首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The family Adelgidae is a small group of insects within Aphidoidea (Hemiptera). Adelgids are typically holocyclic with host‐alternation between the primary and secondary hosts, but some anholocyclic species persist either on the primary or secondary host. Like Aphididae, complexities and variation of adelgid life cycles are good models for understanding the evolution of complex life cycles. In this review, we outline the complex life cycles of adelgids, and current status and recent advances in adelgid life cycle studies. We also discuss the evolution of adelgid life cycles by comparing them to closely related aphid life cycles. A switch from holocycly to anholocycly on the primary host needs evolutionary innovations in gallicola behavior and reproduction. This radical evolution can be explained by mutations in a regulatory system that controls the sequence of gene sets producing phenotypes of one morph. In contrast, anholocycly on the secondary host consists of a series of exulis generations already existing in the holocycle. Thus, it may evolve by loss of primary‐host generations through extinction of the primary host, expansion beyond the geographical range of the primary host, or loss of male‐producing sexuparae that return to the primary host. Although the holocycle and its anholocyclic derivatives have been regarded as different species, morphological, ecological and genetic differences are too subtle to separate them into different species. The holocycle and its anholocyclic derivatives should not be split into different species without clearly identifiable morphological differences.  相似文献   

2.

Background  

Most aphid species complete their life cycle on the same set of host-plant species, but some (heteroecious species) alternate between different hosts, migrating from primary (woody) to secondary (herbaceous) host plants. The evolutionary processes behind the evolution of this complex life cycle have often been debated. One widely accepted scenario is that heteroecy evolved from monoecy on woody host plants. Several shifts towards monoecy on herbaceous plants have subsequently occurred and resulted in the radiation of aphids. Host alternation would have persisted in some cases due to developmental constraints preventing aphids from shifting their entire life cycle to herbaceous hosts (which are thought to be more favourable). According to this scenario, if aphids lose their primary host during evolution they should not regain it. The genus Brachycaudus includes species with all the types of life cycle (monoecy on woody plants, heteroecy, monoecy on herbs). We used this genus to test hypotheses concerning the evolution of life cycles in aphids.  相似文献   

3.
球蚜科分类概述   总被引:2,自引:1,他引:1  
球蚜科是蚜虫类的一个重要类群,包括多种林业害虫和检疫害虫,本文从形态特征、生活史、寄主植物、地理分布,进化起源等方面对世界及中国球蚜物种进行了综合论述.结果表明,球蚜科具有较多原始的特征,是蚜虫中较为古老的一类;球蚜具有包括异寄主全周期、异寄主不全周期、同寄主不全周期等复杂的生活周期,形成虫瘿是其主要的为害特征;球蚜科物种专性寄生在松科植物上,主要包括云杉属Picea、松属Pinus、落叶松属Larix、冷杉属Abies等属的植物,在蚜虫物种和寄主植物之间存在着平行演化的现象;球蚜的分布与寄主植物的分布相一致,主要是北半球温带和亚热带高山.世界球蚜有8属59种,区系成分主要是新北区、古北区.中国球蚜科有6属20种,分布在黑龙江、云南、四川等地,主要是古北区成分.初步推测球蚜科可能首先在松属植物上起源.  相似文献   

4.
While the family Adelgidae (Homoptera) is typically holocyclic and periodically host-alternating between a primary and secondary host, some anholocyclic species may persist exclusively on the primary or secondary host. In this study, we investigated the life cycle of Adelges japonicus , an anholocyclic species that utilizes either Picea jezoensis and Picea sitchensis (Pinaceae) as the primary hosts. Transfer experiments conducted in Hokkaido, the northern-most island of Japan, revealed that A. japonicus also includes holocyclic forms that can migrate to the secondary host, Larix kaempferi . The holocyclic forms differed from anholocyclic forms in the date of gall dehiscence, oviposition preference of gallicolae and development of wax gland plates of gallicola adults. However, we treated these two forms as the same species because of a lack of information on their phylogenetic relationships and genetic isolation. Sequence of generations and developmental stages of each generation in the holocyclic forms were reported. Morphology of wax gland plates of first-instar exulis was consistent with those of the subgenus Cholodkovskya , but different from those of the subgenus Adelges , to which A. japonicus has been assigned. Morphological comparison of gallicola adults suggests that the holocyclic forms were introduced to Hokkaido from central Japan.  相似文献   

5.
Comparative anatomy of resin ducts of the Pinaceae   总被引:5,自引:0,他引:5  
 Resin ducts are common in the Pinaceae. The comparative anatomy of stems and leaves of 50 species and two varieties from ten genera has been investigated. The structure and distribution of resin ducts differ among genera. Resin ducts occur in foliage leaves of ten genera of Pinaceae. Cortical resin ducts are absent in the stems of Pseudolarix and Larix. Resin ducts only occur in the secondary xylem of stems of Pinus, Picea, Cathaya, Larix, Pseudotsuga and some Keteleeria species. All of the epithelial and sheath cells are alive and thin-walled in the resin ducts of stem cortex and mesophyll. Except for Pinus the epithelial cells of resin ducts in the secondary xylem of stems have thick, lignified walls. Comparative study shows there are obvious differences in the resin ducts of different genera; apparent differences do not exist, however, in the resin ducts of different species of the same genus. According to the structure and distribution of the resin ducts in ten genera of Pinaceae, a synoptical arrangement of the genera is given and generic relationships of the Pinaceae are discussed. Received: 12 September 1995 / Accepted: 14 March 1996  相似文献   

6.
Hemlock woolly adelgid, Adelges tsugae Annand (Homoptera: Adelgidae), is native to Japan where it is an innocuous inhabitant of Tsuga diversifolia Masters and T. sieboldii Carriere throughout their natural growing areas. Native adelgid populations are regulated by host resistance and natural enemies, in particular the oribatid mite, Diapterobates humeralis (Hermann) and the coccinellid beetle, Pseudoscymnus tsugae Sasaji and McClure. Invading populations of A. tsugae in western North America on T. heterophylla Sargent and T. mertensiana Carriere are mainly regulated by host resistance. However, invading populations in eastern North America attain damaging levels on T. canadensis (L.) Carriere and T. caroliniana Engelmann and are regulated mainly by weather and negative density-dependent feedback mechanisms related to host deterioration. Although A. tsugae is only passively dispersed by wind, birds, forest-dwelling mammals and humans, it is spreading at an alarming rate and is sufficiently cold hardy to threaten the existence of the two eastern hemlock species throughout their natural ranges. The current hope for suppressing invading populations of hemlock woolly adelgid in eastern North America lies with the exotic predator, P. tsugae. Extensive laboratory studies of the biology and predatory ability of P. tsugae revealed that it feeds on all life stages of its prey, that its multivoltine life cycle is well synchronized with that of the adelgid, and that it has great potential for biological control. We have reared and released nearly 130,000 adults of P. tsugae in forests in Connecticut, New Jersey and Virginia during the past four years. P. tsugae has reproduced, dispersed, overwintered and reduced densities of hemlock woolly adelgid by 47–88% in only five months on release branches at these sites. Current studies are investigating the long-term ability of P. tsugae to regulate invading populations of A. tsugae in eastern North America.  相似文献   

7.
Nuclear ribosomal DNA (nrDNA) has been considered as an important tool for inferring phylogenetic relationships at many taxonomic levels. In comparison with its fast concerted evolution in angiosperms, nrDNA is symbolized by slow concerted evolution and substantial ITS region length variation in gymnosperms, particularly in Pinaceae. Here we studied structure characteristics, including subrepeat composition, size, GC content and secondary structure, of nrDNA ITS regions of all Pinaceae genera. The results showed that the ITS regions of all taxa studied contained subrepeat units, ranging from 2 to 9 in number, and these units could be divided into two types, longer subrepeat (LSR) without the motif (5'-GGCCACCCTAGTC) and shorter subrepeat (SSR) with the motif. Phylogenetic analyses indicate that the homology of some SSRs still can be recognized, providing important informations for the evolutionary history of nrDNA ITS and phylogeny of Pinaceae. In particular, the adjacent tandem SSRs are not more closely related to one another than they are to remote SSRs in some genera, which may imply that multiple structure variations such as recombination have occurred in the ITS1 region of these groups. This study also found that GC content in the ITS1 region is relevant to its sequence length and subrepeat number, and could provide some phylogenetic information, especially supporting the close relationships among Picea, Pinus, and Cathaya. Moreover, several characteristics of the secondary structure of Pinaceae ITS1 were found as follows: (1) the structure is dominated by several extended hairpins; (2) the configuration complexity is positively correlated with subrepeat number; (3) paired subrepeats often partially overlap at the conserved motif (5'-GGCCACCCTAGTC), and form a long stem, while other subrepeats fold onto itself, leaving part of the conserved motif exposed in hairpin loops.  相似文献   

8.
Abstract. Phylogenetic relationships amongst Megastigmus species (Chalcidoidea: Torymidae) associated with conifer seeds were inferred from DNA sequence data. Twenty‐nine species of seed chalcids were analysed using two different genes, cytochrome b (mitochondrial DNA) and the D2 domain of the 28S ribosomal DNA. Maximum‐parsimony and maximum‐likelihood analyses showed that taxa formed two monophyletic groups, one clade comprising all species associated with Cupressaceae and Taxodiaceae hosts with the exception of Chamaecyparis, and the other clade composed of species associated with Pinaceae. Species infesting Cupressaceae and Taxodiaceae seemed to be specialized to particular host genera or even to be species specific, which was consistent with a taxonomic radiation following initial host adaptation. By contrast, Megastigmus species associated with Pinaceae appeared capable of shifting onto different congeneric species or even onto a new host genus, with their evolution apparently less constrained by plant association. We hypothesized that the Megastigmus group associated with Pinaceae may have a much higher invasive potential than that related to Cupressaceae. The study also confirmed the presence of invasive Nearctic species in the Palaearctic, and demonstrated the existence of a cryptic species complex.  相似文献   

9.
Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega‐phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species‐rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the ‘generalized diversification rate’ hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms.  相似文献   

10.
蚜虫寄主植物与取食部位的多样性   总被引:7,自引:0,他引:7  
在中国科学院动物研究所已有标本采集记录和国内外文献资料的基础上,分别从蚜虫类Aphidina科级和属级阶元系统研究世界范围内蚜虫寄主植物与取食部位的多样性.蚜虫的寄主植物种类繁多,涉及267科2120属,尤其以菊科、禾本科、豆科、伞形科、唇形科、蔷薇科、茜草科、兰科、壳斗科、杨柳科、胡桃科等植物为主.13科蚜虫的寄主植物差别很大:在科级水平,球蚜科Adelgidae、纩蚜科Mindaridae和平翅绵蚜科Phloeomyzidae的寄主植物类群比较单一,蚜科Aphididae和瘿绵蚜科Pemphigidae的寄主植物范围最为广泛;在属级水平,各属蚜虫间寄主植物也有明显差异,有143属蚜虫的寄主植物多于2科,其中蚜科的属占多数,蚜属Aphis、瘤蚜属Myzus、长管蚜属Macrosiphum、粗额蚜属Aulacorthum和声蚜属Toxoptera的寄主植物最多,各超过100科290属.在不同的寄主植物上寄生着不同种类的蚜虫,其中16科47属寄主植物上寄生的蚜虫多于14属.蚜虫在寄主植物上的取食部位丰富多样,可分为7类,分别为叶片、嫩梢、嫩枝、茎、花、根部、果实等.以叶片、茎、嫩枝和嫩梢为蚜虫主要取食部位.平翅绵蚜科主要取食嫩枝、茎和根部,短痣蚜科Anoeciidae主要取食叶片、嫩梢和根部,球蚜科、群蚜科Thelaxidae和毛管蚜科Greenideidae取食叶片、嫩梢、嫩枝和茎等部位,纩蚜科取食叶片、嫩梢、茎和花等部位,大蚜科Lachnidae和斑蚜科Drepanosiphidae除取食叶片、嫩梢、嫩枝、茎等部位外,前者还在根部取食,后者还寄生在果实上,根瘤蚜科Phylloxeridae在除花以外的其它6个部位取食,蚜科、瘿绵蚜科和毛蚜科Chaitophoridae的取食部位最为多样,它们在上述7个部位均可取食.还初步讨论了在不同寄主植物上蚜虫物种的分化,以及蚜虫与寄主植物之间的对应关系.  相似文献   

11.
Miller OK 《Mycologia》2003,95(1):176-183
Recent studies in the Gomphidiaceae have clearly delimited two genera, Gomphidius and Chroogomphus, both of which are mycorrhizal associates only with the Pinaceae. Ecological studies show Chroogomphus as a mycorrhizal associate of Pinus (Pinoideae), while Gomphidius is associated with the other three gymnosperm subfamilies Piceoideae, Lariceideae, and Abietoideae. The genus Brauniellula, which is based upon the secotioid habit and the presence of orthotropic, statismosporic basidia, falls within Chroogomphus in a clade with ballistosporic species. Brauniellula is, therefore, placed in synonymy with Chroogomphus. Molecular and morphological studies of new material from Nepal, Russia, Korea, and the United States have delimited two new species in each genus. The morphologically identical Chroogomphus rutilus clades are separate, one European and one North American. The relationship of the two genera in the Gomphidiaceae, with their mycorrhizal associates, is related to similar host relationships within other genera in the Suilloid Clade.  相似文献   

12.
Ecological explanations for the prevalence of resource specialists are abundant, whereas phylogenetic evidence on their origins is scarce. In this paper, we provide a molecular phylogenetic study of the 19 specialist or generalist species in the bark beetle genus Dendroctonus, which collectively attack species in four different genera in the conifer family Pinaceae. Given substantial variation in diet breadth, we asked two general questions concerning the evolution of resource use in this group. How conservative is the evolution of host use in these insects? Does specialization tend to be derived (i.e., a “dead end”)? To answer these questions, we estimated the phylogeny of Dendroctonus using mitochondrial DNA sequences and mapped transitions in resource use on the resulting phylogeny estimate. The evolution of affiliations with Pinus and Picea hosts in Dendroctonus was conservative among beetle species (PTP test; P < 0.012), but there was no significant correspondence between the phylogeny of these beetles and the phylogeny among their Pinaceae hosts (among genera, P = 0.28; among Pinus species, P = 0.82). Degree of specialization, as measured in the proportion of hosts used, was bimodally distributed with “generalist” species utilizing < 60% of the congeneric hosts within their range and six specialist species utilizing < 40% of the available hosts. Among the generalists, we found a strong correlation between the number of hosts encountered and the number of hosts utilized (R = 0.97, P < 0.0001), whereas there was no significant correlation among the specialists (R = 0.27, P = 0.59). The evolution of specialization in Dendroctonus proved highly labile—specialists arose from generalists at least six separate times (without reversal) all in derived positions, and closer examination of some specialists revealed instances where they appear to have lost particular host species from their diet. However, evidence from the ecological literature also suggests that several Dendroctonus generalists may have increased their range of host genera within the Pinaceae.  相似文献   

13.
Abbreviations of the complex life cycle of trematodes, from three to two hosts, have occurred repeatedly and independently among trematode lineages. This is usually facultative and achieved via progenesis: following encystment in the second intermediate host, the metacercaria develops precociously into an egg-producing adult, bypassing the need to reach a definitive host. Given that it provides relatively cheap insurance against a shortage of definitive hosts, it is not clear why facultative progenesis has only evolved in a few taxa. Here a comparative approach is used to test whether progenetic trematodes are characterized by larger body size and egg volumes, two traits that correlate with other key life history features, than other trematodes. These traits may constrain the evolution of progenesis, because precocious maturation might be impossible when the size difference between the metacercaria and a reproductive adult is too large. First, trematode species belonging to genera in which progenesis has been documented were found not to differ significantly from other trematode species. Second, using within-genus paired comparisons across 19 genera in which progenesis has been reported, progenetic species did not differ, with respect to body size or egg size, from their non-progenetic congeners. Third, using intraspecific paired comparisons in species where progenesis is facultative, no difference was observed in the sizes of eggs produced by worms in both the intermediate and definitive host, suggesting that opting for progenesis does not influence the size of a worm's eggs. Overall, the lack of obvious differences in body or egg size between trematodes with truncated life cycles and those with the normal three-host cycle indicates that basic life history characteristics are not acting as constraints on the evolution of progenesis; trematodes of all sizes can do it. Why facultative progenesis is not more widespread remains a mystery.  相似文献   

14.
Parasite-host cospeciation has received much attention as an important mechanism in the diversification of phytophagous insects. However, studies have shown that for certain taxa, it is not host fidelity but host-switching that plays the critical role in speciation. Cinara are aphids (Insecta: Hemiptera: Aphididae: Lachninae) that feed exclusively on the woody parts of conifers of the Cupressaceae and Pinaceae. They are unusual aphids because most Pinaceae play host to several species of Cinara. The aphids show relatively strong host fidelity, and as a consequence historically have been treated based on the taxonomy of their hosts. The historical paradigm of aphid evolution implies that Cinara species have radiated to different parts of the same host species and/or speciated with their host. Using mitochondrial cytochrome oxidase 1 and nuclear elongation factor 1-alpha DNA sequences, we performed molecular phylogenetic analysis of Cinara species, concentrating on those associated with pinyon pines in the southwestern USA. We determined that switching hosts has played a key role in the speciation of the genus, reflected in the polyphyly of pinyon-feeding Cinara. Furthermore, species sharing a common feeding site on different hosts were more closely related to each other than to those sharing the same host but at different feeding sites, suggesting that feeding site fidelity plays a more important role in speciation than does host fidelity in general. This study also elucidated the primary taxonomy of various species: it suggested that Cinara rustica Hottes is a junior synonym of C. edulis (Wilson) and that C. wahtolca Hottes represents two species on the two different pinyon pine species, Pinus edulis Englem. and P. monophylla Torr. & Frem.  相似文献   

15.
Kim H  Lee S  Jang Y 《PloS one》2011,6(9):e24749

Background

Due to its biogeographic origins and rapid diversification, understanding the tribe Aphidini is key to understanding aphid evolution. Major questions about aphid evolution include origins of host alternation as well as age and patterns of diversification in relation to host plants. To address these questions, we reconstructed the phylogeny of the Aphidini which contains Aphis, the most diverse genus in the family. We used a combined dataset of one nuclear and four mitochondrial DNA regions. A molecular dating approach, calibrated with fossil records, was used to estimate divergence times of these taxa.

Principal Findings

Most generic divergences in Aphidini occurred in the Middle Tertiary, and species-level divergences occurred between the Middle and Late Tertiary. The ancestral state of host use for Aphidini was equivocal with respect to three states: monoecy on trees, heteroecy, and monoecy on grasses. The ancestral state of Rhopalosiphina likely included both heteroecy and monoecy, whereas that of Aphidina was most likely monoecy. The divergence times of aphid lineages at the generic or subgeneric levels are close to those of their primary hosts. The species-level divergences in aphids are consistent with the diversification of the secondary hosts, as a few examples suggest. The biogeographic origin of Aphidini as a whole was equivocal, but the major lineages within Aphidina likely separated into Nearctic, Western Palearctic, and Eastern Palearctic regions.

Conclusions

Most generic divergences in Aphidini occurred in the Middle Tertiary when primary hosts, mainly in the Rosaceae, were diverging, whereas species-level divergences were contemporaneous with diversification of the secondary hosts such as Poaceae in the Middle to Late Tertiary. Our results suggest that evolution of host alternation within Aphidini may have occurred during the Middle Tertiary (Oligocene) when the secondary hosts emerged.  相似文献   

16.
Nine of 10 genera and 119 of approximately 240 species of the Pinaceae occur in China, including 67 endemic species and two endemic genera. In this paper, the distributional maps of all the genera of the Pinaceae are presented (fig. 1-8). The horizontal and vertical distributions of species in each genus are discussed. The analysis of the distribution patterns of the genera indicates that some genera, such as Keteleeria, Tsuga, Pseudotsuga, Cathaya and Pseudolarix, are restricted to the area south of the Qinling Mountains and the Huaihe River, and the others, i. e. Picea, Abies, Larix and Pinus, extend northward to northeastern China. However, all of the genera except Keteleeria and Pinus are not found in very dry areas and tropical mountainous regions of China. The monotypic genera, Cathaya and Pseudolarix, are distributed in eastern and central China. The genus Keteleeria consists of 10 species, 7 of which are concentrated in southern Guizhou, northern Guangxi, southwestern Hunan and easternmost Yunnan. The distribution of the remaining 6 genera shows the maximum concentration in western Sichuan and northwestern Yunnan. (Figs. 2-8). Furthermore, more than third of species of the Pinaceae (37.8%) are also concentrated in western Sichuan and northwestern Yunnan. where a great variety of habitats and different topographic features occur. It is apparent that to conduct our systematic and evolutionary studies on this family in these region is especially needed. The relations between the areal size and the tolerance of species are discussed. The distributions of macrofossils and microfossils of the genera of the Pinaceae ia China are given, and it has been proved that areas of most genera of the family were considerably larger in the past. than at present.  相似文献   

17.
Phylogenetic analysis of genomic data allows insights into the evolutionary history of pathogens, especially the events leading to host switching and diversification, as well as alterations of the life cycle (life-history traits). Hundreds, perhaps thousands, of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as many genera of dipteran vectors, but the evolutionary and ecological events that led to this diversification and success remain unresolved. For a century, systematic parasitologists classified malaria parasites into genera based on morphology, life cycle, and vertebrate and insect host taxa. Molecular systematic studies based on single genes challenged the phylogenetic significance of these characters, but several significant nodes were not well supported. We recovered the first well resolved large phylogeny of Plasmodium and related haemosporidian parasites using sequence data for four genes from the parasites' three genomes by combining all data, correcting for variable rates of substitution by gene and site, and using both Bayesian and maximum parsimony analyses. Major clades are associated with vector shifts into different dipteran families, with other characters used in traditional parasitological studies, such as morphology and life-history traits, having variable phylogenetic significance. The common parasites of birds now placed into the genus Haemoproteus are found in two divergent clades, and the genus Plasmodium is paraphyletic with respect to Hepatocystis, a group of species with very different life history and morphology. The Plasmodium of mammal hosts form a well supported clade (including Plasmodium falciparum, the most important human malaria parasite), and this clade is associated with specialization to Anopheles mosquito vectors. The Plasmodium of birds and squamate reptiles all fall within a single clade, with evidence for repeated switching between birds and squamate hosts.  相似文献   

18.
Gall‐forming insects are commonly highly host‐specific, and galling species once thought to be oligo‐ or polyphagous are often found to represent a complex of host‐specific races or cryptic species. A recent DNA barcoding study documented that an unidentified species of the genus Adelges is a gall‐former associated with four spruce species (Picea bicolor, P. koyamai, P. maximowiczii, P. polita) as the primary hosts, with little genetic differentiation among insects on different host species. In this study, we investigated the morphology of this galling adelgid to determine its taxonomic identity. Morphological inspection of insects collected from three of the spruce species confirmed that this adelgid is a single galling species, and is identified as Adelges (Sacchiphantes) kitamiensis, which was previously known only from the secondary host. We described the gallicola adults of this species, as well as the first‐instar exules which are the offspring of gallicolae. Finally, we verified the taxonomic identity of this species and discuss its life cycle and host distribution.  相似文献   

19.
20.
Rhizopogon (Boletales) is an ectomycorrhizal fungal genus that exhibits a strong specificity to Pinaceae. This strict association occurs almost exclusively with Pinus and Pseudotsuga, while associations with other genera in Pinaceae are inconclusive. Here, we describe Rhizopogon laricinus sp. nov. associated with Larix cajanderi distributed in northeastern Siberia, where forest fires are frequent. We confirmed the host identity by comparing rDNA internal transcribed spacer (ITS) sequences obtained from basidiomata and ectomycorrhizal root tips collected at the same sites. Morphological characteristics and molecular identification revealed that R. laricinus is a new species associated with Larix unequivocally. The molecular phylogeny based on ITS sequences placed this species sister to the subgenus Roseoli, which is specific to Pinus, and not to the Pseudotsuga-specific subgenus Villosuli. Thus, R. laricinus evolution does not correspond to host phylogeny as Larix and Pseudotsuga form a monophyletic clade. Instead, ecological traits of Rhizopogon for adapting to disturbed habitats may have driven the host shift to Larix under high-frequency fire ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号