首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Structural basis for the regulation of splicing of a yeast messenger RNA   总被引:33,自引:0,他引:33  
F J Eng  J R Warner 《Cell》1991,65(5):797-804
  相似文献   

4.
5.
6.
7.
Here, we show that dBCAS2 (CG4980, human Breast Carcinoma Amplified Sequence 2 ortholog) is essential for the viability of Drosophila melanogaster. We find that ubiquitous or tissue-specific depletion of dBCAS2 leads to larval lethality, wing deformities, impaired splicing, and apoptosis. More importantly, overexpression of hBCAS2 rescues these defects. Furthermore, the C-terminal coiled-coil domain of hBCAS2 binds directly to CDC5L and recruits hPrp19/PLRG1 to form a core complex for splicing in mammalian cells and can partially restore wing damage induced by knocking down dBCAS2 in flies. In summary, Drosophila and human BCAS2 share a similar function in RNA splicing, which affects cell viability.  相似文献   

8.
9.
10.
11.
12.
An RNA-processing element from Rous sarcoma virus, the negative regulator of splicing (NRS), represses splicing to generate unspliced RNA that serves as mRNA and as genomic RNA for progeny virions and also promotes polyadenylation of the unspliced RNA. Integral to NRS function is the binding of U1 small nuclear ribonucleoprotein (snRNP), but its binding is controlled by U11 snRNP that binds to an overlapping site. U11 snRNP, the U1 counterpart for splicing of U12-dependent introns, binds the NRS remarkably well and requires G-rich elements just downstream of the consensus U11 binding site. We present evidence that heterogeneous nuclear ribonucleoprotein (hnRNP) H binds to the NRS G-rich elements and that hnRNP H is required for optimal U11 binding in vitro. It is further shown that hnRNP H (but not hnRNP F) can promote U11 binding and splicing from the NRS in vivo when tethered to the RNA as an MS2 fusion protein. Interestingly, 17% of the naturally occurring U12-dependent introns have at least two potential hnRNP H binding sites positioned similarly to the NRS. For two such introns from the SCN4A and P120 genes, we show that hnRNP H binds to each in a G-tract-dependent manner, that G-tract mutations strongly reduce splicing of minigene RNA, and that tethered hnRNP H restores splicing to mutant RNA. In support of a role for hnRNP H in both splicing pathways, hnRNP H antibodies co-precipitate U1 and U11 small nuclear ribonucleoproteins. These results indicate that hnRNP H is an auxiliary factor for U11 binding to the NRS and that, more generally, hnRNP H is a splicing factor for a subset of U12-dependent introns that harbor G-rich elements.  相似文献   

13.
14.
15.
16.
The serine/arginine-rich (SR) protein splicing factor 2/alternative splicing factor (SF2/ASF) has a role in splicing, stability, export and translation of messenger RNA. Here, we present the structure of the RNA recognition motif (RRM) 2 from SF2/ASF, which has an RRM fold with a considerably extended loop 5 region, containing a two-stranded beta-sheet. The loop 5 extension places the previously identified SR protein kinase 1 docking sequence largely within the RRM fold. We show that RRM2 binds to RNA in a new way, by using a tryptophan within a conserved SWQLKD motif that resides on helix alpha1, together with amino acids from strand beta2 and a histidine on loop 5. The linker connecting RRM1 and RRM2 contains arginine residues, which provide a binding site for the mRNA export factor TAP, and when TAP binds to this region it displaces RNA bound to RRM2.  相似文献   

17.
18.
19.
Zhao X  Rush M  Schwartz S 《Journal of virology》2004,78(20):10888-10905
We have previously identified cis-acting RNA sequences in the human papillomavirus type 16 (HPV-16) L1 coding region which inhibit expression of L1 from eukaryotic expression plasmids. Here we have determined the function of one of these RNA elements, and we provide evidence that this RNA element is a splicing silencer which suppresses the use of the 3' splice site located immediately upstream of the L1 AUG. We also show that this splice site is inefficiently utilized as a result of a suboptimal polypyrimidine tract. Introduction of point mutations in the L1 coding region that altered the RNA sequence without affecting the L1 protein sequence resulted in the inactivation of the splicing silencer and induced splicing to the L1 3' splice site. These mutations also prevented the interaction of the RNA silencer with a 35-kDa cellular protein identified here as hnRNP A1. The splicing silencer in L1 inhibits splicing in vitro, and splicing can be restored by the addition of RNAs containing an hnRNP A1 binding site to the reaction, demonstrating that hnRNP A1 inhibits splicing of the late HPV-16 mRNAs through the splicing silencer sequence. While we show that one role of the splicing silencer is to determine the ratio between partially spliced L2/L1 mRNAs and spliced L1 mRNAs, we also demonstrate that it inhibits splicing from the major 5' splice site in the early region to the L1 3' splice site, thereby playing an essential role in preventing late gene expression at an early stage of the viral life cycle. We speculate that the activity of the splicing silencer and possibly the concentration of hnRNP A1 in the HPV-16-infected cell determines the ability of the virus to establish a persistent infection which remains undetected by the host immune surveillance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号