首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glucosidase inhibitors 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin and castanospermine were used to inhibit oligosaccharide processing in primary cultures of rat hepatocytes. Their effect on the glycosylation of alpha 1-proteinase inhibitor (alpha 1PI) and alpha 1-acid glycoprotein (alpha 1AGP) was studied. Of the three glucosidase inhibitors examined, 1-deoxynojirimycin inhibited not only oligosaccharide trimming but also glycosylation de novo of newly synthesized proteins, resulting in the formation of alpha 1PI with two and three (normally carrying three) and alpha 1AGP with two to five (normally carrying six) oligosaccharide side chains. In the presence of the glucosidase inhibitors, glucosylated high-mannose-type oligosaccharides accumulated. Whereas most of the endoglucosaminidase-H-sensitive oligosaccharides formed in the presence of 1-deoxynojirimycin contained only one glucose residue, N-methyl-1-deoxynojirimycin and castanospermine led mainly to the formation of oligosaccharides with three glucose residues. None of the three glucosidase inhibitors completely prevented the formation of complex-type oligosaccharides. Thus, in their presence, alpha 1PI and alpha 1AGP with a mixture of both high-mannose and complex-type oligosaccharides were secreted.  相似文献   

2.
Analysis of the role of glycosylation of the human fibronectin receptor   总被引:11,自引:0,他引:11  
1-Deoxymannojirimycin (MNJ), an inhibitor of Golgi alpha-mannosidase IA and IB, was used to assess the possible roles of asparagine-linked oligosaccharides in the structure and function of the integrin fibronectin receptor from cultured human fibroblasts. These cells normally attach well to fibronectin substrates and have only mature forms of the fibronectin receptor on their surfaces. MNJ inhibits the intracellular trimming of high mannose oligosaccharides, and cells treated with 0.2 mg/ml MNJ synthesize only immature precursor forms of both the alpha and beta subunits of the fibronectin receptor. The immature receptor polypeptides were found to be nonfunctional by two criteria: 1) cells treated with MNJ attached poorly to fibronectin substrates; and 2) receptor from the treated cells was defective in binding to fibronectin affinity columns. The precursor forms of the fibronectin receptor subunits were found on the surfaces of cells treated with MNJ, demonstrating that processing of receptor carbohydrates to mature forms was not necessary for receptor insertion into the plasma membrane. A monoclonal antibody that specifically bound the alpha subunit of the fibronectin receptor immunoprecipitated both alpha and beta subunit polypeptides from both control cells and cells treated with MNJ. Similarly, a monoclonal antibody that specifically bound only the beta subunit also immunoprecipitated both alpha and beta subunit polypeptides of the receptor from extracts of both control and MNJ-treated cells. These results indicate that receptor assembly can occur in the absence of complete oligosaccharide processing. Thus, oligosaccharide processing to the mature form of the fibronectin receptor is important for its binding function but not for receptor assembly or insertion into the plasma membrane.  相似文献   

3.
During the process by which newly synthesized subunits of the nicotinic acetylcholine receptor (stoichiometry = alpha 2 beta gamma delta) mature and acquire the properties of the fully functional cell surface receptor, they undergo numerous covalent and noncovalent modifications. Using ligand-mediated and subunit-specific immunoprecipitation, four forms in the maturation of the alpha subunit can be detected: the primary translation product; alpha subunit that can bind alpha-bungarotoxin; alpha subunit assembled with the other subunits; and surface receptor. The alpha subunit acquires the ability to bind alpha-bungarotoxin with a t1/2 of approximately 40 min after translation and becomes assembled with a t1/2 of 80 min after translation. Using metabolic labeling and sucrose gradient fractionation, we have determined the subcellular location of alpha subunit when it acquires the ability to bind alpha-bungarotoxin and when it is assembled. Golgi membranes were identified across the gradient by the enzymatic activities UDP-galactose:N-acetylglucosamine galactosyltransferase and alpha-mannosidase. Endoplasmic reticulum membranes were identified by the enzymatic activity glucose-6-phosphatase and by the presence of newly synthesized alpha and beta subunits. Pulse-labeled alpha subunit that bound alpha-bungarotoxin was first detected co-migrating in the gradient with the glucose-6-phosphatase activity. Therefore, the capacity to bind alpha-bungarotoxin was acquired while the alpha subunit was in the endoplasmic reticulum. Assembled alpha subunit was detected by immunoprecipitating with an anti-beta subunit-specific monoclonal antibody. By this method, assembled receptor was first detected 15 min after translation in both the endoplasmic and Golgi portions of the gradient. To validate this method of detecting assembled receptor, we determined the sedimentation coefficient of the receptor subunits in the endoplasmic reticulum. Both unassembled subunits with sedimentation coefficients of 5 S and assembled receptor with a sedimentation coefficient of 9 S were recovered from the endoplasmic reticulum portion of the gradient. Thus, our data concerning the subcellular site of assembly are consistent with assembly occurring in the endoplasmic reticulum followed by rapid transport to the Golgi.  相似文献   

4.
The gonadotropins luteinizing hormone, follicle-stimulating hormone, and human chorionic gonadotropin are composed of two noncovalently linked subunits, alpha and beta. The alpha subunit, identical in all three hormones, is produced in excess over the unique beta subunits by pituitary and placenta, and is secreted as uncombined, or free subunit. Free alpha subunit from both tissues has a larger molecular weight than the dimer form. In bovine pituitary an extra O-linked oligosaccharide is added to free alpha subunit, and this modification has recently been detected at an analogous position (threonine 39) on human alpha subunit secreted by choriocarcinoma cells. To assess the contribution of N-linked and O-linked oligosaccharides to the heterogeneity of human free alpha subunit, we have compared free alpha with human chorionic gonadotropin alpha secreted by explants and cultured cytotrophoblasts of human first trimester placenta. We have also examined the free and combined forms of human alpha subunit expressed in transfected C-127 mouse mammary tumor cells. Processing of the alpha subunit in placental and C-127 cells was similar. Tryptic mapping of placental-derived and transfected alpha subunits indicated that O-glycosylation at threonine 39 was not a major modification. In the presence of the oligosaccharide processing inhibitor swainsonine the difference in size between the free and combined forms of alpha was eliminated in both placental and C-127 cells, indicating that the two forms of alpha differed in their N-linked oligosaccharides. Furthermore, the oligosaccharides of free alpha subunits from placental and transfected cells were resistant to endoglycosidase H, but the combined forms of alpha were partially sensitive to the enzyme. Thus, in human first trimester placenta and mouse C-127 cells, combination of alpha with human chorionic gonadotropin beta alters the processing of N-linked oligosaccharides on alpha subunit.  相似文献   

5.
The glycoprotein hormones lutropin (LH) and chorionic gonadotropin (CG) share a common structure consisting of an identical alpha subunit noncovalently linked to a hormone-specific beta subunit. While LH is produced in the anterior pituitary, CG is synthesized in placenta. To compare the assembly, processing, and secretion of human LH and CG in the same cell type, we have expressed their subunits, individually and together, in mouse C-127 mammary tumor cells. Analysis of transfected clones revealed an unexpected difference in the secretion of individually expressed subunits. Whereas alpha and CG beta subunits were rapidly and quantitatively secreted, only 10% of newly synthesized LH beta subunit reached the medium. The remaining subunit was found in an intracellular, endoglycosidase H (endo H)-sensitive pool that had a turnover rate of approximately 8 h. Coexpression with alpha subunit resulted in "rescue" of LH beta subunit by formation of LH dimer, which was efficiently secreted. However, combination of LH beta with alpha was slow, with an overall efficiency of only 50% despite the presence of excess alpha. In contrast, CG beta was rapidly assembled with the alpha subunit after synthesis. The two beta subunits also differed in their influence on the N-linked oligosaccharide processing of combined alpha. The oligosaccharides of LH dimer were endo H resistant, while those of CG dimer remained partially endo H sensitive. Thus, despite a high degree of homology between LH beta and CG beta, the two subunits differ in their secretion as free subunits, their rate of assembly with alpha subunit, and in their effect on the N-linked oligosaccharide processing of combined alpha.  相似文献   

6.
Thyrotropin (TSH) and the gonadotropins; follitropin (FSH), lutropin (LH) and human chorionic gonadotropin (hCG) are a family of heterodimeric glycoprotein hormones. These hormones composed of two noncovalently linked subunits; a common alpha and a hormone specific beta subunits. Assembly of the subunits is vital to the function of these hormones. However, genetic fusion of the alpha and beta subunits of hFSH, hCG and hTSH resulted in active polypeptides. The glycoprotein hormone subunits contain one (TSH and LH) or two (alpha, FSHbeta and hCGbeta) asparagine-linked (N-linked) oligosaccharides. CGbeta subunit is distinguished among the beta subunits because of the presence of a carboxyl-terminal peptide (CTP) bearing four O-linked oligosaccharide chains. To examine the role of the oligosaccharide chains on the structure-function of glycoprotein hormones, chemical, enzymatic and site-directed mutagenesis were used. The results indicated that O-linked oligosaccharides play a minor role in receptor binding and signal transduction of the glycoprotein hormones. In contrast, the O-linked oligosaccharides are critical for in vivo half-life and bioactivity. Ligation of the CTP bearing four O-linked oligosaccharide sites to different proteins, resulted in enhancing the in vivo bioactivity and half-life of the proteins. The N-linked oligosaccharide chains have a minor role in receptor binding of glycoprotein hormones, but they are critical for bioactivity. Moreover, glycoprotein hormones lacking N-linked oligosaccharides behave as antagonists. In conclusion, the O-linked oligosaccharides are not important for in vitro bioactivity or receptor binding, but they play an important role in the in vivo bioactivity and half-life of the glycoprotein hormones. Addition of the O-linked oligosaccharide chains to the backbone of glycoprotein hormones could be an interesting strategy for designing long acting agonists of glycoprotein hormones. On the other hand, the N-linked oligosaccharides are not important for receptor binding, but they are critical for bioactivity of glycoprotein hormones. Deletion of the N-linked oligosaccharides resulted in the development of glycoprotein hormone antagonists. In the case of hTSH, development of an antagonist may offer a novel therapeutic strategy in the treatment of thyrotoxicosis caused by Graves' disease and TSH secreting pituitary adenoma.  相似文献   

7.
Further characterization of the free alpha subunit immunoreactive material, not combined with beta subunit in extracts of bovine pituitaries, shows that the only significant modifications, relative to alpha subunits themselves, are the oligosaccharide O-linked to threonine-43, and heterogeneity of the carboxyl terminus. Removal of the O-linked carbohydrate with a mixture of glycosidases from Streptococcus pneumoniae results in an alpha-like material capable of combining with lutropin beta subunit and, thus, the presence of the oligosaccharide is responsible for the inability of the free alpha-like material to combine with beta subunits. Amino acid compositions of tryptic peptides spanning the entire sequence indicate no change in amino acid sequence of the free alpha-like material as compared to lutropin alpha. Further, based on the similar behavior reverse phase high performance liquid chromatography of the tryptic peptides as compared to their lutropin alpha counterparts, it is concluded that no additional post-translational modifications are present. The N-linked oligosaccharides of the free alpha-like material most likely contain terminal O-sulfated N-acetylhexosamines (as do the asparagine-linked carbohydrates from the pituitary hormones) as indicated by the presence of 3 mol of sulfate/mol of free alpha-like material and the resistance of these oligosaccharides to enzymatic deglycosylation. The O-linked oligosaccharide does not contain sulfated residues.  相似文献   

8.
The role of the human chorionic gonadotropin (hCG) N-linked oligosaccharides in receptor binding and signal transduction was analyzed using site-directed mutagenesis and transfection studies. hCG derivatives with alterations at individual glycosylation sites were expressed in Chinese hamster ovary cells. Receptor binding studies showed that absence of any or all of the hCG N-linked oligosaccharides had only a minor effect on the receptor affinity of the derivatives. Similarly, absence of the N-linked oligosaccharides from the beta subunit or a single oligosaccharide from Asn-78 of alpha had no effect on the production of cAMP or on steroidogenesis. However, the absence of carbohydrate at Asn-52 of alpha decreases both the steroidogenic and cAMP responses. Furthermore, absence of this critical oligosaccharide unit on alpha unmasks differences in the two N-linked oligosaccharides on beta; the beta Asn-13 oligosaccharide but not the beta Asn-30 oligosaccharide plays a more important role in steroidogenesis. Dimers containing deglycosylated beta subunit and an alpha subunit lacking either the Asn-52 oligosaccharide or both oligosaccharides fail to stimulate cAMP or steroid formation. Moreover, these derivatives bind to receptor and behave as competitive antagonists. The use of site-directed mutagenesis was critical in uncovering site-specific functions of the hCG N-linked oligosaccharides in signal transduction and reveals the importance of the Asn-52 oligosaccharide in this process.  相似文献   

9.
The leukocyte integrin alpha 4 beta 1 (VLA-4, CD49d/CD29) is a receptor for the extracellular matrix protein fibronectin and the endothelial adhesion protein VCAM-1. We have analyzed the biosynthesis and post-translational modifications of the two subunits of this receptor complex. The alpha 4 subunit was initially synthesized as a single-chain polypeptide that underwent the formation of complex endoglycosidase H-resistant oligosaccharide side chains and which could be proteolytically cleaved into two noncovalently associated fragments. The level and rate of alpha 4 subunit cleavage was dependent on the cell studied. The T cell tumor line HPB-ALL expressed both intact and fragmented alpha 4 on the cell surface. The interleukin-2-dependent natural killer line NK 3.3 and long term interleukin-2-dependent activated T lymphocytes cleaved the alpha 4 polypeptide earlier and more efficiently than did HPB-ALL cells and did not have detectable levels of intact alpha 4 on the cell surface. The proteolysis of alpha 4 was blocked by treating cells with either the lysosomotrophic amine NH4Cl or the carboxylic ionophore monensin. The presence of complex N-linked oligosaccharides did not seem to be necessary for alpha 4 cleavage or for binding of the alpha 4 beta 1 complex to a synthetic peptide corresponding to the binding site for this receptor on fibronectin.  相似文献   

10.
The beta subunit of human chorionic gonadotropin contains two asparagine (N)-linked oligosaccharides. To examine the structural and functional roles of these oligosaccharide units in vivo, we constructed mutant genes containing alterations in either the asparagine or threonine codons of the two glycosylation consensus sequences and inserted them into a eukaryotic expression vector. Wild-type and mutant CG beta proteins were expressed in Chinese hamster ovary cells alone or in the presence of native alpha subunit. Pulse-chase analysis of the beta-expressing clones showed that absence of the second N-linked sugar but not the first slows secretion 1.6-1.8-fold; absence of both N-linked units slows secretion 2-2.4-fold. Analysis of dimer clones reveals that greater than 80% of the native and glycosylation mutant CG beta subunits are secreted as dimer. However, pulse-chase analysis of these clones also reveals that the mutants completely devoid of N-linked sugars but not the single site mutants are slow to assemble with the alpha subunit. Thus, in vivo the two N-linked oligosaccharides of CG beta are critical for efficient secretion and assembly with the alpha subunit and are likely important for proper folding of the CG beta subunit.  相似文献   

11.
《The Journal of cell biology》1990,111(6):2613-2622
The structural elements required for normal maturation and assembly of the nicotinic acetylcholine receptor alpha subunit were investigated by expression of mutated subunits in transfected fibroblasts. Normally, the wild-type alpha subunit acquires high affinity alpha bungarotoxin binding in a time-dependent manner; however, mutation of the 128 and/or 142 cysteines to either serine or alanine, as well as deletion of the entire 14 amino acids in this region abolished all detectable high affinity binding. Nonglycosylated subunits that had a serine to glycine mutation in the consensus sequence also did not efficiently attain high affinity binding to toxin. In contrast, mutation of the proline at position 136 to glycine or alanine, or a double mutation of the cysteines at position 192 and 193 to serines had no effect on the acquisition of high affinity toxin binding. These data suggest that a disulfide bridge between cysteines 128 and 142 and oligosaccharide addition at asparagine 141 are required for the normal maturation of alpha subunit as assayed by high affinity toxin binding. The unassembled wild-type alpha subunit expressed in fibroblasts is normally degraded with a t1/2 of 2 h; upon assembly with the delta subunit, the degradation rate slows significantly (t1/2 greater than 13 h). All mutated alpha subunits retained the capacity to assemble with a delta subunit coexpressed in fibroblasts; however, mutated alpha subunits that were not glycosylated or did not acquire high affinity toxin binding were rapidly degraded (t1/2 = 20 min to 2 h) regardless of whether or not they assembled with the delta subunit. Assembly and rapid degradation of nonglycosylated acetylcholine receptor (AChR) subunits and subunit complexes were also observed in tunicamycin- treated BC3H-1 cells, a mouse musclelike cell line that normally expresses functional AChR. Hence, rapid degradation may be one form of regulation assuring that only correctly processed and assembled subunits accumulate, and ultimately make functional receptors in AChR- expressing cells.  相似文献   

12.
Human chorionic gonadotropin (hCG), luteinizing hormone (LH), follicle-stimulating hormone and thyroid-stimulating hormone are a family of glycoprotein hormones that share a common alpha subunit but differ in their hormone-specific beta subunits. Using site-directed mutagenesis and gene-transfer, we analyzed the role of the N-linked oligosaccharides of alpha and chorionic gonadotropin (CG)beta in the secretion, assembly, and biologic activity of hCG. Absence of carbohydrate at alpha asparagine (Asn) 52 decreased combination with CG beta but did not alter monomer secretion. Absence of the alpha Asn78 oligosaccharide increased the degradation of the alpha subunit, but the presence of CG beta stabilized this alpha mutant in an efficiently formed dimer complex. Alternatively, absence of both alpha oligosaccharides slowed both secretion and dimer formation but allowed an intermediate level of alpha secreted or dimerized compared to the single-site mutants. Analysis of the CG beta glycosylation mutants revealed that absence of the Asn30 oligosaccharide, but not Asn13, slowed secretion but not assembly, whereas absence of both oligosaccharides slowed both secretion and dimer formation. Analysis of the receptor binding of the hCG glycosylation mutants showed that absence of any or all of the hCG N-linked oligosaccharides had only a minor effect on receptor affinity of the derivatives. However, the absence of alpha Asn52, but not the alpha Asn78 or the CG beta carbohydrate units, reduced the steroidogenic effect, unmasked differences in the beta oligosaccharides, and converted the deglycosylated derivatives into antagonists.  相似文献   

13.
14.
Silencing of contractile activity in muscle is known to increase the level of acetylcholine receptor on the cell surface. Both in vivo and in vitro studies indicate that modulation of receptor-specific mRNA levels plays a role in the activity-related regulation, but other mechanisms have not been explored. In this study, we examine the synthesis and post-translational fate of receptor alpha subunit in actively contracting and tetrodotoxin-inhibited rat muscle cultures. Using metabolic labeling and immunoprecipitation with subunit-specific monoclonal antibodies, we find that the increase of alpha subunit synthesis in tetrodotoxin-inactivated cultures is insufficient to account for the increased rate at which new receptors appear on the cell surface. In evaluating stages in the post-translational processing of alpha subunit, we find that in active and inactive cultures, newly synthesized subunit acquires the ability to bind alpha-bungarotoxin with the same kinetics. However, differences were noted at or preceding the stage where alpha subunit becomes assembled with the other subunits to form the 9 S receptor. In inactivated cultures, newly synthesized alpha subunit transits a 5 S precursor pool more rapidly and is assembled more efficiently than in contracting cultures. The possibility that these differences represent a type of post-translational regulation is discussed.  相似文献   

15.
N L Kedersha  J S Tkacz  R A Berg 《Biochemistry》1985,24(21):5952-5960
Prolyl hydroxylase is a tetrameric glycoprotein that catalyzes a vital posttranslational modification in the biosynthesis of collagen. The enzyme purified from whole chick embryos (WCE) possesses two nonidentical subunits, alpha and beta, and has been shown by several techniques to reside in the endoplasmic reticulum of chick embryo fibroblasts. The studies described here demonstrate that the larger of the two subunits (alpha) exists in two forms in chick embryo fibroblasts (CEF); these two forms differ in carbohydrate content. The larger alpha subunit, alpha', contains two N-linked high mannose oligosaccharides, each containing eight mannose units; the smaller subunit, alpha, contains a single seven-mannose N-linked oligosaccharide. Both oligosaccharides could be cleaved by endo-beta-N-acetylglucosaminidase H and completely digested with alpha-mannosidase to yield mannosyl-N-acetylglucosamine.  相似文献   

16.
The role of trimming and processing of N-linked oligosaccharides on the cell surface expression of the melanoma vitronectin receptor, a member of the integrin family of cell adhesion receptors, was examined by using specific glucosidase and mannosidase inhibitors. Inhibition of glucosidases I and II by castanospermine or N-methyldeoxynojirimycin delayed the vitronectin receptor alpha/beta chain heterodimer assembly and alpha chain cleavage and resulted in a decrease in the level of expression cell surface receptor. Conversely, the vitronectin receptor synthesized in the presence of the mannosidase I and II inhibitors, 1-deoxymannojirimycin and swainsonine, was transported normally to the cell surface with its alpha chain N-linked oligosaccharides in an endoglycosidase H-sensitive form. In the presence of swainsonine, time course studies of the cell surface replacement of control, endoglycosidase H-resistant receptor with an endoglycosidase H-sensitive form demonstrated a vitronectin receptor half-life of approximately 15-16 h. These studies provide evidence that the rates of assembly, proteolytic cleavage, and cell surface expression of the melanoma vitronectin receptor are dependent on the initial trimming of glucosyl residues from the alpha chain N-linked oligosaccharides.  相似文献   

17.
The purpose of the study was to examine the role of N-linked oligosaccharides in preventing combination of free alpha molecules with human chorionic gonadotropin (hCG)-beta subunit to form the intact hormone, hCG. Culture media from JEG cells incubated in the presence or absence of Swainsonine were filtered on Sephadex G-100, and free alpha was identified by radioimmunoassay. Swainsonine interferes with glycosylation by inhibiting alpha-mannosidase II, resulting in formation of hybrid structures. Approximately 50% of the free alpha molecules from Swainsonine-treated cells (Swainsonine pool 2) had an apparent molecular size that was smaller than that of free alpha from control cells. The oligosaccharides of control alpha molecules were resistant to endo-beta-N-acetylglucosaminidase H treatment. In contrast, virtually all of the Swainsonine free alpha molecules contained endo-beta-N-acetylglucosaminidase H-sensitive oligosaccharides. Swainsonine free alpha and control free alpha molecules were incubated with an excess of hCG-beta subunit, followed by chromatography on Sephadex G-100. Each fraction was assayed by radioimmunoassay for intact hCG and for alpha. Less than 10% of control free alpha molecules combined with hCG-beta. In contrast, 54% of Swainsonine alpha pool 2 and 40% of Swainsonine alpha pool 1 combined with beta to form hCG. Thus, modulation of N-linked oligosaccharide processing converted free alpha molecules to forms that can combine with hCG-beta. These results indicate that the inability of a substantial portion of control free alpha molecules to combine with hCG-beta is due to the presence of N-linked oligosaccharide structures that interfere with combination.  相似文献   

18.
The glucosidase inhibitors nojirimycin (NM) and 1-deoxynojirimycin (dNM) interfere with N-linked glycosylation. The effects of NM and dNM on the biosynthesis of secretory glycoproteins (IgD and IgM) and membrane glycoproteins (HLA-A, B, C and -DR antigens) have been examined. Whereas treatment of IgD- and IgM-producing cells with NM results in the transfer of drastically shortened oligosaccharide side chains, treatment with dNM inhibits trimming, most probably through interaction with glucosidase I and/or II. A comparison of NM and dNM with tunicamycin and the mannosidase inhibitor swainsonine (SW) show that each of the inhibitors interferes with N-linked glycosylation in a distinct manner. For both Ig and HLA antigens, the effects of SW are discernible at the final stages of glycan maturation only, whereas the effects of dNM are observed quite early in the biosynthetic process. The secretion of IgD, but not IgM, was blocked in dNM-treated cells. The HLA-A, B, C heavy chains synthesized by the Daudi cell line were degraded in an accelerated fashion in dNM-treated cells, but no effects were seen on the HLA-DR antigens in these cells. Although both SW and dNM interfere with trimming, further modifications of the oligosaccharide side chains occur, and show that the two processes are not obligately coupled. Glucosidase inhibitors such as NM and dNM, as well as the mannosidase inhibitor SW, allow modification of glycan structure, and may be used to study the biological role of glycoprotein oligosaccharides and their modifications.  相似文献   

19.
A melanoma proteoglycan model system has been used to examine the role of core protein asparagine-linked (N-linked) oligosaccharides in the transport and assembly of proteoglycan molecules. The use of agents which block discrete steps in the trimming and processing of core oligosaccharides (castanospermine, 1-deoxynojirimycin, N-methyldeoxynojirimycin, 1-deoxymannojirimycin, and swainsonine) demonstrates that removal of glucose residues from the N-linked oligosaccharides is required for the cell surface expression of a melanoma proteoglycan core protein and for the conversion of the core protein to a chondroitin sulfate proteoglycan. However, complete maturation of the oligosaccharides to a "complex" form is not required for these events. Treatment of M21 human melanoma cells with the glucosidase inhibitors castanospermine, 1-deoxynojirimycin, or N-methyldeoxynojirimycin results in a dose-dependent inhibition of glycosaminoglycan (GAG) addition to the melanoma antigen recognized by monoclonal antibody 9.2.27. In contrast, treatment with the mannosidase inhibitors 1-deoxymannojirimycin and swainsonine does not effect GAG addition. Identical results are obtained when the major histocompatibility complex class II antigen gamma chain proteoglycan is examined in inhibitor-treated melanoma and B-lymphoblastoid cells. These data, in conjunction with the known effects of the glucosidase and mannosidase inhibitors on the transport and secretion of other glycoproteins support the hypothesis that the addition, trimming, and processing of N-linked oligosaccharides is involved in the transport of certain proteoglycan core proteins to the site of GAG addition and to the cell surface.  相似文献   

20.
1-Deoxynojirimycin was found to inhibit oligosaccharide processing of rat alpha 1-proteinase inhibitor. In normal hepatocytes alpha 1-proteinase inhibitor was present in the cells as a 49,000 Mr high mannose type glycoprotein with oligosaccharide side chains having the composition Man9GlcNAc and Man8GlcNAc with the former in a higher proportion. Hepatocytes treated with 5 mM 1-deoxynojirimycin accumulated alpha 1-proteinase inhibitor as a 51,000 Mr glycoprotein with carbohydrate side chains of the high mannose type, containing glucose as measured by their sensitivity against alpha-glucosidase, the largest species being Glc3Man9GlcNAc. Conversion to complex oligosaccharides was inhibited by the drug. In addition, increasing concentrations of 1-deoxynojirimycin inhibited glycosylation resulting in the formation of some alpha 1-proteinase inhibitor with two instead of three oligosaccharide side chains. 5 mM 1-deoxynojirimycin inhibited the secretion of alpha 1-proteinase inhibitor by about 50%, whereas secretion of albumin was unaffected. The oligosaccharides of alpha 1-proteinase inhibitor secreted from 1-deoxynojirimycin-treated cells were characterized by their susceptibility to endoglucosaminidase H, incorporation of [3H]galactose, and [3H]fucose and concanavalin A-Sepharose chromatography. It was found that 1-deoxynojirimycin did not completely block oligosaccharide processing, resulting in the formation of alpha 1-proteinase inhibitor molecules carrying one or two complex type oligosaccharides. Only these alpha 1-proteinase inhibitor molecules processed to the complex type in one or two of their oligosaccharide chains were nearly exclusively secreted. This finding demonstrates the importance of oligosaccharide processing for the secretion of alpha 1-proteinase inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号