首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA damage and apoptosis.   总被引:1,自引:0,他引:1  
  相似文献   

2.
We had shown previously that DNA polymerase beta (beta-pol) null mouse fibroblasts, deficient in base excision repair (BER), are hypersensitive to monofunctional methylating agents but not to hydrogen peroxide (H2O2). This is surprising because beta-pol is thought to be involved in BER of oxidative as well as methylated DNA damage. We confirm these findings here in early-passage cells. However, with time in culture, beta-pol null cells become hypersensitive to H2O2 and other reactive oxygen species-generating agents. Analysis of in vitro BER reveals a strong deficiency in single-nucleotide BER of 8-oxoguanine (8-oxoG) by both early- and late-passage beta-pol null cell extracts. Therefore, in early-passage wild-type and beta-pol null cells, the capacity for single-nucleotide BER of 8-oxoG does not correlate with cellular sensitivity to H2O2. Expression of beta-pol protein in the late-passage null cells almost completely reverses the H2O2-hypersensitivity phenotype. Methoxyamine (MX) treatment sensitizes late-passage wild-type cells to H2O2 as expected for beta-pol-mediated single-nucleotide BER; however in beta-pol null cells, MX has no effect. The data indicate a role(s) of beta-pol-dependent repair in protection against the cytotoxicity of oxidative DNA damage in wild-type cells.  相似文献   

3.
Reactive oxygen species constantly generated as by-products of cellular metabolism readily attack genomic DNA creating mutagenic lesions such as 7,8-dihydro-8-oxo-guanine (8-oxo-G) that promote aging. 8-oxo-G:A mispairs arising during DNA replication are eliminated by base excision repair initiated by the MutY DNA glycosylase homologue (MUTYH). Here, by using formaldehyde crosslinking in mammalian cell extracts, we demonstrate that the WRN helicase/exonuclease defective in the premature aging disorder Werner syndrome (WS) is recruited to DNA duplex containing an 8-oxo-G:A mispair in a manner dependent on DNA polymerase λ (Polλ) that catalyzes accurate DNA synthesis over 8-oxo-G. Similarly, by immunofluorescence, we show that Polλ is required for accumulation of WRN at sites of 8-oxo-G lesions in human cells. Moreover, we show that nuclear focus formation of WRN and Polλ induced by oxidative stress is dependent on ongoing DNA replication and on the presence of MUTYH. Cell viability assays reveal that depletion of MUTYH suppresses the hypersensitivity of cells lacking WRN and/or Polλ to oxidative stress. Biochemical studies demonstrate that WRN binds to the catalytic domain of Polλ and specifically stimulates DNA gap filling by Polλ over 8-oxo-G followed by strand displacement synthesis. Our results suggest that WRN promotes long-patch DNA repair synthesis by Polλ during MUTYH-initiated repair of 8-oxo-G:A mispairs.  相似文献   

4.
DNA polymerase II (Pol II) is regulated as part of the SOS response to DNA damage in Escherichia coli. We examined the participation of Pol II in the response to oxidative damage, adaptive mutation, and recombination. Cells lacking Pol II activity (polB delta 1 mutants) exhibited 5- to 10-fold-greater sensitivity to mode 1 killing by H2O2 compared with isogenic polB+ cells. Survival decreased by about 15-fold when polB mutants containing defective superoxide dismutase genes, sodA and sodB, were compared with polB+ sodA sodB mutants. Resistance to peroxide killing was restored following P1 transduction of polB cells to polB+ or by conjugation of polB cells with an F' plasmid carrying a copy of polB+. The rate at which Lac+ mutations arose in Lac- cells subjected to selection for lactose utilization, a phenomenon known as adaptive mutation, was increased threefold in polB backgrounds and returned to wild-type rates when polB cells were transduced to polB+. Following multiple passages of polB cells or prolonged starvation, a progressive loss of sensitivity to killing by peroxide was observed, suggesting that second-site suppressor mutations may be occurring with relatively high frequencies. The presence of suppressor mutations may account for the apparent lack of a mutant phenotype in earlier studies. A well-established polB strain, a dinA Mu d(Apr lac) fusion (GW1010), exhibited wild-type (Pol II+) sensitivity to killing by peroxide, consistent with the accumulation of second-site suppressor mutations. A high titer anti-Pol II polyclonal antibody was used to screen for the presence of Pol II in other bacteria and in the yeast Saccharomyces cerevisiae. Cross-reacting material was found in all gram-negative strains tested but was not detected in gram-positive strains or in S. cerevisiae. Induction of Pol II by nalidixic acid was observed in E. coli K-12, B, and C, in Shigella flexneri, and in Salmonella typhimurium.  相似文献   

5.
Attia SM 《Mutation research》2012,741(1-2):22-31
Cisplatin is a potent chemotherapeutic agent that has gained widespread use against various malignant tumours in a variety of human malignancies. Like other chemotherapeutic agents, cisplatin is genotoxic and apoptogenic in non-tumour cells and the formation of reactive oxygen species appears to be responsible for these toxicities. The anti-genotoxic and anti-apoptotic effects of resveratrol, a polyphenol found in numerous plant species, against cisplatin-induced genotoxicity and apoptosis in vivo were evaluated by use of standard techniques in somatic and germinal cells of mice. Pre-treatment of mice with resveratrol significantly reduced cisplatin-induced genotoxicity and apoptosis and effectively suppressed the apoptotic signalling triggered by cisplatin. The protective effect of resveratrol was found to be stronger at the higher dose, indicating the dose-dependent effect of resveratrol. Cisplatin induced marked biochemical alterations characteristic of oxidative DNA stress. Prior administration of resveratrol before the cisplatin challenge ameliorated these biochemical markers. In conclusion, this study provides evidence for the first time that resveratrol has a protective role in the abatement of cisplatin-induced genotoxicity and apoptosis in somatic and germinal cells of mice. This activity resides, at least in part, in its radical scavenger activity. Therefore, resveratrol can be a promising chemoprotective agent to avert secondary malignancies and abnormal reproductive outcomes in cured cancer patients exposed to cisplatin, without diminishing its anti-neoplastic activity.  相似文献   

6.
7.
Superoxide and the production of oxidative DNA damage.   总被引:10,自引:9,他引:10       下载免费PDF全文
K Keyer  A S Gort    J A Imlay 《Journal of bacteriology》1995,177(23):6782-6790
The conventional model of oxidative DNA damage posits a role for superoxide (O2-) as a reductant for iron, which subsequently generates a hydroxyl radical by transferring the electron to H2O2. The hydroxyl radical then attacks DNA. Indeed, mutants of Escherichia coli that lack superoxide dismutase (SOD) were 10-fold more vulnerable to DNA oxidation by H2O2 than were wild-type cells. Even the pace of DNA damage by endogenous oxidants was great enough that the SOD mutants could not tolerate air if enzymes that repair oxidative DNA lesions were inactive. However, DNA oxidation proceeds in SOD-proficient cells without the involvement of O2-, as evidenced by the failure of SOD overproduction or anaerobiosis to suppress damage by H2O2. Furthermore, the mechanism by which excess O2- causes damage was called into question when the hypersensitivity of SOD mutants to DNA damage persisted for at least 20 min after O2- had been dispelled through the imposition of anaerobiosis. That behavior contradicted the standard model, which requires that O2- be present to rereduce cellular iron during the period of exposure to H2O2. Evidently, DNA oxidation is driven by a reductant other than O2-, which leaves the mechanism of damage promotion by O2- unsettled. One possibility is that, through its well-established ability to leach iron from iron-sulfur clusters, O2- increases the amount of free iron that is available to catalyze hydroxyl radical production. Experiments with iron transport mutants confirmed that increases in free-iron concentration have the effect of accelerating DNA oxidation. Thus, O2- may be genotoxic only in doses that exceed those found in SOD-proficient cells, and in those limited circumstances it may promote DNA damage by increasing the amount of DNA-bound iron.  相似文献   

8.
Cellular genomes suffer extensive damage from exogenous agents and reactive oxygen species formed during normal metabolism. The MutT homologs (MutT/MTH) remove oxidized nucleotide precursors so that they cannot be incorporated into DNA during replication. Among many repair pathways, the base excision repair (BER) pathway is the most important cellular protection mechanism responding to oxidative DNA damage. The 8-oxoG glycosylases (Fpg or MutM/OGG) and the MutY homologs (MutY/MYH) glycosylases along with MutT/MTH protect cells from the mutagenic effects of 8-oxoG, the most stable and deleterious product known caused by oxidative damage to DNA. The key enzymes in the BER process are DNA glycosylases, which remove different damaged bases by cleavage of the N-glycosylic bonds between the bases and the deoxyribose moieties of the nucleotide residues. Biochemical and structural studies have demonstrated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of strated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of several glycosylases show that the substrate base flips out of the sharply bent DNA helix and the minor groove is widened to be accessed by the glycosylases. To complete the repair after glycosylase action, the apurinic/apyrimidinic (AP) site is further processed by an incision step, DNA synthesis, an excision step, and DNA ligation through two alternative pathways. The short-patch BER (1-nucleotide patch size) and long-patch BER (2–6-nucleotide patch size) pathways need AP endonuclease to generate a 3′ hydroxyl group but require different sets of enzymes for DNA synthesis and ligation. Protein-protein interactions have been reported among the enzymes involved in BER. It is possible that the successive players in the repair pathway are assembled in a complex to perform concerted actions. The BER pathways are proposed to protect cells and organisms from mutagenesis and carcinogenesis.  相似文献   

9.
10.
Tomato consumption modulates oxidative DNA damage in humans.   总被引:3,自引:0,他引:3  
Consumption of a single serving of tomatoes by healthy human volunteers was sufficient to alter levels of oxidative DNA base damage in white cell DNA within 24 h. Levels of the mutagenic oxidized purine base 8-hydroxyguanine decreased, especially in those subjects whose initial levels of this base were higher than the mean. However, total DNA base damage remained unchanged since levels of 8-hydroxyadenine rose. The ability of tomato consumption to modulate oxidative DNA damage in the short term may indicate why daily consumption of fruits and vegetables is beneficial in decreasing cancer incidence.  相似文献   

11.
12.
Involvement of mtDNA damage in free fatty acid-induced apoptosis   总被引:5,自引:0,他引:5  
A growing body of evidence indicates that free fatty acids (FFA) can have deleterious effects on beta-cells. It has been suggested that the beta-cell dysfunction and death observed in diabetes may involve exaggerated activation of the inducible form of nitric oxide synthase (iNOS) by FFA, with the resultant generation of excess nitric oxide (NO). However, the cellular targets with which NO interact have not been fully identified. We hypothesized that one of these targets might be mitochondrial DNA (mtDNA). Therefore, experiments were initiated to evaluate damage to mtDNA caused by exposure of INS-1 cells to FFA (2/1 oleate/palmetate). The results showed that FFA caused a dose-dependent increase in mtDNA damage. Additionally, using ligation-mediated PCR, we were able to show that the DNA damage pattern at the nucleotide level was identical to the one induced by pure NO and different from damage caused by peroxynitrite or superoxide. Following exposure to FFA, apoptosis was detected by DAPI staining and cytochrome c release. Treatment of INS-1 cells with the iNOS inhibitor aminoguanidine protected these cells from mtDNA damage and diminished the appearance of apoptosis. These studies suggest that mtDNA may be a sensitive target for NO-induced toxicity which may provoke apoptosis in beta-cells following exposure to FFA.  相似文献   

13.
We compared oxidative DNA damage in strictly anaerobic Prevotella melaninogenica, aerotolerant anaerobic Bacteroides fragilis, and facultative anaerobic Salmonella typhimurium after exposure to O2 or H2O2. Using HPLC with electrochemical detection, we measured 8-hydroxydeoxyguanosine (8OHdG) as a damage marker. O2 induced 8OHdG in P. melaninogenica but not in B. fragilis, which shows catalase activity, or in S. typhimurium. In P. melaninogenica, with catalase, O2 induced less 8OHdG; superoxide dismutase had no effect; with glucose and glucose oxidase, O2 induced more 8OHdG. H2O2 also markedly increased 8OHdG. O2 was suggested to induce 8OHdG through H2O2. O2 or H2O2 decreased survival only in P. melaninogenica. Highly sensitive to oxidative stress, P. melaninogenica could prove useful for investigating oxidative DNA damage.  相似文献   

14.
The mitochondrial genome is a significant target of exogenous and endogenous genotoxic agents; however, the determinants that govern this susceptibility and the pathways available to resist mitochondrial DNA (mtDNA) damage are not well characterized. Here we report that oxidative mtDNA damage is elevated in strains lacking Ntg1p, providing the first direct functional evidence that this mitochondrion-localized, base excision repair enzyme functions to protect mtDNA. However, ntg1 null strains did not exhibit a mitochondrial respiration-deficient (petite) phenotype, suggesting that mtDNA damage is negotiated by the cooperative actions of multiple damage resistance pathways. Null mutations in ABF2 or PIF1, two genes implicated in mtDNA maintenance and recombination, exhibit a synthetic-petite phenotype in combination with ntg1 null mutations that is accompanied by enhanced mtDNA point mutagenesis in the corresponding double-mutant strains. This phenotype was partially rescued by malonic acid, indicating that reactive oxygen species generated by the electron transport chain contribute to mitochondrial dysfunction in abf2 Delta strains. In contrast, when two other genes involved in mtDNA recombination, CCE1 and NUC1, were inactivated a strong synthetic-petite phenotype was not observed, suggesting that the effects mediated by Abf2p and Pif1p are due to novel activities of these proteins other than recombination. These results document the existence of recombination-independent mechanisms in addition to base excision repair to cope with oxidative mtDNA damage in Saccharomyces cerevisiae. Such systems are likely relevant to those operating in human cells where mtDNA recombination is less prevalent, validating yeast as a model system in which to study these important issues.  相似文献   

15.
Inflammation has been recognized as a contributing factor in the pathogenesis of some cancers. In the lung, inflammation is characterized by an influx of polymorphonuclear leukocytes (PMN) that release a variety of reactive oxygen species (ROS). The aim of the present study was to investigate the direct effect of PMN on oxidative DNA damage in lung target cells. Therefore, rat alveolar epithelial cells (RLE) were coincubated with PMN or hydrogen peroxide. Known to be correlated with the incidence of cancer, 7-hydro-8-oxo-2'deoxyguanosine (8-oxodG) was used as an effect marker for oxidative damage. Viability of the RLE, when coincubated with PMN, decreased to 43%, dependent on the ratio between PMN and RLE. After washing off PMN, 8-oxodG levels were significantly increased in RLE, but the highest levels were observed in the washed off PMN fraction. In addition, to avoid washing off procedures, immunohistochemical analysis was used to measure the 8-oxodG levels specifically in the RLE and similar results were obtained. In addition, inhibitor experiments showed that antioxidants ameliorated oxidative DNA damage. Our data provide evidence that ROS released by PMN as well as H2O2, cause oxidative DNA damage in epithelial cells.  相似文献   

16.
Milligan JR  Tran NQ  Ly A  Ward JF 《Biochemistry》2004,43(17):5102-5108
Guanyl radical species are produced in DNA by electron removal caused by ionizing radiation, photoionization, oxidation, or photosensitization. DNA guanyl radicals can be reduced by electron donation from mild reducing agents. Important biologically relevant examples are the redox active amino acids cysteine, cystine, methionine, tryptophan, and tyrosine. We have quantified the reactivity of derivatives of these amino acids with guanyl radicals located in plasmid DNA. The radicals were produced by electron removal using the single electron oxidizing agent (SCN)(2)(*)(-). Disulfides (cystine) are unreactive. Thioethers (methionine), thiols (cysteine), and phenols (tyrosine) react with rate constants in the range 10(4)-10(6), 10(5)-10(6), and 10(5)-10(6) dm(3) mol(-1) s(-1), respectively. Indoles (tryptophan) are the most reactive with rate constants of 10(7)-10(8) dm(3) mol(-1) s(-1). Selenium analogues of amino acids are over an order of magnitude more reactive than their sulfur equivalents. Increasing positive charge is associated with a ca. 10-fold increase in reactivity. The results suggest that amino acid residues located close to DNA (for example, in DNA binding proteins such as histones) might participate in the repair of oxidative DNA damage.  相似文献   

17.
Experimental study of oxidative DNA damage   总被引:7,自引:0,他引:7  
Animal experiments allow the study of oxidative DNA damage in target organs and the elucidation of dose-response relationships of carcinogenic and other harmful chemicals and conditions as well as the study of interactions of several factors. So far the effects of more than 50 different chemical compounds have been studied in animal experiments mainly in rats and mice, and generally with measurement of 8-oxodG with HPLC-EC. A large number of well-known carcinogens induce 8-oxodG formation in liver and/or kidneys. Moreover several animal studies have shown a close relationship between induction of dative DNA damage and tumour formation.

In principle the level of oxidative DNA damage in an organ or cell may be studied by measurement of modified bases in extracted DNA by immunohistochemical visualisation, and from assays of strand breakage before and after treatment with repair enzymes. However, this level is a balance between the rates of damage and repair. Until the repair rates and capacity can be adequately assessed the rate of damage can only be estimated from the urinary excretion of repair products albeit only as an average of the entire body.

A number of model compounds have been used to induce oxidative DNA damage in experimental animals. The hepatocarcinogen 2-nitropropane induces up to 10-fold increases in 8-oxodG levels in rat liver DNA. The level of 8-oxodG is also increased in kidneys and bone marrow but not in the testis. By means of 2-nitropropane we have shown correspondence between the increases in 8-oxodG in target organs and the urinary excretion of 8-oxodG and between 8-oxodG formation and the comet assay in bone marrow as well potent preventive effects of extracts of Brussels sprouts. Others have shown similar effects of green tea extracts and its components. Drawbacks of the use of 2-nitropropane as a model for oxidative DNA damage relate particularly to formation of 8-aminoguanine derivatives that may interfere with HPLC-EC assays and have unknown consequences. Other model compounds for induction of oxidative DNA damage, such as ferric nitriloacetate, iron dextran, potassium bromate and paraquat, are less potent and/or more organ specific.

Inflammation and activation of an inflammatory response by phorbol esters or E. coli lipopolysaccharide (LPS) induce oxidative DNA damage in many target cells and enhance benzene-induced DNA damage in mouse bone marrow.

Experimental studies provide powerful tools to investigate agents inducing and preventing oxidative damage to DNA and its role in carcinogenesis. So far, most animal experiments have concerned 8-oxodG and determination of additional damaged bases should be employed. An ideal animal model for prevention of oxidative DNA damage has yet to he developed.  相似文献   

18.
Humic acid (HA) has been implicated as an etiological factor of Blackfoot disease endemic in the southwest coast of Taiwan. Dysfunction of endothelial cells and vasculopathy have been proposed to explain the onset of ulcerous changes at extremities. However, little is known about the effect of HA on activities of cells in these nonhealing wounds. In the present study, we demonstrate that HA adversely affects the growth properties of fibroblasts, one of the key players in wound repair. HA treatment caused growth arrest and apoptosis in human foreskin fibroblasts (HFF). This was accompanied by a significant increase in the level of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in cellular DNA. The increased fluorescence in dichlorofluorescin (H2DCF)-stained and HA-treated cells suggests the involvement of reactive oxygen species (ROS) in HA-induced biological effects. Conversely, vitamin E pretreatment, which significantly reduced the 8-OHdG formation in HA-treated cells, alleviated the growth-inhibitory and apoptosis-inducing effects of HA. These results indicate that HA initiates oxidative damages to fibroblasts, and leads to their dwindling growth potential and survival. The present study suggests that HA-induced growth retardation and apoptosis of fibroblasts may play a role in the pathogenesis of Blackfoot disease.  相似文献   

19.
20.
Isocyanates, a group of low molecular weight aromatic and aliphatic compounds containing the isocyanate group (?NCO), are important raw materials with diverse industrial applications; however, pathophysiological implications resulting from occupational and accidental exposures of these compounds are hitherto unknown. Although preliminary evidence available in the literature suggests that isocyanates and their derivatives may have deleterious health effects including immunotoxicity, but molecular mechanisms underlying such an effect have never been addressed. The present study was carried out to assess the immunotoxic response of methyl isocyanate (MIC) on cultured human lymphocytes isolated from healthy human volunteers. Studies were conducted to evaluate both dose‐dependent and time‐course response (n = 3), using N‐succinimidyl N‐methylcarbamate, a surrogate chemical substitute to MIC. Evaluation of DNA damage by ataxia telangiectasia mutated (ATM) and γ H2AX protein phosphorylation states; measure of apoptotic index through annexin‐V/PI assay, apoptotic DNA ladder assay, and mitochondrial depolarization; induction of oxidative stress by CM‐H2DCFDA and formation of 8‐hydroxy‐2′ deoxy guanosine; levels of antioxidant defense system enzyme glutathione reductase; and multiplex cytometric bead array analysis to quantify the secreted levels of inflammatory cytokines, interleukin‐8, interleukin‐1β, interleukin‐6, interleukin‐10, tumor necrosis factor, and interleukin‐12p70 parameters were carried out. The results of the study showed a dose‐ and time‐dependent response, providing evidence to hitherto unknown molecular mechanisms of immunotoxic consequences of isocyanate exposure at a genomic level. We anticipate these data along with other studies reported in the literature would help to design better approaches in risk assessment of occupational and accidental exposure to isocyanates. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:429–440, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20260  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号