共查询到20条相似文献,搜索用时 0 毫秒
1.
Tsuzuki Mikio; Gantar Miroslav; Aizawa Katsunori; Miyachi Shigetoh 《Plant & cell physiology》1986,27(4):737-739
The cells of Dunaliella tertiolecta grown under ordinary air(low-CO2 cells) had a well developed pyrenoid with many morestarch granules than those grown under air enriched with CO2(high-CO2 cells). The chloroplast was located close to the plasmamembranein low-CO2 cells, while that in high-CO2 cells was located inthe inner area of the cells. Chloroplast envelope was electronicallydenser in low-CO2 cells than in high-CO2 cells, while the oppositeeffect of CO2 was observed for the plasmamembrane. 2On leave from Institute of Biology, University of Novi Sad,Novi Sad, Yugoslavia. (Received November 7, 1985; Accepted March 5, 1986) 相似文献
2.
When roots of Leucaena leucocephala seedlings (White Popinac,a tropical legume tree belongs to the Family Mimosaceae) werefumigated with simulated landfill gas (CO2 above 10% and O2from 10% to atmospheric level), the stem elongation rate andstomatal conductance were inhibited at the absence of any apparentleaf water deficit. When compared with a treatment where rootsystem was flooded, the effect of gas fumigation on the shootphysiology was relatively mild and appeared later. On the otherhand, nodule activity (measured as rate of acetylene reductionactivity, ARA) was much more severely inhibited by gas fumigation.Although nodule dry weight and carbohydrate storage in noduleswere reduced, the inhibition was not likely a result of theshortage of carbohydrate reserve in the nodules. This was becausethe ARA of untreated fresh nodules was also inhibited immediatelyfollowing exposure to the simulated landfill gas. In furtherexperiments where CO2 and O2 were manipulated separately, althougha reduction of O2 concentration to half of the atmospheric levelmight account for up to 30% loss of ARA with considerable variation,the high CO2 alone showed a much more severe inhibition. ThisCO2-induced inhibition was not reversible one hour after thehigh CO2 gas was removed. There was some recovery of activity5 day after plants were fumigated, suggesting that the legumeplant can maintain some nitrogen-fixation activity under theinfluence of landfill gas. (Received April 10, 1995; Accepted August 22, 1995) 相似文献
3.
Plants of Solanum curtilobum (from high altitude) and Solanum tuberosum (from low altitude) were grown in open-top chambers in a greenhouse at either ambient (AC, 360 µmol mol–1) or ca. twice ambient (EC, 720 µmol mol–1) CO2 concentrations for 30 d. CO2 treatments started at the reproductive stage of the plants. There were similar patterns in the physiological response to CO2 enrichment in the two species. Stomatal conductance was reduced by 59 % in S. tuberosum and by 55 % in S. curtilobum, but such a reduction did not limit the net photosynthetic rate (P
N), which was increased by approximately 56 % in S. curtilobum and 53 % in S. tuberosum. The transpiration rate was reduced by 16 % in both potato species while instantaneous transpiration efficiency increased by 80 % in S. tuberosum and 90 % in S. curtilobum. Plants grown under EC showed 36 and 66 % increment in total dry biomass, whereas yields (dry mass of tubers) were increased by 40 and 85 % in S. tuberosum and S. curtilobum, respectively. EC promoted productivity by increasing P
N. Thus S. tuberosum, cultivated around the world at low altitudes, and S. curtilobum, endemic of the highland Andes, respond positively to EC during the tuberisation stage. 相似文献
4.
Acclimation of Two Tomato Species to High Atmospheric CO(2): I. Sugar and Starch Concentrations 总被引:7,自引:4,他引:7
下载免费PDF全文

Lycopersicon esculentum Mill. cv Vedettos and Lycopersicon chmielewskii Rick, LA 1028, were exposed to two CO2 concentrations (330 or 900 microliters per liter) for 10 weeks. Tomato plants grown at 900 microliters per liter contained more starch and more sugars than the control. However, we found no significant accumulation of starch and sugars in the young leaves of L. esculentum exposed to high CO2. Carbon exchange rates were significantly higher in CO2-enriched plants for the first few weeks of treatment but thereafter decreased as tomato plants acclimated to high atmospheric CO2. This indicates that the long-term decline of photosynthetic efficiency of leaf 5 cannot be attributed to an accumulation of sugar and/or starch. The average concentration of starch in leaves 5 and 9 was always higher in L. esculentum than in L. chmielewskii (151.7% higher). A higher proportion of photosynthates was directed into starch for L. esculentum than for L. chmielewskii. However, these characteristics did not improve the long-term photosynthetic efficiency of L. chmielewskii grown at high CO2 when compared with L. esculentum. The chloroplasts of tomato plants exposed to the higher CO2 concentration exhibited a marked accumulation of starch. The results reported here suggest that starch and/or sugar accumulation under high CO2 cannot entirely explain the loss of photosynthetic efficiency of high CO2-grown plants. 相似文献
5.
These studies were conducted to determine whether ethylene serves as a natural regulator of fruit wall dehiscence, a major visible feature of ripening in some fruits. We employed treatments to inhibit ethylene action or remove ethylene and observed their effect on fruit dehiscence. CO2 (13%), a competitive inhibitor of ethylene action in many systems, readily delayed dehiscence of detached fruits of cotton (Gossypium hirsutum L.), pecan (Carya illinoensis [Wang.] K. Koch), and okra (Hibiscus esculentus L.). The CO2 effect was duplicated by placing fruits under reduced pressure (200 millimeters mercury), to promote the escape of ethylene from the tissue. Dehiscence of detached fruits of these species as well as attached cotton fruits was delayed. The delay of dehiscence of cotton and okra by both treatments was achieved with fruit harvested at intervals from shortly after anthesis until shortly before natural dehiscence. Pecan fruits would not dehisce until approximately 1 month before natural dehiscence, and during that time, CO2 and reduced pressure delayed dehiscence. CO2 and ethylene were competitive in their effects on cotton fruit dehiscence. All of the results are compatible with a hypothetical role of ethylene as a natural regulator of dehiscence, a dominant aspect of ripening of cotton, pecan, and some other fruits. 相似文献
6.
7.
When the CO2-compensation points of detached leaves of Amaranthusedulis plants grown undera range of controlled environmentswere determined, they were all found to be near zero. However,similar plants grown in a greenhouse occasionally yielded high-compensation-pointleaves. The occurrence of these could not be correlated withleaf age, moisture stress, or the prevailing environmental conditions.These high-compensation-point leaves still showed a typicalKranz anatomy. Starch was found external to the bundle sheathin both high- and low-compensation-point leaves, but the distributionof the starch appeared to vary with light intensity. 相似文献
8.
Microbial biomass and activity were determined in cambisol incubated under ambient and increased (up to 2.23 mmol/L) CO2 concentrations. An immediate negative response of the soil microbial community to [CO]2 increase was observed during the first day with respect to microbial biomass, soil respiration and specific respiration activity (both expressed as CO2 evolution). In contrast, O2 consumption was not affected but anabolic utilization of available substrate increased. These phenomena were observed under conditions of increased CO2 tension but without any change in O2 concentration. 相似文献
9.
Photosynthetic Carbon Metabolism in Photoautotrophic Cell Suspension Cultures Grown at Low and High CO(2)
下载免费PDF全文

Photosynthetic carbon metabolism was characterized in four photoautotrophic cell suspension cultures. There was no apparent difference between two soybean (Glycine max) and one cotton (Gossypium hirsutum) cell line which required 5% CO2 for growth, and a unique cotton cell line that grows at ambient CO2 (660 microliters per liter). Photosynthetic characteristics in all four lines were more like C3 mesophyll leaf cells than the cell suspension cultures previously studied. The pattern of 14C-labeling reflected the high ratio of ribulosebisphosphate carboxylase to phosphoenolpyruvate carboxylase activity and showed that CO2 fixation occurred primarily by the C3 pathway. Photorespiration occurred at 330 microliters per liter CO2, 21% O2 as indicated by the synthesis of high levels of 14C-labeled glycine and serine in a pulse-chase experiment and by oxygen inhibition of CO2 fixation. Short-term CO2 fixation in the presence and absence of carbonic anhydrase showed CO2, not HCO3−, to be the main source of inorganic carbon taken up by the low CO2-requiring cotton cells. The cells did not have a CO2-concentrating mechanism as indicated by silicone oil centrifugation experiments. Carbonic anhydrase was absent in the low CO2-requiring cotton cells, present in the high CO2-requiring soybean cell lines, and absent in other high CO2 cell lines examined. Thus, the presence of carbonic anhydrase is not an essential requirement for photoautotrophy in cell suspension cultures which grow at either high or low CO2 concentrations. 相似文献
10.
Ethylene Biosynthesis and Accumulation under Drained and Submerged Conditions (A Comparative Study of Two Rumex Species) 总被引:5,自引:0,他引:5
下载免费PDF全文

A model is presented of the regulation of ethylene biosynthesis in relation to submergence and flooding resistance. It is based on time-course measurements of ethylene production, ethylene accumulation, and concentrations of free and conjugated 1-aminocyclo-propane-1-carboxylic acid (ACC) in submerged and drained flooding-resistant Rumex palustris Sm. and flooding-sensitive Rumex acetosella L. plants. From these data, in vivo reaction rates of the final steps in the ethylene biosynthetic pathway were calculated. According to our model, submergence stimulates ACC formation and inhibits conversion of ACC to ethylene in both Rumex species, and as a result, ACC accumulates. This may explain the stimulated ACC conjugation observed in submerged plants. Although submergence inhibited ethylene production, physical entrapment increased endogenous ethylene concentrations in both flooding-resistant R. palustris and flooding-sensitive R. acetosella plants. However, R. palustris plants controlled their internal ethylene levels in the long term by a negative regulation of ACC synthase induced by ethylene. In flooding-sensitive R. acetosella plants, absence of negative regulation increased internal ethylene levels to more than 20 [mu]L L-1 after 6 d of submergence. This may accelerate the process of senescence and contribute to their low level of flooding resistance. 相似文献
11.
Root growth of 7-d-old wheat (Triticum aestivum cv. Gamenya)seedlings was impaired at dissolved O2 concentrations of 0.01and 0.055 mol m3 O2, while growth at 0.115 mol m3O2 was the same as that in continuously aerated controls (0.26mol m3 O2). Oxygen uptake by apical (02 mm), expanding (24mm) and expanded (1012 mm) tissues of the roots decreasedbelow 0.16, 0.09 and 0.05 mol m3 O2, respectively. Thishierarchy is consistent with the metabolic rates of these tissues.There was a small (c. 9%) inhibition of O2 uptake and some netsynthesis of ethanol and alanine in root apices at 0.115 molm3 O2. Significant amounts of anaerobic end-productsaccumulated at 0.055 mol m3 O2 and even more so at 0.01mol m3 O2, indicating that oxidative phosphorylationwas strongly inhibited. Net alanine synthesis increased in fully expanded (1016mm) tissues exposed to <0.0030.01 mol m3 O2,and this increase was accompanied either by a proportionallysmaller increase in the concentration of other free amino acidsor by a net decrease in free amino acid levels excluding alanine.This suggests that alanine was synthesized as an end-productof anaerobic catabolism and did not accumulate simply becauseof decreased net protein synthesis. Comparing the carbon flow to CO2, ethanol, lactate and alaninein roots at 0.01 mol m3 O2 with carbon loss as CO2 inaerated roots suggests that carbon flow to products of metabolismwas not greatly enhanced due to O2 deficiency. This infers,but does not prove that, in wheat, generation of energy duringperiods of O2 deficiency is not enhanced due to a Pasteur effect. Key words: Anaerobic, fermentation, oxygen, wheat 相似文献
12.
CLOUX H. C. DU; ANDRE M.; DAGUENET A.; MASSIMINO J. 《Journal of experimental botany》1987,38(9):1421-1431
Du Cloux, H. C, André, M., Daguenet, A. and Massinuno,J. 1987. Wheat response to CO2 enrichment: Growth and CO2 exchangesat two plant densities.J. exp. Bot. 38: 14211431. The vegetative growth of wheat (Triticum aestivum L., var. Capitole)was followed for almost 40 d after germination in controlledconditions. Four different treatments were carried out by combiningtwo air concentrations of CO2, either normal (330 mm3 dm 3)or doubled (660 mm3 dm 3) with two plant densities, either 200plants m 2 or 40 plants m 2. Throughout the experiment the CO2gas exchanges of each canopy were measured 24 h d1. These provideda continuous growth curve for each treatment, which were comparedwith dry weights. After a small stimulation at the start (first13 d), no further effect of CO2 enrichment was observed on relativegrowth rate (RGR). However, RGR was stimulated throughout theexperiment when plotted as a function of biomass. The finalstimulation ol dry weight at 660 mm3 dm 3 CO2 was a factor of1·45 at high density and 1·50 at low density,contrary to other studies, no diminution of this CO2 effecton dry weight was observed over time. Nevertheless, at low density,a transient additional enhancement of biomass (up to 1·70)was obtained at a leaf area index (LAI) below 1. This effectwas attributed to a different build up of the gain of carbonin the case of an isolated plant or a closed canopy. In theformer, the stimulation of leaf area and the net assimilationrate are both involved; in the latter the enhancement becomesindependent of the effect on leaf area because the canopy photosynthesisper unit ground area as a function of LAI reaches a plateau. Key words: Triticum aestuum, L. var. Capitole, Vegetative growth, Canopy 相似文献
13.
《Bioscience, biotechnology, and biochemistry》2013,77(7):1049-1052
Shredded cabbage (Brassica oleracea L., Capitata group) was stored under a dynamically controlled atmosphere (DCA) and modified atmosphere (MA) at 5°C. Quality factors were measured every 2 days. Browning was suppressed as the CO2 concentration was increased (0% to 15%), with no influence from O2 concentration (2.5% to 10%). The development of an off-odor was markedly delayed with an increase in O2 concentration, such an odor being detected after 6 days at 2.5% O2,8 to 10 days at 5% to 7.5% O2, and not at all above 10 days at 10% O2, while the off-odor development was little affected by CO2 concentration (5% to 15%). Total sugar, polyphenolics, total ascorbate, and total microbial count were little influenced by O2 and CO2. These results show that shredded cabbage can be kept in good condition with a combined high O2 and high CO2 atmosphere. These findings are largely different from those for MA storage. 相似文献
14.
Curly dock (Rumex crispus L.) was grown from seed in a glasshouse at an ambient CO2 partial pressure of about 35 pascals. Apparent respiration rate (CO2 efflux in the dark) of expanded leaves was then measured at ambient CO2 partial pressure of 5 to 95 pascals. Calculated intercellular CO2 partial pressure was proportional to ambient CO2 partial pressure in these short-term experiments. The CO2 level strongly affected apparent respiration rate: a doubling of the partial pressure of CO2 typically inhibited respiration by 25 to 30%, whereas a decrease in CO2 elicited a corresponding increase in respiration. These responses were readily reversible. A flexible, sensitive regulatory interaction between CO2 (a byproduct of respiration) and some component(s) of heterotrophic metabolism is indicated. 相似文献
15.
High temperature sensitivities of IAA-induced and 1-aminocyclopropane-1-carboxylicacid (ACC)-dependent ethylene production in etiolated mung bean(Vigna radiata [L] Wilczek) hypocotyl sections were comparedat 30,40, 42.5°C. When ethylene production at 30°C wastaken as control, IAA-induced production at 40°C was firstenhanced and then suppressed after 3 h, whereas ACC-dependentproduction was enhanced two-fold throughout the 8 h experimentalperiod. However, when hypocotyl sections treated with 1 mM ACCat 30°C for several hours were transferred to 40°C,the ACC-dependent production rate fell below that at 30°C.An initial transient enhancement of IAA-induced ethylene productionat 40°C was supported by increased ACC synthase activityand thus by ACC content. At 42.5°C, both IAA-induced andACC-dependent production were almost completely suppressed.The results indicate that auxin-induced ethylene productionis affected by high temperatures in two different steps: a)at 40°C, the auxin action gradually deteriorates althoughconversion of ACC to ethylene is not affected at all, and at42.5°C, the conversion is nearly completely suppressed. (Received July 8, 1985; Accepted January 24, 1986) 相似文献
16.
Two Polypeptides Inducible by Low Levels of CO2 in Soluble Protein Fractions from Chlorella regularis Grown at Low or High pH 总被引:1,自引:0,他引:1
Previous studies suggested that certain protein(s) other thancarbonic anhydrase might play an important role in the facilitatedtransport of dissolved inorganic carbon (DIC) from the mediumto the site of CO2 fixation by ribulose-1,5-bisphosphate carboxylase/oxygenasein the unicellular green alga Chlorella regularis adapted tolow-CO2 (ordinary air) conditions [Shiraiwa et al. (1991) Jpn.J. Phycol. 39: 355; Satoh and Shiraiwa (1992) Research in Photosynthesis,Vol. III, p. 779]. The proteins that might be involved in thisfacilitated transport of DIC were investigated by pulse-labelingof induced proteins with 35S-sulfate during adaptation of cellsgrown under high-CO2 conditions to low CO2. Analysis by SDS-PAGErevealed that synthesis of two polypeptides, with molecularmasses of 98 and 24 kDa, respectively, was induced under low-CO2conditions. The 24-kDa polypeptide was induced at pH 5.5 butnot at pH 8.0, whereas the 98-kDa polypeptide was induced atboth pH 5.5 and pH 8.0. The possible role of these polypeptidesin the facilitated transport of DIC in Chlorella regularis isdiscussed. (Received October 30, 1995; Accepted February 26, 1996) 相似文献
17.
Enhancement of the Stomatal Response to Blue Light by Red Light, Reduced Intercellular Concentrations of CO(2), and Low Vapor Pressure Differences 总被引:1,自引:0,他引:1
下载免费PDF全文

Assmann SM 《Plant physiology》1988,87(1):226-231
The effects of environmental parameters on the blue light response of stomata were studied by quantifying transient increases in stomatal conductance in Commelina communis following 15 seconds by 0.100 millimole per square meter per second pulses of blue light. Because conductance increases were not observed following red light pulses of the same or greater (30 seconds by 0.200 millimole per square meter per second) fluences, the responses observed could be reliably attributed to the specific blue light response of the guard cells, rather than to guard cell chlorophyll. In both Paphiopedilum harrisianum, which lacks guard cell chloroplasts, and Commelina, the blue light response was enhanced by 0.263 millimole per square meter per second continuous background red light. Thus, the blue light response and its enhancement do not require energy derived from red-light-driven photophosphorylation by the guard cell chloroplasts. In Commelina, reduction of the intercellular concentration of CO2 by manipulation of ambient CO2 concentrations resulted in an enhanced blue light response. In both Commelina and Paphiopedilum, the blue light response was decreased by an increased vapor pressure difference. The magnitude of blue-light-specific stomatal opening thus appears to be sensitive to environmental conditions that affect the carbon and water status of the plant. 相似文献
18.
DELGADO ESTEBAN; PARRY MARTIN A. J.; LAWLOR DAVID W.; KEYS ALFRED J.; MEDRANO HIPOLITO 《Journal of experimental botany》1993,44(1):1-7
The photosynthetic characteristics (responses to CO2 and light),ribulose-1,5-bisphosphate carboxylase (Rubisco) properties,and the size and number of cells of the mesophyll of Nicotianatabacum L. leaves of genotypes selected for survival at lowatmospheric CO2 concentrations are described. When grown inthe greenhouse with nutrient solutions, the total dry matterproduction of the selected genotypes was 23% greater than thatof the parent genotype; this increase was related to a greaternumber of mesophyll cells of smaller size in the selected plantscompared to the parent. However, it was not related to changesin the photosynthetic characteristics nor to Rubisco properties.These results suggest that the increased dry matter accumulationof the selected genotypes is not due to a reduction in photorespirationnor an increase in the CO2 assimilation rates. Rather, the selectionof haploid tobacco plantlets in low CO2 has resulted in plantswith greater leaf area (shown in previous work), due to theproduction of more cells of smaller size and to lower respirationrates per unit of leaf dry mass (previous work), thus increasinglight capture, reducing the loss of assimilates and increasingtotal plant dry matter production. Key words: Photosynthesis, ribulose-1,5-bisphosphate carboxylase, leaf anatomy, tobacco, genotypes 相似文献
19.
20.
The quantum yields of photosynthetic O2 evolution were measuredin 15 species of C4 plants belonging to three different decarboxylationtypes (NADP-ME type, NAD-ME type and PEP-CK type) and 5 speciesof C3 plants and evaluated relative to the maximum theoreticalvalue of 0.125 mol oxygen quanta-1. At 25°C and 1% CO2,the quantum yield in C4 plants averaged 0.079 (differences betweensubgroups not significant) which was significantly lower thanthe quantum yield in C3 plants (average of 0.105 for 5 species).This lower quantum yield in C4 plants is thought to reflectthe requirement of energy in the C4 cycle. For the C4 NADP-MEtype plant Z. mays and NAD-ME type plant P. miliaceum, quantumyields were also measured over a range of CO2 levels between1 and 20%. In both species maximum quantum yields were obtainedunder 10% CO2 (0.105 O2 quanta-1 in Z. mays and 0.097 O2 quanta-1in P. miliaceum) indicating that at this CO2 concentration thequantum yields are similar to those obtained in C3 plants underCO2 saturation. The high quantum yield values in C4 plants undervery high CO2 may be accomplished by direct diffusion of atmosphericCO2 to bundle sheath cells, its fixation in the C3 pathway,and feedback inhibition of the C4 cycle by inorganic carbon. (Received June 6, 1995; Accepted August 15, 1995) 相似文献