsin. Peptides were isolated and their amino acid sequences partially determined. Twenty percent of the synexin sequence was determined in one contiguous sequence of 61 residues and a nonoverlapping sequence of 20 residues. The sequence is characterized by a hexapeptide repeat of the form YPXXXX occurring eight times in series, with phenylalanine substituting for tyrosine in two positions. The intervening amino acids (X) are predominantly proline, glycine and alanine. This pattern of periodic aromatic residues suggests the presence of a novel secondary structure and is similar to repeats present in synaptophysin, gliadin and type II keratin.  相似文献   

3.
4.
We have purified the type I restriction enzymes SB and SP from Salmonella typhimurium and S. potsdam, respectively, and determined the DNA sequences that they recognize. These sequences resemble those previously determined for the type I enzymes, EcoB, EcoK and EcoA, in that the specific part of the sequence is divided into two domains by a spacer of non-specific sequence that has a fixed length for each enzyme. Two main differences from the previously determined sequences are seen. Both of the new sequences are degenerate and one of them, SB, has one trinucleotide and one pentanucleotide-specific domain rather than the trinucleotide and tetranucleotide domains seen for all of the other enzymes. The only conserved features of the recognition sequences are the adenosyl residues that are methylated in the modification reaction. For all of the enzymes these are situated ten or 11 base-pairs apart, one on each strand of the DNA. This suggests that the enzymes bind to DNA along one face of the double helix making protein-DNA interaction in two successive major grooves with most of the non-specific spacer sequence in the intervening minor groove.  相似文献   

5.
Potato proteinase inhibitor II (PI2) is a serine proteinase inhibitor composed of two domains that are thought to bind independently to proteinases. To determine the activities of each domain separately, various inactive and active domain combinations were constructed by substituting amino acid residues in the active domains by alanines. These derivatives were expressed as soluble protein inEscherichia coli and exposed on M13 phage as fusions to gene 3 in a phagemid system for monovalent phage display. Inactivation of both active domains by Ala residues reduced binding of phage to trypsin and chymotrypsin by 95%. Ten times more phage were bound to proteinases by domain II compared to domain I, while a point mutation (Leu5 Arg) altered the binding specificity of domain I of PI2 phage from chymotrypsin to trypsin. The mutants were used to show that functional PI2 phage mixed with nonfunctional PI2 phage could be enriched 323 000-fold after three rounds of panning. Thus, these results open up the possibility to use phage display for the selection of engineered PI2 derivatives with improved binding characteristics towards digestive proteinases of plants pests.The nucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number L37519 (p303.51).  相似文献   

6.
We have isolated three independent clones for nuclear elongator tRNAMet genes from an Arabidopsis DNA library using a tRNAMet-specific probe generated by PCR. Each of the coding sequences for tRNAMet in these clones is identical and is interrupted by an identical 11 bp long intervening sequence at the same position in the anticodon loop of the tRNA. Their sequences differ at two positions from the intron in a soybean counterpart. Southern analysis of Arabidopsis DNA demonstrates that a gene family coding for tRNAMet is dispersed at at least eight loci in the genome. The unspliced precursor tRNAMet intermediate was detected by RNA analysis using an oligonucleotide probe complementary to the putative intron sequence. In order to know whether introns commonly interrupt plant tRNAMet genes, their coding sequences were PCR-amplified from the DNAs of eight phylogenetically separate plant species. All 53 sequences determined contain 10 to 13 bp long intervening sequences, always positioned one base downstream from the anticodon. They can all be potentially folded into the secondary structure characteristic for plant intron-containing precursor tRNAs. Surprisingly, GC residues are always present at the 5-distal end of each intron.  相似文献   

7.
OsNifU1A is a NifU-like rice (Oryza sativa) protein, discovered recently. Its amino acid sequence is very homologous to the sequence of cyanobacterial CnfU and to the sequences of NifU C-terminal domains. Based on its sequence, OsNifU1A is probably a modular structure consisting of two CnfU-like domains, with domain I (formed by residues Leu73 to Gly153) and domain II (formed by residues Leu154 to Ser226). Domain I have a conserved Cys-X-X-Cys motif, which may function as an iron-sulfur cluster assembly scaffold. Domain II lacks a Cys-X-X-Cys motif and therefore, cannot function analogously. Other NifU-like proteins, with sequences homologous to OsNifU1A domain II, have been identified during plant genomic projects; however, the biological roles of these domains remain unknown. We successfully constructed an Escherichia coli expression system for OsNifU1A domain II that enabled us to synthesize and purify milligram quantities of protein for use in structural and functional studies. Using the Gateway system, we built DNA sequences corresponding to two OsNifU1A domain II fusion proteins. One construct has a (His)6 sequence upstream of the OsNifU1A domain II sequence; the other has an upstream thioredoxin-(His)6 sequence. Recombinant OsNifU1A domain II fusion proteins were extracted from E. coli inclusion bodies by dissolving them in 6 M guanidine-HCl. About 36% of the total (His)6/OsNifU1A domain II fusion protein initially present remained soluble after guanidine-HCl was completely removed by step-wise dialysis; whereas, recovery of soluble Trx-(His)6 fusion protein was about 60% of the total cell lysate. About 2 mg of 15N-labeled OsNifU1A domain II was purified for NMR spectral studies. Examination of the OsNifU1A domain II 1H-15N HSQC NMR spectrum indicated that the purified protein was monomeric and correctly folded. Therefore, we established an efficient procedure for synthesis and purification of 15N-labeled OsNifU1A domain II in quantities sufficient for heteronuclear NMR solution structure studies.  相似文献   

8.
9.
The complete amino acid sequence of rice bran trypsin inhibitor   总被引:4,自引:0,他引:4  
The complete amino acid sequence of a double-headed trypsin inhibitor (RBTI) from rice bran was determined by a combination of limited proteolysis of the native inhibitor with Streptomyces griseus trypsin at pH 3 and conventional methods. RBTI consists of 133 amino acid residues including 18 half-cystine residues which are involved in 9 disulfide bridges in the molecule. The limited proteolysis at pH 3 produced a major split of Lys(83)-Met(84) and a minor split of Arg(107)-Val(108) together with a non-enzymatic hydrolysis of Asp(19)-Pro(20) in the molecule. The established sequence showed that RBTI is composed of 4 domains, domains I and III, and domains II and IV being homologous to the first and the second domains of soybean Bowman-Birk inhibitor, respectively, indicating that RBTI has a duplicated structure of the Bowman-Birk type inhibitor.  相似文献   

10.
Degenerate primers were designed based on all possible sequences of the N-terminal and C-terminal regions of Delonix regia trypsin inhibitor (DrTI). Five hundred sixty-one bp of polymerase chain reaction (PCR) product was amplified using the above degenerate primers and genomic DNA and cDNA of Delonix regia as a template. The amplified PCR products were cloned and sequenced. DNA sequence analysis of cDNA and genomic clones of DrTI have the same nucleotide sequence in the coding region, and manifested a genomic clone without intervening sequences in the coding region. The amino acid sequence deduced from the DrTI genomic and cDNA clones agreed with that identified via amino acid sequencing analysis, except that two amino acid residues, Ser and Lys, existed between residues Lys141 and Ser142. DrTI open reading frame was then amplified and cloned in-frame with GST in pGEX4T-1 and overexpressed in Escherichia coli to yield a glutathione S-transferase (GST)-fusion protein with a calculated molecular mass of about 45 kDa. The recombinant DrTI (reDrTI) was derived by treating the GST-DrTI fusion protein with thrombin. Both the reDrTI and GST-DrTI fusion protein exhibited a strong identical inhibitory effect on trypsin activity.  相似文献   

11.
12.
13.
Many proteins involved in intracellular signal transduction contain a small, 50-60 amino acid domain, termed the Src homology 3 (SH3) domain. This domain appears to mediate critical protein-protein interactions that are involved in responses to extracellular signals. Previous studies have shown that the SH3 domains from several proteins recognize short, contiguous amino acid sequences that are rich in proline residues. While all SH3 recognition sequences identified to date share a conserved P-X-X-P motif, the sequence recognition specificity of individual SH3 domains is poorly understood. We have employed a novel modification of phage display involving biased libraries to identify peptide ligands of the Src, Fyn, Lyn, PI3K and Abl SH3 domains. With biased libraries, we probed SH3 recognition over a 12 amino acid window. The Src SH3 domain prefers the sequence XXXRPLPPLPXP, Fyn prefers XXXRPLPP(I/L)PXX, Lyn prefers RXXRPLPPLPXP, PI3K prefers RXXRPLPPLPP while the Abl SH3 domain selects phage containing the sequence PPPYPPPP(I/V)PXX. We have also analysed the binding properties of Abl and Src SH3 ligands. We find that although the phage-displayed Abl and Src SH3 ligands are proline rich, they are distinct. In surface plasmon resonance binding assays, these SH3 domains displayed highly selective binding to their cognate ligands when the sequences were displayed on the surface of the phage or as synthetic peptides. The selection of these high affinity SH3 peptide ligands provides valuable information on the recognition motifs of SH3 domains, serve as new tools to interfere with the cellular functions of SH3 domain-mediated processes and form the basis for the design of SH3-specific inhibitors of disease pathways.  相似文献   

14.
The Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV) contain small interaction (I) domains within their nucleocapsid (NC) sequences. These overlap the zinc finger motifs and function to provide the proper density to viral particles. There are two zinc fingers and at least two I domains within these Gag proteins. To more thoroughly characterize the important sequence features and properties of I domains, we analyzed Gag proteins that contain one or no zinc finger motifs. Chimeric proteins containing the amino-terminal half of RSV Gag and various portions of the carboxy terminus of murine leukemia virus (MLV) (containing one zinc finger) Gag had only one I domain, whereas similar chimeras with human foamy virus (HFV) (containing no zinc fingers) Gag had at least two. Mutational analysis of the MLV NC sequence and inspection of I domain sequences within the zinc-fingerless C terminus of HFV Gag suggested that clusters of basic residues, but not the zinc finger motif residues themselves, are required for the formation of particles of proper density. In support of this, a simple string of strongly basic residues was found to be able to substitute for the RSV I domains. We also explored the possibility that differences in I domains (e.g., their number) account for differences in the ability of Gag proteins to be rescued into particles when they are unable to bind to membranes. Previously published experiments have shown that such membrane-binding mutants of RSV and HIV (two I domains) can be rescued but that those of MLV (one I domain) cannot. Complementation rescue experiments with RSV-MLV chimeras now map this difference to the NC sequence of MLV. Importantly, the same RSV-MLV chimeras could be rescued by complementation when the block to budding was after, rather than before, transport to the membrane. These results suggest that MLV Gag molecules begin to interact at a much later time after synthesis than those of RSV and HIV.  相似文献   

15.
The complete amino acid sequence of the CNBr fragment comprising residues 229–284 of the murine major histocompatibility complex antigen H-2Db has been determined using radiochemical methodology. The sequence was determined by N-terminal sequence analysis of the intact CNBr fragment and by sequence determinations of peptides derived from this fragment by trypsin and staphylococcal V8 protease cleavage. In addition to the amino acid assignments for H-2Db, it was possible to assign the linkage position of the third N-linked glycosyl unit to the asparagine at residue 256. Additional amino acid sequence assignments have also been made for three other CNBr fragments that span residues 99–138, 139–228, and 308–331 of the H-2Db molecule. The total protein sequence information available (222 of 338 residues) agrees in every comparable position with the protein sequence derived from the cDNA clone (pH203) isolated by Reyes and co-workers (1982b), which strongly suggests that this clone encodes H-2Db. Combination of the protein sequence with that deduced from the cDNA clone provides the complete H-2Db protein sequence. Comparison of this sequence with other available protein sequence information for murine class I molecules has revealed protein sequences that may be unique to either K or D region molecules.Abbreviations used in this paper HPLC high performance liquid chromatography - V8 Staphylococcus aureus V8 protease - MHC major histocompatibility complex  相似文献   

16.
Abstract

Guanine rich DNA sequences of regulatory genomic regions form secondary structures known as G-quadruplexes usually stabilized by tetrads of Hoogsteen hydrogen bonded guanines. The in vivo existence of G-quadruplexes ascertains their biological roles. Human telomeric repeats are the most studied G-rich sequences. The four repeat Giardia telomeric sequence (TAGGG)4 differs from its human counterpart (TTAGGG)4, by deletion of one T at the G-tract intervening site of each repeat. We show here that whilst the two repeat Giardia telomeric sequence (TAGGG)2 forms parallel and antiparallel quadruplexes with tetramolecular topology exclusively, the four repeat version (TAGGG)4 forms a tetramolecular (antiparallel) and unimolecular (parallel) quadruplexes in Na+. The tetramolecular (antiparallel) G-quadruplex formed by four repeats of Giardia telomeric sequence is stabilized by the additional Watson-Crick bonding between its intervening TA bases aligned in antiparallel fashion. Four stranded antiparallel quadruplex for four repeats of any telomeric sequence have not been characterized till date. We hypothesize that telomeric association in antiparallel fashion, (via G-overhangs to form tetramolecular quadruplex) could be a biologically relevant molecular event. Further, coexistence of Hoogsteen as well as Watson-Crick base pairing might give insight for recognition of conformationally diverse DNA structures by ligands.

Communicated by Ramaswamy H. Sarma  相似文献   

17.
18.
Cytosine residues in C-G dinucleotides are frequently methylated in eukaryote DNA. In DNA of the dinoflagellate C. cohnii, the sequence C-MeC-G-G apparently renders Hpa II (C-C-G-G) incapable of digesting whole cell DNA in general, and rDNA in particular. Msp I, which also recognizes C-C-G-G but cleaves irrespective of methylation, degrades C. cohnii DNA and produces rDNA segments of 10.2 to 1.4 kb. We have applied this Hpa II/Msp I test to unfractionated DNA, and to rDNA and the rDNA intervening sequence of Drosophila virilis embryos and adults. There is no evidence of C-MeC-G-G sequences in either developmental stage of this species. Absence of G-MeC-G-C from coding and intervening sequences of rDNA was shown in comparisons of Hha I (G-C-G-C) cleavage patterns of unfractionated DNA and cloned (unmodified) segments of rDNA. Comparisons of Hpa II and Msp I cleavage products of DNA from the house fly, the flesh fly and a bumblebee also revealed no internal cytosine methylation in the sequence C-C-G-G. Because amounts of McC in C-G dinucleotides vary greatly among species, from apparent nonexistence to substantial proportions, no inference may yet be drawn about the role of such base modifications in DNA.  相似文献   

19.
The receptor tyrosine kinase p185c-neu can be constitutively activated by the transmembrane domain mutation Val664→ Glu, found in the oncogenic mutant p185neu. This mutation is predicted to allow intermolecular hydrogen bonding and receptor dimerization. Understanding the activation of p185c-neu has assumed greater relevance with the recent observation that achondroplasia, the most common genetic form of human dwarfism, is caused by a similar transmembrane domain mutation that activates fibroblast growth factor receptor (FGFR) 3. We have isolated novel transforming derivatives of p185c-neu using a large pool of degenerate oligonucleotides encoding variants of the transmembrane domain. Several of the transforming isolates identified were unusual in that they lacked a Glu at residue 664, and others were unique in that they contained multiple Glu residues within the transmembrane domain. The Glu residues in the transforming isolates often exhibited a spacing of seven residues or occurred in positions likely to represent the helical interface. However, the distinction between the sequences of the transforming clones and the nontransforming clones did not suggest clear rules for predicting which specific sequences would result in receptor activation and transformation. To investigate these requirements further, entirely novel transmembrane sequences were constructed based on tandem repeats of simple heptad sequences. Activation was achieved by transmembrane sequences such as [VVVEVVA]n or [VVVEVVV]n, whereas activation was not achieved by a transmembrane domain consisting only of Val residues. In the context of these transmembrane domains, Glu or Gln were equally activating, while Lys, Ser, and Asp were not. Using transmembrane domains with two Glu residues, the spacing between these was systematically varied from two to eight residues, with only the heptad spacing resulting in receptor activation. These results are discussed in the context of activating mutations in the transmembrane domain of FGFR3 that are responsible for the human developmental syndromes achondroplasia and acanthosis nigricans with Crouzon Syndrome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号