首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse LSECtin as a model for a human Ebola virus receptor   总被引:1,自引:0,他引:1  
The biochemical properties of mouse LSECtin, a glycan-binding receptor that is a member of the C-type lectin family found on sinusoidal endothelial cells, have been investigated. The C-type carbohydrate-recognition domain of mouse LSECtin, expressed in bacteria, has been used in solid-phase binding assays, and a tetramerized form has been used to probe a glycan array. In spite of sequence differences near the glycan-binding sites, the mouse receptor closely mimics the properties of the human receptor, showing high affinity binding to glycans bearing terminal GlcNAcβ1-2Man motifs. Site-directed mutagenesis has been used to confirm that residues near the binding site that differ between the human and the mouse proteins do not affect this binding specificity. Mouse and human LSECtin have been shown to bind Ebola virus glycoprotein with equivalent affinities, and the GlcNAcβ1-2Man disaccharide has been demonstrated to be an effective inhibitor of this interaction. These studies provide a basis for using mouse LSECtin, and knockout mice lacking this receptor, to model the biological properties of the human receptor.  相似文献   

2.
The scavenger receptor C-type lectin (SRCL) is an endothelial receptor that is similar in organization to type A scavenger receptors for modified low density lipoproteins but contains a C-type carbohydrate-recognition domain (CRD). Fragments of the receptor consisting of the entire extracellular domain and the CRD have been expressed and characterized. The extracellular domain is a trimer held together by collagen-like and coiled-coil domains adjacent to the CRD. The amino acid sequence of the CRD is very similar to the CRD of the asialoglycoprotein receptor and other galactose-specific receptors, but SRCL binds selectively to asialo-orosomucoid rather than generally to asialoglycoproteins. Screening of a glycan array and further quantitative binding studies indicate that this selectivity results from high affinity binding to glycans bearing the Lewis(x) trisaccharide. Thus, SRCL shares with the dendritic cell receptor DC-SIGN the ability to bind the Lewis(x) epitope. However, it does so in a fundamentally different way, making a primary binding interaction with the galactose moiety of the glycan rather than the fucose residue. SRCL shares with the asialoglycoprotein receptor the ability to mediate endocytosis and degradation of glycoprotein ligands. These studies suggest that SRCL might be involved in selective clearance of specific desialylated glycoproteins from circulation and/or interaction of cells bearing Lewis(x)-type structures with the vascular endothelium.  相似文献   

3.
DC-SIGN is an immune C-type lectin that is expressed on both immature and mature dendritic cells associated with peripheral and lymphoid tissues in humans. It is a pattern recognition receptor that binds to several pathogens including HIV-1, Ebola virus, Mycobacterium tuberculosis, Candida albicans, Helicobacter pylori, and Schistosoma mansoni. Evidence is now mounting that DC-SIGN also recognizes endogenous glycoproteins, and that such interactions play a major role in maintaining immune homeostasis in humans and mice. Autoantigens (neoantigens) are produced for the first time in the human testes and other organs of the male urogenital tract under androgenic stimulus during puberty. Such antigens trigger autoimmune orchitis if the immune response is not tightly regulated within this system. Endogenous ligands for DC-SIGN could play a role in modulating such responses. Human seminal plasma glycoproteins express a high level of terminal Lewis(x) and Lewis(y) carbohydrate antigens. These epitopes react specifically with the lectin domains of DC-SIGN. However, because the expression of these sequences is necessary but not sufficient for interaction with DC-SIGN, this study was undertaken to determine if any seminal plasma glycoproteins are also endogenous ligands for DC-SIGN. Glycoproteins bearing terminal Lewis(x) and Lewis(y) sequences were initially isolated by lectin affinity chromatography. Protein sequencing established that three tumor biomarker glycoproteins (clusterin, galectin-3 binding glycoprotein, prostatic acid phosphatase) and protein C inhibitor were purified by using this affinity method. The binding of DC-SIGN to these seminal plasma glycoproteins was demonstrated in both Western blot and immunoprecipitation studies. These findings have confirmed that human seminal plasma contains endogenous glycoprotein ligands for DC-SIGN that could play a role in maintaining immune homeostasis both in the male urogenital tract and the vagina after coitus.  相似文献   

4.
A new C-type lectin-like gene encodes 293 amino acids and maps to chromosome 19p13.3 adjacent to the previously described C-type lectin genes, CD23, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), and DC-SIGN-related protein (DC-SIGNR). The four genes form a tight cluster in an insert size of 105 kb and have analogous genomic structures. The new C-type lectin-like molecule, designated liver and lymph node sinusoidal endothelial cell C-type lectin (LSECtin), is a type II integral membrane protein of approximately 40 kDa in size with a single C-type lectin-like domain at the COOH terminus, closest in homology to DC-SIGNR, DC-SIGN, and CD23. LSECtin mRNA was only expressed in liver and lymph node among 15 human tissues tested, intriguingly neither expressed on hematopoietic cell lines nor on monocyte-derived dendritic cells (DCs). Moreover, LSECtin is expressed predominantly by sinusoidal endothelial cells of human liver and lymph node and co-expressed with DC-SIGNR. LSECtin binds to mannose, GlcNAc, and fucose in a Ca(2+)-dependent manner but not to galactose. Our results indicate that LSECtin is a novel member of a family of proteins comprising CD23, DC-SIGN, and DC-SIGNR and might function in vivo as a lectin receptor.  相似文献   

5.
The genome of Drosophila melanogaster encodes several proteins that are predicted to contain Ca(2+)-dependent, C-type carbohydrate-recognition domains. The CG2958 gene encodes a protein containing 359 amino acid residues. Analysis of the CG2958 sequence suggests that it consists of an N-terminal domain found in other Drosophila proteins, a middle segment that is unique, and a C-terminal C-type carbohydrate-recognition domain. Expression studies show that the full-length protein is a tetramer formed by noncovalent association of disulfide-linked dimers that are linked through cysteine residues in the N-terminal domain. The expressed protein binds to immobilized yeast invertase through the C-terminal carbohydrate-recognition domain. Competition binding studies using monosaccharides demonstrate that CG2958 interacts specifically with fucose and mannose. Fucose binds approximately 5-fold better than mannose. Blotting studies reveal that the best glycoprotein ligands are those that contain N-linked glycans bearing alpha1,3-linked fucose residues. Binding is enhanced by the additional presence of alpha1,6-linked fucose. It has previously been proposed that labeling of the Drosophila neural system by anti-horseradish peroxidase antibodies is a result of the presence of difucosylated N-linked glycans. CG2958 is a potential endogenous receptor for such neural-specific carbohydrate epitopes.  相似文献   

6.
DC-SIGN and DC-SIGNR are cell-surface receptors that mediate cell-cell interactions within the immune system by binding to intercellular adhesion molecule-3. The receptor polypeptides share 77% amino acid sequence identity and are type II transmembrane proteins. The extracellular domain of each comprises seven 23-residue tandem repeats and a C-terminal C-type carbohydrate-recognition domain (CRD). Cross-linking, equilibrium ultracentrifugation, and circular dichroism studies of soluble recombinant fragments of DC-SIGN and DC-SIGNR have been used to show that the extracellular domain of each receptor is a tetramer stabilized by an alpha-helical stalk. Both DC-SIGN and DC-SIGNR bind ligands bearing mannose and related sugars through the CRDs. The CRDs of DC-SIGN and DC-SIGNR bind Man(9)GlcNAc(2) oligosaccharide 130- and 17-fold more tightly than mannose, and affinity for a glycopeptide bearing two such oligosaccharides is increased by a further factor of 5- to 25-fold. These results indicate that the CRDs contain extended or secondary oligosaccharide binding sites that accommodate mammalian-type glycan structures. When the CRDs are clustered in the tetrameric extracellular domain, their arrangement provides a means of amplifying specificity for multiple glycans on host molecules targeted by DC-SIGN and DC-SIGNR. Binding to clustered oligosaccharides may also explain the interaction of these receptors with the gp120 envelope protein of human immunodeficiency virus-1, which contributes to virus infection.  相似文献   

7.
The scavenger receptor C-type lectin (SRCL) is unique in the family of class A scavenger receptors, because in addition to binding sites for oxidized lipoproteins it also contains a C-type carbohydrate-recognition domain (CRD) that interacts with specific glycans. Both human and mouse SRCL are highly specific for the Lewis(x) trisaccharide, which is commonly found on the surfaces of leukocytes and some tumor cells. Structural analysis of the CRD of mouse SRCL in complex with Lewis(x) and mutagenesis show the basis for this specificity. The interaction between mouse SRCL and Lewis(x) is analogous to the way that selectins and DC-SIGN bind to related fucosylated glycans, but the mechanism of the interaction is novel, because it is based on a primary galactose-binding site similar to the binding site in the asialoglycoprotein receptor. Crystals of the human receptor lacking bound calcium ions reveal an alternative conformation in which a glycan ligand would be released during receptor-mediated endocytosis.  相似文献   

8.
Engineered receptor fragments and glycoprotein ligands employed in different assay formats have been used to dissect the basis for the dramatic enhancement of binding of two model membrane receptors, dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and the macrophage galactose lectin, to glycoprotein ligands compared to simple sugars. These approaches make it possible to quantify the importance of two major factors that combine to enhance the affinity of single carbohydrate-recognition domains (CRDs) for glycoprotein ligands by 100-to 300-fold. First, the presence of extended binding sites within a single CRD can enhance interaction with branched glycans, resulting in increases of fivefold to 20-fold in affinity. Second, presentation of glycans on a glycoprotein surface increases affinity by 15-to 20-fold, possibly due to low-specificity interactions with the surface of the protein or restriction in the conformation of the glycans. In contrast, when solution-phase networking is avoided, enhancement due to binding of multiple branches of a glycan to multiple CRDs in the oligomeric forms of these receptors is minimal and binding of a receptor oligomer to multiple glycans on a single glycoprotein makes only a twofold contribution to overall affinity. Thus, in these cases, multivalent interactions of individual glycoproteins with individual receptor oligomers have a limited role in achieving high affinity. These findings, combined with considerations of membrane receptor geometry, are consistent with the idea that further enhancement of the binding to multivalent glycoprotein ligands requires interaction of multiple receptor oligomers with the ligands.  相似文献   

9.
DC-SIGN, a specific C-type lectin expressed on dendritic cells, binds and transmits multiple strains of primate immunodeficiency viruses to susceptible cells. Here, we report that human DC-SIGN also captures feline immunodeficiency virus via high-affinity (1 nM), Ca(2+)-dependent, D-mannose-inhibited binding to the major envelope glycoprotein, gp95.  相似文献   

10.
Specificity of DC-SIGN for mannose- and fucose-containing glycans   总被引:1,自引:0,他引:1  
The dendritic cell specific C-type lectin dendritic cell specific ICAM-3 grabbing non-integrin (DC-SIGN) binds to "self" glycan ligands found on human cells and to "foreign" glycans of bacterial or parasitic pathogens. Here, we investigated the binding properties of DC-SIGN to a large array of potential ligands in a glycan array format. Our data indicate that DC-SIGN binds with K(d)<2muM to a neoglycoconjugate in which Galbeta1-4(Fucalpha1-3)GlcNAc (Le(x)) trisaccharides are expressed multivalently. A lower selective binding was observed to oligomannose-type N-glycans, diantennary N-glycans expressing Le(x) and GalNAcbeta1-4(Fucalpha1-3)GlcNAc (LacdiNAc-fucose), whereas no binding was observed to N-glycans expressing core-fucose linked either alpha1-6 or alpha1-3 to the Asn-linked GlcNAc of N-glycans. These results demonstrate that DC-SIGN is selective in its recognition of specific types of fucosylated glycans and subsets of oligomannose- and complex-type N-glycans.  相似文献   

11.
The C-type lectins DC-SIGN and DC-SIGNR efficiently bind human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) strains and can transmit bound virus to adjacent CD4-positive cells. DC-SIGN also binds efficiently to the Ebola virus glycoprotein, enhancing Ebola virus infection. DC-SIGN is thought to be responsible for the ability of dendritic cells (DCs) to capture HIV and transmit it to T cells, thus promoting HIV dissemination in vitro and perhaps in vivo as well. To investigate DC-SIGN function and expression levels on DCs, we characterized a panel of monoclonal antibodies (MAbs) directed against the carbohydrate recognition domain of DC-SIGN. Using quantitative fluorescence-activated cell sorter technology, we found that DC-SIGN is highly expressed on immature monocyte-derived DCs, with at least 100,000 copies and often in excess of 250,000 copies per DC. There was modest variation (three- to fourfold) in DC-SIGN expression levels between individuals and between DCs isolated from the same individual at different times. Several MAbs efficiently blocked virus binding to cell lines expressing human or rhesus DC-SIGN, preventing HIV and SIV transmission. Interactions with Ebola virus pseudotypes were also blocked efficiently. Despite their ability to block virus-DC-SIGN interactions on cell lines, these antibodies only inhibited transmission of virus from DCs by approximately 50% or less. These results indicate that factors other than DC-SIGN may play important roles in the ability of DCs to capture and transmit HIV.  相似文献   

12.
Dengue virus (DV) is a mosquito-borne flavivirus that causes haemorrhagic fever in humans. DV primarily targets immature dendritic cells (DCs) after a bite by an infected mosquito vector. Here, we analysed the interactions between DV and human-monocyte-derived DCs at the level of virus entry. We show that the DC-specific ICAM3-grabbing non-integrin (DC-SIGN) molecule, a cell-surface, mannose-specific, C-type lectin, binds mosquito-cell-derived DVs and allows viral replication. Conclusive evidence for the involvement of DC-SIGN in DV infection was obtained by the inhibition of viral infection by anti-DC-SIGN antibodies and by the soluble tetrameric ectodomain of DC-SIGN. Our data show that DC-SIGN functions as a DV-binding lectin by interacting with the DV envelope glycoprotein. Mosquito-cell-derived DVs may have differential infectivity for DC-SIGN-expressing cells. We suggest that the differential use of DC-SIGN by viral envelope glycoproteins may account for the immunopathogenesis of DVs.  相似文献   

13.
The dendritic cell-specific ICAM-3 non-integrin (DC-SIGN) and its close relative DC-SIGNR recognize various glycoproteins, both pathogenic and cellular, through the receptor lectin domain-mediated carbohydrate recognition. While the carbohydrate-recognition domains (CRD) exist as monomers and bind individual carbohydrates with low affinity and are permissive in nature, the full-length receptors form tetramers through their repeat domain and recognize specific ligands with high affinity. To understand the tetramer-based ligand binding avidity, we determined the crystal structure of DC-SIGNR with its last repeat region. Compared to the carbohydrate-bound CRD structure, the structure revealed conformational changes in the calcium and carbohydrate coordination loops of CRD, an additional disulfide bond between the N and the C termini of the CRD, and a helical conformation for the last repeat. On the basis of the current crystal structure and other published structures with sequence homology to the repeat domain, we generated a tetramer model for DC-SIGN/R using homology modeling and propose a ligand-recognition index to identify potential receptor ligands.  相似文献   

14.
The mouse genome sequence has been examined to identify the complete set of proteins related to the human glycanbinding receptor, DC-SIGN. In addition to five SIGNR proteins previously described, a pseudogene, encoding a hypothetical SIGNR6, and a further two expressed proteins, SIGNR7 and SIGNR8, have been identified. The ligand-binding properties of these novel proteins and of the previously described mouse SIGNs have been systematically investigated in order to define the mouse proteins that most resemble human DC-SIGN and DC-SIGNR. Results from screening of a glycan array demonstrate that only mouse SIGNR3 shares with human DC-SIGN the ability to bind both high mannose and fucose-terminated glycans in this format and to mediate endocytosis. The finding that neither SIGNR1 nor SIGNR5 binds with high affinity to specific ligands in a large panel of mammalian glycans is consistent with the suggestion that these receptors bind surface polysaccharides on bacterial and fungal pathogens in a manner analogous to serum mannose-binding protein. The data also reveal that two of the mouse SIGNs have unusual binding specificities that have not been previously described for members of the C-type lectin family; the newly identified SIGNR7 binds preferentially to the 6-sulfo-sialyl Lewis(x) oligosaccharide, whereas SIGNR2 binds almost exclusively to glycans that bear terminal GlcNAc residues. The results presented demonstrate that the mouse homologs of DC-SIGN have a diverse set of ligand-binding and intracellular trafficking properties, some of which are distinct from the properties of any of the human receptors.  相似文献   

15.
Although O-mannosylated dystroglycan is a receptor for Lassa virus, a causative agent of Lassa fever, recent findings suggest the existence of an alternative receptor(s). Here we identified four molecules as receptors for Lassa virus: Axl and Tyro3, from the TAM family, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and liver and lymph node sinusoidal endothelial calcium-dependent lectin (LSECtin), from the C-type lectin family. These molecules enhanced the binding of Lassa virus to cells and mediated infection independently of dystroglycan. Axl- or Tyro3-mediated infection required intracellular signaling via the tyrosine kinase activity of Axl or Tyro3, whereas DC-SIGN- or LSECtin-mediated infection and binding were dependent on a specific carbohydrate and on ions. The identification of these four molecules as Lassa virus receptors advances our understanding of Lassa virus cell entry.  相似文献   

16.
Filoviruses cause lethal hemorrhagic disease in humans and nonhuman primates. An initial target of filovirus infection is the mononuclear phagocytic cell. Calcium-dependent (C-type) lectins such as dendritic cell- or liver/lymph node-specific ICAM-3 grabbing nonintegrin (DC-SIGN or L-SIGN, respectively), as well as the hepatic asialoglycoprotein receptor, bind to Ebola or Marburg virus glycoprotein (GP) and enhance the infectivity of these viruses in vitro. Here, we demonstrate that a recently identified human macrophage galactose- and N-acetylgalactosamine-specific C-type lectin (hMGL), whose ligand specificity differs from DC-SIGN and L-SIGN, also enhances the infectivity of filoviruses. This enhancement was substantially weaker for the Reston and Marburg viruses than for the highly pathogenic Zaire virus. We also show that the heavily glycosylated, mucin-like domain on the filovirus GP is required for efficient interaction with this lectin. Furthermore, hMGL, like DC-SIGN and L-SIGN, is present on cells known to be major targets of filoviruses (i.e., macrophages and dendritic cells), suggesting a role for these C-type lectins in viral replication in vivo. We propose that filoviruses use different C-type lectins to gain cellular entry, depending on the cell type, and promote efficient viral replication.  相似文献   

17.
The hepatitis C virus (HCV) genome codes for highly mannosylated envelope proteins, which are naturally retained in the endoplasmic reticulum. We found that the HCV envelope glycoprotein E2 binds the dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and the related liver endothelial cell lectin L-SIGN through high-mannose N-glycans. Competing ligands such as mannan and an antibody directed against the carbohydrate recognition domains (CRD) abrogated binding. While no E2 interaction with distant monomeric CRDs on biosensor chips could be detected, binding is observed if CRDs are closely seeded (Kd = 48 nm) and if the CRD is part of the oligomeric-soluble extracellular domain of DC-SIGN (Kd = 30 nm). The highest affinity is seen for plasma membrane-expressed DC-SIGN and L-SIGN (Kd = 3 and 6 nm, respectively). These results indicate that several high-mannose N-glycans in a structurally defined cluster on E2 bind to several subunits of the oligomeric lectin CRD. High affinity interaction of viral glycoproteins with oligomeric lectins might represent a strategy by which HCV targets to and concentrates in the liver and infects dendritic cells.  相似文献   

18.
The C-type lectins DC-SIGN and DC-SIGNR bind mannose-rich glycans with high affinity. In vitro, cells expressing these attachment factors efficiently capture, and are infected by, a diverse array of appropriately glycosylated pathogens, including dengue virus. In this study, we investigated whether these lectins could enhance cellular infection by West Nile virus (WNV), a mosquito-borne flavivirus related to dengue virus. We discovered that DC-SIGNR promoted WNV infection much more efficiently than did DC-SIGN, particularly when the virus was grown in human cell types. The presence of a single N-linked glycosylation site on either the prM or E glycoprotein of WNV was sufficient to allow DC-SIGNR-mediated infection, demonstrating that uncleaved prM protein present on a flavivirus virion can influence viral tropism under certain circumstances. Preferential utilization of DC-SIGNR was a specific property conferred by the WNV envelope glycoproteins. Chimeras between DC-SIGN and DC-SIGNR demonstrated that the ability of DC-SIGNR to promote WNV infection maps to its carbohydrate recognition domain. WNV virions and subviral particles bound to DC-SIGNR with much greater affinity than DC-SIGN. We believe this is the first report of a pathogen interacting more efficiently with DC-SIGNR than with DC-SIGN. Our results should lead to the discovery of new mechanisms by which these well-studied lectins discriminate among ligands.  相似文献   

19.
Two members of the paramyxovirus family, Nipah virus (NiV) and Hendra virus (HeV), are recent additions to a growing number of agents of emergent diseases which use bats as a natural host. Identification of ephrin-B2 and ephrin-B3 as cellular receptors for these viruses has enabled the development of immunotherapeutic reagents which prevent virus attachment and subsequent fusion. Here we present the structural analysis of the protein and carbohydrate components of the unbound viral attachment glycoprotein of NiV glycoprotein (NiV-G) at a 2.2-Å resolution. Comparison with its ephrin-B2-bound form reveals that conformational changes within the envelope glycoprotein are required to achieve viral attachment. Structural differences are particularly pronounced in the 579-590 loop, a major component of the ephrin binding surface. In addition, the 236-245 loop is rather disordered in the unbound structure. We extend our structural characterization of NiV-G with mass spectrometric analysis of the carbohydrate moieties. We demonstrate that NiV-G is largely devoid of the oligomannose-type glycans that in viruses such as human immunodeficiency virus type 1 and Ebola virus influence viral tropism and the host immune response. Nevertheless, we find putative ligands for the endothelial cell lectin, LSECtin. Finally, by mapping structural conservation and glycosylation site positions from other members of the paramyxovirus family, we suggest the molecular surface involved in oligomerization. These results suggest possible pathways of virus-host interaction and strategies for the optimization of recombinant vaccines.  相似文献   

20.
DC-SIGN, a type II membrane protein with a C-type lectin binding domain that is highly expressed on mucosal dendritic cells (DCs) and certain macrophages in vivo, binds to ICAM-3, ICAM-2, and human and simian immunodeficiency viruses (HIV and SIV). Virus captured by DC-SIGN can be presented to T cells, resulting in efficient virus infection, perhaps representing a mechanism by which virus can be ferried via normal DC trafficking from mucosal tissues to lymphoid organs in vivo. To develop reagents needed to characterize the expression and in vivo functions of DC-SIGN, we cloned, expressed, and analyzed rhesus macaque, pigtailed macaque, and murine DC-SIGN and made a panel of monoclonal antibodies (MAbs) to human DC-SIGN. Rhesus and pigtailed macaque DC-SIGN proteins were highly similar to human DC-SIGN and bound and transmitted HIV type 1 (HIV-1), HIV-2, and SIV to receptor-positive cells. In contrast, while competent to bind virus, murine DC-SIGN did not transmit virus to receptor-positive cells under the conditions tested. Thus, mere binding of virus to a C-type lectin does not necessarily mean that transmission will occur. The murine and macaque DC-SIGN molecules all bound ICAM-3. We mapped the determinants recognized by a panel of 16 MAbs to the repeat region, the lectin binding domain, and the extreme C terminus of DC-SIGN. One MAb was specific for DC-SIGN, failing to cross-react with DC-SIGNR. Most MAbs cross-reacted with rhesus and pigtailed macaque DC-SIGN, although none recognized murine DC-SIGN. Fifteen of the MAbs recognized DC-SIGN on DCs, with MAbs to the repeat region generally reacting most strongly. We conclude that rhesus and pigtailed macaque DC-SIGN proteins are structurally and functionally similar to human DC-SIGN and that the reagents that we have developed will make it possible to study the expression and function of this molecule in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号