首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the annual variation of phytoplankton biomass in Finnish inland waters   总被引:2,自引:1,他引:1  
Annual variations in phytoplankton biomass in 63 lakes in Southern and Central Finland are discussed. Biomass is rather small during winter (January–April), usually <0.05 mg l–1 (fresh weight) and there are no differences between oligotrophic and eutrophic lakes. In early spring and in autumn biomass varies widely, depending mainly on water temperature. Phytoplankton biomass is smaller in July than in June and August in oligotrophic lakes (biomass <0.20 mg l–1 fresh weight) and mesotrophic (biomass 1.0–2.5 mg l–1) lakes, but greater in eutrophic (biomass 2.5–10.0 mg l–1) and hypereutrophic (biomass >10.0 mg l–1) lakes. The standard deviation of phytoplankton biomass in Finnish inland waters is usually smallest in July, which facilitates the comparison of phytoplankton between different kinds of lakes.  相似文献   

2.
Primary production of phytoplankton and standing crops of zooplankton and zoobenthos were intensively surveyed in Lake Teganuma during May 1983–April 1984. The annual mean chlorophyll a concentrations were as high as 304 µg · l–1–383 µg · l–1. The daily gross primary production of phytoplankton was high throughout the year. The peak production rate was recorded in August and September, when blue-green algae bloomed. The annual gross primary production was estimated as 1450 g C · m–2 · y–1, extremely high as compared with other temperate eutrophic lakes. Zooplankton was predominantly composed of rotifers. The annual mean standing crop of zooplankton was 0.182 g C · m–2 around the middle between the inlets and the outlet and was lower than in most other temperate eutrophic lakes. Zoobenthos was mostly composed of Oligochaeta and chironomids. The annual mean standing crop of zoobenthos ranged from 0.052 g C · m–2 to 0.265 g C · m–2, the lowest values among temperate eutrophic lakes, which is in contrast to the high primary production.  相似文献   

3.
With 33 years of phytoplankton quantitative studies carried out, a series of qualitative data with a length of over 80 years is at our disposal. About 500 algal species have been found in plankton by different researchers. In different seasons and years 35 main species (dominants and subdominants) form 68–96 % of biomass in L. Pihkva (southern, more eutrophic part) and 60–97 % in L. Peipsi (northern, less eutrophic part). L. Lämmijärv, connecting the two parts is similar to L. Pihkva in respect to phytoplankton and the trophic state. Diatoms and blue-green algae prevail in biomass, diatoms and green algae, in the species number. The oligo-mesotrophic Aulacoseira islandica (O. Müller) Sim. is characteristic of the cool period; A. granulata (Ehr.) Sim. and Stephanodiscus binderanus (Kütz.) Krieger prevail in summer and autumn, the latter being most abundant in the southern part. Gloeotrichia echinulata (J.S. Smith) P Richter and Aphanizomenon flos-aquae (L.) Ralfs dominate in summer causing water-bloom. Phytoplankton has mostly three maxima in seasonal dynamics in L. Peipsi and two in L. Pihkva. Its average biomass in spring in different years has fluctuated in the range 5.6–16 and 6–12.7 g m–3, in summer 3.1–14.8 and 5.6–125 (10–20 in most cases); and in autumn 7–16.3 and 5.2–26 in the northern and southern parts, respectively.The dominant complex has not changed considerably since 1909; however, the distribution of dominant species in lake parts has become more even in the last decades. Periods of high biomass occurred in the first half of the 1960s and 1970s and in 1988–1994, of low biomass in 1981–1987. The first coincided, in general, with periods of low water level and high water temperature.  相似文献   

4.
Seasonal succession of the phytoplankton in the upper Mississippi River   总被引:1,自引:1,他引:0  
Species composition and seasonal succession of the phytoplankton were investigated on the upper Mississippi River at Prairie Island, Minnesota, U.S.A. Both the numbers and volume of individual species were enumerated based on cell counts with an inverted microscope. A succession similar to algal succession in the local lakes occurred. The diatoms were dominant during the spring and fall and blue-green algae were dominant during the summer. The algal concentrations have increased up to 40 fold the concentrations of the 1920's, since the installation of locks and dams. The maximum freshweight standing crop was 4 mg · l–1 in 1928 (Reinhard 1931), 13 mg · l–1 in 1975 a wet year, and 47 mg · l–1 in 1976, a relatively dry year with minimal current discharge. The diatoms varied from 36–99%, the blue-green algae from 0–44% and the cryptómonads from 0–50% of the total standing crop. The green algae were always present but never above 21% of the biomass. The dominant diatoms in recent years were centric -Stephanodiscus andCyclotella spp. (maximum 50,000 ml–1). The dominant blue-green algae wereAphanizomenon flos-aquae (L.) Ralfsex Born.et Flahault andOscillatoria agardhii Gomont (maximum 800 ml–1). These algal species are also present in local lakes. Shannon diversity values indicated greatest diversity of algae during the summer months.  相似文献   

5.
Gunnar Nygaard 《Hydrobiologia》1991,211(3):195-226
60 desmids were identified from plankton samples collected during 20 years, bimonthly, or monthly in 5 of the years. Only 5 desmids were perennial, performing cell divisions in a frozen lake at PAR at only 5 cal cm –2 day –1, below ice-cover. The greatest number of desmids per 100 ml lake water was found in September; it never exceeded 150. Owing to a concentration of free CO2 of only 0.02 mM l–1 and a HCO inf3 sup– concentration of 0.002 mM l–1 the densities of desmid cells were often smaller than 1 cell per 100 ml lake water. A density of 1 cell per 1 ml was attained only by Staurastrum longipes, a desmid showing temporal variation. The relation of the compound phytoplankton quotient to two components of the CO2-system is discussed. Three new taxa are described: Staurastrum brachiatum Ralfs var. bicorne n. var., Staurastrum thomassonii n.sp. and Xanthidium antilopaeum Kütz. f. bimaculatum n.f..  相似文献   

6.
Filamentous algae in eutrophic carp ponds in South Bohemia (Central Europe) were studied from 1988 to 1990. High biomass (490 g DW m-2) was attained by Cladophora fracta (O. F. Müll. ex Vahl) Kütz. after two months of growth. This marked growth depleted inorganic carbon in the water, but did not decrease the concentration of tissue nutrients. Laboratory measurements of final pH indicate that all the filamentous algae studied, except for Tribonema, are very efficient HCO3 - users. An extremely high pH of 11.6 and oxygen concentration of 32 mg l-1 were measured in the algal mats. High pH resulted in CaCO3 precipitation, visible as white incrustations on algal filaments. The amount of precipitated CaCO3 reached 134 kg ha-1. After reaching peak biomass, 90% of the Cladophora decomposed over the next 95 days.The highest net photosynthetic rate in C. fracta was measured between pH range 8.5–10.0 and oxygen concentrations of 7–12 mg l-1. Optimum temperature for photosynthesis was between 17–22°C.  相似文献   

7.
The phytoplankton dynamics of a Chinese integrated fish culture pond in the suburbs of Shanghai were studied in September and October 1989. The chlorophyll a concentration was high with a range of 62.5–127.3 µg l–1; however, daily net production of phytoplankton was relatively low, with a range of 0.53–1.94 gC m –2 d–1. Of the total phytoplankton biomass, 70–87% was composed of nanoplankton (<10 µm) and picoplankton, probably because of the selective feeding by phytoplanktivorous carp. In particular, the chlorophyll a concentration of picoplankton was 2.1 – 14.1 mg m –3, and its contribution to total phytoplankton production rate was high (18–68%).  相似文献   

8.
Spring phytoplankton of 54 small lakes in southern Finland   总被引:4,自引:4,他引:0  
Lauri Arvola 《Hydrobiologia》1986,137(2):125-134
The abundance and species composition of phytoplankton communities were studied rapidly following the spring ice-melt in 54 small Finnish lakes that form a unique mosaic of water bodies. Phytoplankton biomass and cell density varied among the study lakes with a factor 100 between the lowest and highest values. Highest biomass and densities of phytoplankton characterized small ( < 0.05 km2) lakes with moderate or high water colour (> 80 mg Pt l–1). In contrast, biomass was low in clear-water lakes and lakes where water throughflow was strong. Typically one species dominated most phytoplankton communities, and usually comprised up to about 45% of the total phytoplankton biomass. Two-thirds of the 103 taxa observed were Chrysophyceans and Chlorophyceans. The most common taxa wereChlamydomonas spp. (Chlorophyceae) andCryptomonas ovata (Cryptophyceae).  相似文献   

9.
Previous investigations on Sicilian man made lakes suggested that physical factors, along with the specific morphology and hydrology of the water body, are important in selecting phytoplankton species. In particular, the variations of the z mix/z eu ratio due to the operational procedure to which reservoirs are generally subject were recognised as a trigger allowing the assemblage shift. To investigate if these variations may be considered analogous to those occurring in natural lakes as trophic state and phytoplankton biomass increase, causing a transparency decrease and a contraction of the euphotic depth, phytoplankton were collected in two natural water bodies, one mesotrophic (Lake Biviere di Cesarò) the other eutrophic (Lake Soprano), and compared with those collected in two reservoirs with analogous trophic characteristics (Lake Rosamarina, mesotrophic and Lake Arancio, eutrophic). Particular attention was paid to the dynamics of two key groups: Cyanophytes and chlorophytes. In all four water bodies, transparency mainly depended on chlorophyll level. Annual average value of phytoplankton biomass in the mesotrophic environments was below 2.0 mg l–1, whereas in the eutrophic systems it was well above 10 mg l–1. All water bodies showed the presence of cyanophytes (e.g. Anabaena spp., Anabaenopsis spp., Microcystis spp., Planktothrix spp.) and chlorophytes (e.g. Chlamydomonas spp., Botryococcus spp., Oocystis spp., Scenedesmus spp., Pediastrum spp.), but their relative proportions and body size dimensions were different. In particular, small colonial chlorophytes and large-colony forming cyanophytes were most common in the most eutrophic water bodies, whereas larger colonies of green algae in those with a lower trophic state. The results showed that, under the same climatic conditions, autogenic (increase of biomass, decrease in light penetration and euphotic depth) and allogenic (use of the stored waters, anticipated breaking of the thermocline, increase of the mixing depth) processes may shift the structure of phytoplankton assemblage in the same direction even though the quantity of biomass remains linked to nutrient availability.  相似文献   

10.
Diatom species lists were generated for 51 lakes in northeastern Wisconsin, and then classified by two-way indicator species analysis (TWINSPAN). The lakes were initially divided into two main groupings: Group I lakes which were alkaline lakes of moderate to high productivity, and Group II lakes which were acid lakes of low productivity. Group I lakes were further divided into two subgroupings, and four levels. In total, twelve indicator diatom species were recognized during the TWINSPAN lake classification, these were: Achnanthes exigua Grun., A. lanceolata var. dubia Grun., Amphora ovalis var. Affinis (Kütz.) V.H. ex Det., A. perpusilla (Grun.) Grun., Cymbella cistula (Ehrenb.) Kirch., Diploneis elliptica (Kütz.) Cl., Eunotia pectinalis (O.F. Mull.) Rabh., Fragilaria vaucheriae (Kütz.) Peters., Frustulia rhomboides var. crassinervia (Bréb. ex W. Sm.) Ross, Navicula capitata Ehrenb., N. decussis Østr., and N. scutelloides W.Sm. ex Gregory.  相似文献   

11.
Since 1983 severe phytoplankton collapses have occurred 1–4 times every summer in the shallow and hypertrophic Lake Søbygård, which is recovering after a ten-fold decrease of the external phosphorus loading in 1982. In July 1985, for example, chlorophyll a changed from 650 µg l–1 to about 12 µg 1–1 within 3–5 days. Simultaneously, oxygen concentration dropped from 20–25 mg O2l–1 to less than 1 mg O2l–1, and pH decreased from 10.7 to 8.9. Less than 10 days later the phytoplankton biomass had fully recovered. During all phytoplankton collapses the density of filter-feeding zooplankton increased markedly, and a clear-water period followed. Due to marked changes in age structure of the fish stock, different zooplankton species were responsible for the density increase in different years, and consequently different collapse patterns and frequencies were observed.The sudden increase in density of filter-feeding zooplankton from a generally low summer level to extremely high levels during algae collapses, which occurred three times from July 1984 to June 1986, could neither be explained by changes in regulation from below (food) nor from above (predation). The density increase was found after a period with high N/P ratios in phytoplankton or nitrate depletion in the lake. During that period phytoplankton biomass, primary production and thus pH decreased, the latter from 10.8–11.0 to 10.5. We hypothesize that direct or indirect effects of high pH are important in controlling the filter-feeding zooplankton in this hypertrophic lake. Secondarily, this situation affects the trophic interactions in the lake water and the net internal loading of nutrients. Consequently, not only a high content of planktivorous fish but also a high pH may promote uncoupling of the grazing food-web in highly eutrophic shallow lakes, and thereby enhance eutrophication.A tentative model is presented for the occurrence of collapses, and their pattern in hypertrophic lakes with various fish densities.  相似文献   

12.
Succession of phytoplankton in a deep stratifying lake: Mondsee,Austria   总被引:6,自引:6,他引:0  
Phytoplankton numbers, biovolume, chlorophyll-a and various physico-chemical characteristics were followed at weekly intervals in Mondsee, Austria during the year 1982. Secchi-disk transparency varied from 10 m in winter to 2 m in September. Prior to the onset of stratification phosphate-phosphorus concentration was 4 µg 1–1 decreasing to undetectable values thereafter. Nitrate-nitrogen dropped from 590 µg 1–1 to about 100 µg 1–1 during the same time. The vernal bloom was dominated by Asterionella formosa Hass. which abruptly declined after silicon depletion. Spring growth ceased in early June, when Tabellaria flocculosa (Lyngb.) Kütz var. asterionelloides Grun. dominated. Oscillatoria rubescens D.C. and Microcystis aeruginosa Kütz. dominated summer and early autumn followed by the chrysophyte Dinobryon divergens Imh. and D. sociale Ehr. which formed up to 69% of total biovolume in October. Thereafter diatoms and Cryptophyceae (Rhodomonas lacustris Pascher and Ruttner, Cryptomonas pusilla Bach.) became abundant again.Maximum chlorophyll-a concentration in the epilimnion (16 µg 1–1) was reached during spring growth of the diatoms. During summer higher chlorophyll-a levels were always associated with the metalimnetic layer of Oscillatoria.Compared with earlier studies, both the total biovolume and the share of Oscillatoria rubescens significantly decreased because of reduced nutrient loading of the lake and wash-out of Oscillatoria (theor. renewal time of the lake: 1.7 years).  相似文献   

13.
Juvenile Corbicula fluminea Müller (1774) were cultured at 15.3 °C in the laboratory on eight combinations of suspended sediment and phytoplankton. Sediment concentrations were 2.6, 25, 50, and 150 mg l–1. Chlorophyll a levels were 15.6 and 62.5 µg l–1. Clam tissue growth was found to be independent of silt concentration but increased at the higher chlorophyll level (p < 0.05). The growth experiment was repeated at 24 °C with chlorophyll a concentrations of 18.9 and 112.6 µg l–1. Growth was again greater at the higher phytoplankton level (p < 0.05). These results demonstrate that Asiatic clam populations are food-limited most of the growing season in the Northern and Western portions of California's eutrophic Sacramento-San Joaquin Delta where chlorophyll a levels average less than the lower of these values. Comparisons of clam growth in the laboratory and estuary support the food limitation hypothesis as at the higher food concentration laboratory tissue growth was 2.3 and 3.8 times greater during the high and low temperature evaluations than in the estuary.  相似文献   

14.
Comparative studies on the limnology, species diversity and standing stock biomass of phytoplankton and zooplankton in five freshwater lakes, Naivasha and Oloidien, Ruiru, Masinga and Nairobi reservoirs, were undertaken. Phytoplankton chlorophyll a, dissolved oxygen and temperature were also measured. Thermocyclops oblongatus (Copepoda) was dominant in all the lakes. Ceriodaphnia cornuta and Diaphanosoma excisum (Cladocera) dominated in lakes Naivasha and Oloiden, whereas in Ruiru, Masinga and Nairobi reservoirs, Brachionus angularis and Hexarthra mira (Rotifera) were the dominant zooplankters. Phytoplankton biomass as chlorophyll a was lowest in Ruiru dam 5.64 ± 4.0 µg l-1 and highest in the eutrophic Nairobi dam 71.5 ± 12.02 µg l-1. The endorheic lakes Naivasha and Oloidien showed medium values of 24.5 ± 4.0 µg l-1.  相似文献   

15.
The mid-summer phytoplankton communities of more than 100 Adirondack lakes ranging in pH from 4.0 to 7.2 were characterized in relation to 25 physical-chemical parameters. Phytoplankton species richness declined significantly with increasing acidity. Acidic lakes (pH < 5.0) averaged fewer than 20 species while more circumneutral waters (pH > 6.5) averaged more than 33 species. Phytoplankton abundance was not significantly correlated with any of the measured physical-chemical parameters, but standing crop parameters, i.e., chlorophyll a and phytoplankton biovolume, did correlate significantly with several parameters. Midsummer standing crop correlated best with total phosphorus concentration but acidity status affected the standing crop-phosphorus relationship. Circumneutral waters of low phosphorus content, i.e. < 10 µg·1–1 TP, averaged 3.62 µg·1–1 chlorophyll a whereas acidic lakes of the same phosphorus content averaged only 1.96 µg·1–1 chlorophyll a. The midsummer chlorophyll content of lakes of high phosphorus content, i.e. > 10 µg·1–1 TP, was not significantly affected by acidity status.Adirondack phytoplankton community composition changes with increasing acidity. The numbers of species in midsummer collections within all major taxonomic groups of algae are reduced with increasing acidity. The midsummer phytoplankton communities of acidic Adirondack lakes can generally be characterized into four broad types; 1) the depauperate clear water acid lake assemblage dominated by dinoflagellates, 2) the more diverse oligotrophic acid lake community dominated by cryptomonads, green algae, and chrysophytes, 3) the productive acid lake assemblage dominated by green algae, and 4) the chrysophyte dominated community. The major phytoplankton community types of acid lakes are associated with different levels of nutrients, aluminum concentrations, and humic influences.  相似文献   

16.
Suspension feeding by bivalves has been hypothesized to control phytoplankton biomass in shallow aquatic ecosystems. Lake Waccamaw, North Carolina, USA is a shallow lake with a diverse bivalve assemblage and low to moderate phytoplankton biomass levels. Filtration and ingestion rates of two relatively abundant species in the lake, the endemic unionid, Elliptio waccamawensis, and an introduced species, Corbicula fluminea, were measured in experiments using natural phytoplankton for durations of 1 to 6 days. Measured filtration and ingestion rates averaged 1.78 and 1.121 ind.–1 d–1, much too low to control phytoplankton at the observed phytoplankton biomass levels and growth rates. Measured ingestion rates averaged 4.80 and 1.50 µg chlorophyll a ind.–1 d–1, too low to support individuals of either species. The abundance of benthic microalgae in Lake Waccamaw reaches 200 mg chlorophyll a m–2 in the littoral zone and averages almost an order of magnitude higher than depth-integrated phytoplankton chlorophyll a. Total microalgal biomass in the lake is therefore not controlled by suspension feeding by bivalves.  相似文献   

17.
The aims of this study were to document the mainly chemical behaviour of two linked artificial lakes used for both stormwater management and recreation in the new town of Craigavon. Further, the understanding of their behaviour should help in their management and the design of other similar lakes.The lake mean total phosphorus (73 µg P l–1), nitrate (0.50 mg N l–1) and chlorophyll a (25 µg l–1) concentrations, Secchi depth (1.2 m) and the estimated total phosphorus loading (1.98 g m–2 a–1) all classify the main lake as eutrophic. An important source of the phosphorus load on the lakes is the urban area of Craigavon (52% of the total load). The interrelationships between total phosphorus, chlorophyll a and Secchi depth in the main lake are similar to those in natural ones. In addition, the lake follows the total phosphorus load — trophic state relationships (lake total phosphorus and chlorophyll a concentrations and Secchi depth) found to apply elsewhere. These two points indicate that the artificial lakes in Craigavon behave similarly to natural ones.  相似文献   

18.
The seasonal changes in phytoplankton biomass and species diversity in a shallow, eutrophic Danish lake are described and related to different disturbance events acting on the phytoplankton community.Both the spring diatom maximum and the summer bloom of the filamentous blue-green alga, Aphanizomenon flos-aquae (L.) Ralfs, coincided with low values of phytoplankton species diversity and equitability. Diatom collapse was mainly due to internal modifications as nutrient depletion (Si, P) caused by rapid growth of phytoplankton, and increased grazing activity from zooplankton. A large population of Daphnia longispina O.F. Müller in June effectively removed smaller algal competitors, thus favouring the development of a huge summer bloom (140 mm3 l–1) of Aphanizomenon flos-aquae. Heavy rainfall and storms in late July increased the loss of Apahnizomenon by out-flow and disturbed the stratification of the lake. These events caused a marked decline in phytoplankton biomass but had no effect on species diversity. A second storm period in late August circulated the lake completely and was followed by a rapid increase in phytoplankton diversity, and a change in the phytoplankton community structure from dominance of large, slow-growing K-selected species (Aphanizomenon) to small, fast-growing r-selected species (cryptomonads).  相似文献   

19.
The phytoplankton in Thale Sap Songkhla was investigated at 2–3 month intervals from August 1991 to October 1993. The abundance of phytoplankton ranged from 1.4×106 to 1.3×109 cells m–3. A total of 6 divisions with 103 genera were identified as Bacillariophyta: 49 genera, Chlorophyta: 21 genera, Pyrrhophyta: 15 genera, Cyanophyta: 12 genera, Chrysophyta: 3 genera and Euglenophyta: 3 genera. Although phytoplankton abundance was distinctly greater in the first year of study (August 1991–June 1992) than in the second year (August 1992–October 1993), their patterns are similar: 2 peaks yearly. The peaks of phytoplankton occurred in the heavy rainy season (northeast monsoon) and the light rainy season (southwest monsoon). The main bloom was found during December–January, with a predominance of blue-green algae (e.g. Aphanizomenon andPhormidium) and green algae (e.g. Eudorina). Their species composition also increased, an effect of the large amount of rainfall resulting in low salinity during the northeast monsoon. The minor bloom was produced by diatoms during June–July when water salinity was moderate to seawater. Both phytoplankton numbers and species composition were high. However, unpredictably heavy rainfall during the southwest monsoon period may reduce diatom production due to rapid immediate replacement by blue-green species. Besides salinity concentration, a low total nitrogen: total phosphorus (TN: TP) ratio tended to support the growth of blue-green algae. The diversity of phytoplankton was lowest in the heavy rainy period.  相似文献   

20.
The epiphytic algae on surfaces of the macrophyte Ranunculus penicillatus (Dumort.) Bab. var. calcareus (R. W. Butcher) C. D. K. Cook and on Cladophora glomerata (L.) Kütz growing in the River Itchen at Otterbourne near Southampton were studied between February 1984 and June 1985. The river at this site has a mean flow rate of 0.33 m s–1, and is about 16 m wide and on average 20 cm deep, with a discharge ranging through the year between 0.34 and 2.46 m3 s–1. The pH of the river varies little around 8.2, with a mean alkalinity of 236 mg HCO inf3 sup1 l–1, because of its origin from chalk springs. Ranunculus grows throughout the year, with peaks of biomass in spring and autumn. It forms a very large surface for attachment of epiphytes, and covers on average 40% of the stream bed. Numbers of epiphyte cells removed from Ranunculus ranged through the year between 52 × 103 and 271 × 103 cells mm–2 stream floor, with maximum numbers in April, and a secondary peak in October. This pattern partly reflects fluctuations in the biomass of Ranunculus; the number of cells per unit area of plant surface showed a broader spring peak and lower fluctuations in other seasons. Diatoms formed 65 to 98% of these epiphyte cells, with chlorophytes reaching their peak (10%) in summer and cyanophytes (25%) in autumn. Estimates of biomass of these epiphytic forms, derived from measurements of chlorophyll c, indicate a range between 30 and 100 g dry weight m–2 of weed bed. Colonisation studies showed that the algae grow and reproduce throughout the year, with a mean generation time of about 5 days, suggesting an annual production of about 3 kg dry weight m–2 of weed bed, which makes epiphytic algae the principal primary producers in the stream. The numbers and biomass of epiphytic algae on Cladophora are considerably less.The species of epiphytic algae found on Ranunculus were generally similar to those growing on Cladophora, and to epilithic algae on pebbles of the stream bed, but different species were dominant on the different substrata. Algal cells in the water column were all derived from benthic habitats, although their relative abundance was very different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号