首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Alginate fractions from Sargassum vulgare brown seaweed were characterized by (1)H NMR and fluorescence spectroscopy and by rheological measurements. The alginate extraction conditions were investigated. In order to carry out the structural and physicochemical characterization, samples extracted for 1 and 5h at 60 degrees C were further purified by re-precipitation with ethanol and denoted as SVLV (S. vulgare low viscosity) and SVHV (S. vulgare high viscosity), respectively. The M/G ratio values for SVLV and SVHV were 1.56 and 1.27, respectively, higher than the ratio for most Sargassum spp. alginates (0.19-0.82). The homopolymeric blocks F(GG) and F(MM) of these fractions characterized by (1)H NMR spectroscopy were 0.43 and 0.55 for SVHV and 0.36 and 0.58 for SVLV samples, respectively, these values typically being within 0.28-0.77 and 0.07-0.41, respectively. Therefore, the alginate samples from S. vulgare are much richer in mannuronic block structures than those from other Sargassum species. Values of M(w) for alginate samples were also calculated using intrinsic viscosity data. The M(w) value for SVLV (1.94 x 10(5)g/mol) was lower than that for SVHV (3.3 x 10(5)g/mol). Newtonian behavior was observed for a solution concentration as high as 0.7% for SVLV, while for SVHV the solutions behaved as a Newtonian fluid up to 0.5%. The optimal conditions for obtaining the alginates from S. vulgare were 60 degrees C and 5h extraction. Under these conditions, a more viscous alginate in higher yield was extracted from the seaweed biomass.  相似文献   

2.
The Japanese brown seaweed Sargassum muticum, recently invaded several shorelines worldwide including the Atlantic coast of Morocco with large well‐established populations. Within the framework of a sustainable strategy to control this invasive seaweed, we report on extraction yield, spectroscopic characterization and rheological properties of alginate, a commercially valuable colloid, from harvested biomass of S. muticum. Extraction yield was about 25.6% on dry weight basis. Infrared spectroscopy analysis shows that the obtained Fourier transform infrared spectra of the extracted biopolymer exhibit strong similarities with that of the commercial alginate. Furthermore, Proton nuclear magnetic resonance spectroscopy revealed that S. muticum alginate has almost equal amounts of β‐D‐mannuronic acid (M; 49%) and α‐L‐guluronic acid (G; 51%) with an M/G ratio of 1.04 and a high content of heteropolymeric MG GM diads suggesting a sequence distribution of an alternated polymer type. Rheological measurements were performed at different sodium alginate concentrations, temperatures and shear rates. The hydrocolloid exhibited pseudoplastic behavior and showed shear thinning, particularly at high solution concentration and low temperature which is consistent with the rheological behavior reported for commercial alginates. Considering the abundance of S. muticum in the Northwestern Atlantic coast of Morocco and the quality of the extracted hydrogel, this invasive species could be considered as a potential source of alginates.  相似文献   

3.
Investigations were made on the brown seaweed Sargassum polycystum C. Agardh collected from Rameswaram Coast, Tamil Nadu. The alginates extracted from ‘leaf’, ‘stem’ and entire thallus of S. polycystum were investigated for their viscosity and chemical constituents, namely β‐D‐mannuronic acid (M‐block), α‐L‐guluronic acid (G‐block) and alternating sequences of β‐D‐mannuronic acid and α‐L‐guluronic acid (MG‐block) for six different seasons between August 1998 and November 1999. Significant seasonal variation (P< 0.05) was observed with high yield of alginate in February. The alginate extracted from the ‘leaf’ region showed a maximum yield whereas the ‘stem’ region exhibited maximum viscosity. The amount of G‐block was found to be more than M‐ and MG‐blocks in all the samples tested. The amount of G‐block was high in ‘stem’ followed by leaf and entire thallus. A positive correlation was recorded between viscosity and G‐block. Among the three alginates, the ratio of M/G was low in the ‘stem’ followed by ‘leaf’ and entire thallus.  相似文献   

4.
A photochemical reaction has been developed for the partial de-polymerization of sodium alginate, a polysaccharide utilized in medicine, pharmacy, basic sciences and foods. An aqueous solution of sodium alginate was photochemically depolymerized to ∼40% of its average molecular weight using ultraviolet light in the presence of titanium dioxide catalyst at pH 7 over a period of 3 h. The products were separated giving four fractions all having an average molecular weight that was smaller than that of the starting material. Characterization of the guluronate (G) and mannuronate (M) contents, and determination of the M/G ratio of photochemically depolymerized alginate, were accomplished using 1H NMR spectroscopy. The resulting M/G ratio was compared to that obtained for alginate fractions produced by acid hydrolysis. The M and G content, of each alginate fraction, was also assigned with regards to their occurrence in G-rich, M-rich or M/G heteropolymeric domains. This new depolymerization method might also be applicable in the preparation of alginate oligosaccharides for use in the food and pharmaceutical industries.  相似文献   

5.
Coupling of alginate with 1-amino-1-deoxygalactose in the presence of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide results in a substituted polymer containing galactose side linked via an amide bond. To clarify the degree and pattern of substitution, a (1)H NMR study on the anomeric region of modified alginate, polymannuronate, alginate enriched in guluronic acid (G-enriched alginate), and polyalternating MG, was carried out (G, alpha-l-guluronic acid; M, beta-d-mannuronic acid). From the resonance of the proton at position 1 of galactosylamine, it was possible to determine the amount of galactose linked to mannuronic and to guluronic residues, respectively. Furthermore, (1)H NMR spectroscopy revealed a higher reactivity of guluronic residues for low degrees of conversion. Modified alginates with 7% and 19% of substitution are both able to form stable beads in the presence of calcium ions. The effect of galactose substitution on the dimensions, swelling, and stability of the beads has been studied and the cytotoxicity of the modified polymer evaluated in preliminary biological tests.  相似文献   

6.
Lysis of alginates and of their saturated and unsaturated fragments was monitored by 1H NMR spectroscopy. AlxM(B) alginate lyase performs beta-elimination on the mannuronic acid (M) residues. It does not cleave the guluronic acid (G) sequences, nor the M-G or the G-M diads. In consequence, it is a true mannuronate lyase. The end product of the reaction is O-(4-deoxy-alpha-L-ery-thro-hex-4-enopyranosyl-uronic acid)-(1->(4)-O-(beta-D-mannopyranosyluronic acid)-(1->4)-O-beta-D-mannpyranuronic acid. Viscosity measurements made during degradation of a polymannuronate alginate showed that AlxM(B) behaves as an endo-enzyme. HPLC analysis of the degradation products of oligomannuronates and oligoalginates suggested that the beta-elimination requires the interaction of the enzyme with at least three sequential mannuronic acid residues. The catalytic site may possess 5 sub-sites and accommodate pentamers with different M/G ratio. Kinetic measurements showed that the specificity constant Vm/Km increased with the number of mannuronic acid residues. AlxM(B) may be reversibly inhibited by heteropolymeric blocks in a competitive manner.  相似文献   

7.
A rapid one-pot method for hydrolysis of sodium alginate for determining M/G ratio has been developed under mild conditions, using microwave irradiation. Poly-mannuronic acid (PMA) and poly-guluronic acid (PGA) ratio was determined (M/G 0.38), which was similar to that (M/G 0.39) obtained by the conventional method, using sodium alginate of Sigma as reference sample for bench marking. For validation of the method PMA and PGA were characterized by density, porosity, viscosity, optical rotation measurements, 13C NMR, FT-IR, thermogravimetric analysis (TGA), X-ray diffraction, circular dichroism (CD), molar mass distribution (GPC) and scanning electron microscopy (SEM).  相似文献   

8.
This study deals with two range-extending brown algae from Tahitian coral reefs, Sargassum mangarevense and Turbinaria ornata; their alginate properties, mannitol and phenolic contents, antioxidant and antimicrobial activities were determined. Turbinaria ornata showed the richest alginate content with the highest extraction yield (19.2 ± 1.3% dw). Their alginates also exhibited the highest viscosity (50 ± 18 mPa.s), but the M:G ratios (mannuronic acid to glucuronic acid) of alginates (1.25–1.42) were similar in both species. Alginate yield displayed spatial variations, but no significant seasonal changes. The highest mannitol content was found in S. mangarevense (12.2 ± 2.1% dw) during the austral winter. With respect to other tropical Fucales, both algae exhibited also a high phenolic content (2.45–2.85% dw) with significant spatio-temporal variations. Furthermore, high antioxidant activity and activity against Staphylococcus aureus were also detected in extracts. According to these preliminary results, these two range-extending algae are of key interest in numerous industrial areas.  相似文献   

9.
In this study, three alginate fractions with different molecular weights and ratios of mannuronic acid (M) to guluronic acid (G) were prepared by enzymatic hydrolysis and ultrafiltration to assess the antioxidant property of alginates from Laminaria japonica with molecular weight below 10 kDa. The antioxidant properties of different molecular weight alginates were evaluated by determining the scavenging abilities on superoxide, hydroxyl, and hypochlorous acid and inhibitory effect on Fe2+-induced lipid peroxidation in yolk homogenate. The results showed that low molecular weight alginates exhibited high scavenging capacities on superoxide, hydroxyl, and hypochlorous acid radicals and good inhibition of Fe2+-induced lipid peroxidation in yolk. By comparison, alginate A1 with molecular weight below 1 kDa and M/G of 1.84 had better scavenging activity on superoxide, hydroxyl, and hypochlorous acid radicals in vitro than A2 (1–6 kDa), A3 (6–10 kDa), ascorbic acid, and carnosine. With similar M/G ratio, A2 exhibited better antioxidant activity on superoxide and hypochlorous acid radicals than A3. However, fraction A3 with molecular weight of 6–10 kDa exhibited higher inhibitory ability on lipid peroxidation in yolk in vitro than A1 and A2. The results indicated that molecular weight played a more important role than M/G ratio on alginate to determine the antioxidant ability. By comparison, low molecular weight alginates composed of guluronic acid and mannuronic acid exhibited better antioxidant ability on oxygen free radicals than sulfated polysaccharides from L. japonica in our previous study and represent a good source of marine polysaccharide with potential application as natural antioxidant.  相似文献   

10.
The marine waters of the Baja California peninsula (Mexico) are a rich source of brown seaweeds with a great potential for exploitation. For that reason, Sargassum sinicola, Eisenia arborea, and Macrocystis pyrifera collected from different locations were subjected to extraction of sodium alginate using a pilot-plant scale process developed in our facilities. The composition and sequence parameters of the recovered alginate were studied by infrared and nuclear magnetic resonance spectroscopy. The spectral analysis of the products revealed that sodium alginate from S. sinicola contains a greater proportion of guluronate monomers (64%) than that from E. arborea (48%), and M. pyrifera (38%). Computation of the frequencies of diads and triads indicated that the alginate from S. sinicola was constructed by intercalated guluronate-blocks of 14 residues in length. In contrast, the length of the G-block in the alginates from E. arborea and M. pyrifera were 7 and 4 residues, respectively. The results show that S. sinicola, E. arborea, and M. pyrifera are sources of sodium alginate with different mannuronate/guluronate ratios, as well as a varied building-block length. In consequence, aqueous dispersions of sodium alginate from the three studied species are expected to exhibit different physical properties.  相似文献   

11.
Alginate with long strictly alternating sequences of mannuronic (M) and guluronic (G) acid residues, F(G) = 0.47 and F(GG) = 0.0, was prepared by incubating mannuronan with the recombinant C-5 epimerase AlgE4. By partial acid hydrolysis of this PolyMG alginate at pH values from 2.8 to 4.5 at 95 degrees C, alpha-L-GulpA-(1-->4)-beta-D-ManpA (G-M) linkages were hydrolyzed far faster than beta-D-ManpA-(1-->4)-alpha-L-GulpA (M-G) linkages in the polymer chain. The ratio of the rates (kG-M/kM-G) decreased with increasing pH. The dominant mechanism for hydrolysis of (1-->4)-linked PolyMG in weak acid was thus proved to be an intramolecular catalysis of glycosidic cleavage of the linkages at C-4 by the undissociated carboxyl groups at C-5 in the respective units. The higher degradation rate of G-M than M-G glycosidic linkages in the polymer chain of MG-alginate at pH 3.5 and 95 degrees C was exploited to make oligomers mainly consisting of M on the nonreducing and G on the reducing end and, thus, a majority of oligomers with an even number of residues. The ratio of the rate constants kG-M/kM-G at this pH was 10.7. The MG-hydrolysate was separated by size exclusion chromatography and the MG oligosaccharide fractions analyzed by electrospray ionization-mass spectrometry together with 1H and 13C NMR spectroscopy. Chemical shifts of MG-oligomers (DP2-DP5) were elucidated by 2D 1H and 13C NMR.  相似文献   

12.
Nishide  E.  Anzai  H.  Uchida  N.  Nisizawa  K. 《Hydrobiologia》1990,204(1):573-576
Sugar constituents of the fucose-containing polysaccharides (FCPs) from 21 species of brown algae were analyzed. FCPs were extracted with hot water (100 °C, 4 h), separated by precipitation with 20% (v:v) ethanol in the presence of 0.05 M MgCl2 to remove contaminating soluble alginate, and purified by DEAE-Sephadex column chromatography. The samples were hydrolyzed with HCI, and neutral sugar and uronic acid were separated by anion exchange chromatography. Their amounts were determined by gas-liquid chromatography. The neutral sugars in the FCPs from Ishige okamurae, Laminaria ochotensis, Myelophycus simplex, Padina arborescens and Sargassum thunbergii all contained arabinose, fucose, galactose, glucose, mannose, rhamnose and xylose residues. The FCPs from Ishige okamurae, Padina arborescens, Sargassum hemiphyllum, S. patents and S. sagamianum contained the four uronic acids, galacturonic acid, glucuronic acid, guluronic acid and mannuronic acid.  相似文献   

13.
14.
Matrix polysaccharide from the brown algae Sargassum turbinarioides collected in the coastal waters of Nosy Be (Madagascar) in the Indian Ocean was isolated and its structure was studied by 1H-NMR spectroscopy, FT-IR, SEC-MALLS and HPAEC. An alginate with a molecular weight of 5.528 × 105 g mol−1 was identified as sole polysaccharide. Values of the M/G ratio, F GG, F MM and F GM (or F GM) blocks were measured at respectively 0.94, 0.39, 0.36 and 0.25 and compared with those of alginates from other Sargassum species. This sodium alginate appeared similar to some of the other Sargassum alginates with M/G < 1, high values of homopolymeric blocks (η < 1) and significant polyguluronic block content.  相似文献   

15.
The mannuronan C-5-epimerase AlgE2 is one of a family of Ca2+-dependent epimerases secreted by Azotobacter vinelandii. These enzymes catalyze the conversion of β- -mannuronic acid residues (M) to - -guluronic acid residues (G) in alginate. AlgE2 has been produced by fermentation with a recombinant strain of Escherichia coli, isolated and partially purified. Epimerization with AlgE2 increased the content of G-residues in different alginates from starting values of 0–45% up to approximately 70%. The new G-residues were mainly present in short blocks. Although G-residues may be introduced next to pre-existing G-residues, AlgE2 was not able to epimerize strictly alternating MG-structures. The epimerization with AlgE2 was greatly affected by the concentration of Ca2+. The type of alginate used as substrate affected the reaction rate and the reaction pattern especially at low Ca2+ concentration. AlgE2 appears to act by a preferred attack mechanism where the enzyme associates with different sequences in the alginate depending on the concentration of Ca2+. During epimerization, AlgE2 occasionally causes cleavage of the alginate chain. The observed frequency corresponds to 1–3 breaks per 1,000 M-units epimerized.  相似文献   

16.
Some properties of alginate gels derived from algal sodium alginate   总被引:1,自引:0,他引:1  
Alginic acid in soluble sodium alginate turns to insoluble gel after contact with divalent metal ions, such as calcium ions. The sodium alginate character has an effect on the alginate gel properties. In order to prepare a suitable calcium alginate gel for use in seawater, the effects of sodium alginate viscosity and M/G ratio (the ratio of D-mannuronate to L-guluronate) on the gel strength were investigated. The wet tensile strengths of gel fibers derived from high viscosity sodium alginate were higher than those from low viscosity sodium alginate. The tensile strength increased with diminishing sodium alginate M/G ratio. Among the gel fibers tested, the gel fiber obtained from a sodium alginate I-5G (1% aqueous solution viscosity = 520 mPa·s, M/G ratio = 0.6) had the highest wet tensile strength. After 13 days treatment in seawater, the wet tensile strength of the gel fiber retained 36% of the original untreated gel strength. For sodium alginates with similar viscosities, the seawater tolerance of low M/G ratio alginate was greater than that of the high M/G ratio one. This study enables us to determine a suitable calcium alginate gel for use in seawater.  相似文献   

17.
The O-specific polysaccharide of Providencia rustigianii O14 was obtained by mild acid degradation of the LPS and studied by chemical methods and NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, NOESY, and 1H,(13)C HSQC experiments. The polysaccharide was found to contain N (epsilon)-[(S)-1-carboxyethyl]-N(alpha)-(D-galacturonoyl)-L-lysine ('alaninolysine', 2S,8S-AlaLys). The amino acid component was isolated by acid hydrolysis and identified by 13C NMR spectroscopy and specific optical rotation, using synthetic diastereomers for comparison. The following structure of the trisaccharide repeating unit of the polysaccharide was established:Anti-P. rustigianii O14 serum was found to cross-react with O-specific polysaccharides of Providencia and Proteus strains that contains amides of uronic acid with N(epsilon)-[(R)-1-carboxyethyl]-L-lysine and L-lysine.  相似文献   

18.
The neutral exopolysaccharide EPS35-5 (reuteran) produced from sucrose by the glucansucrase GTFA enzyme from Lactobacillus reuteri 35-5 was found to be a (1-->4,1-->6)-alpha-D-glucan, with no repeating units present. Based on linkage analysis and 1D/2D 1H and 13C NMR spectroscopy of intact EPS35-5, as well as MS and NMR analysis of oligosaccharides obtained by partial acid hydrolysis and enzymatic hydrolysis, using pullulanase M1 (Klebsiella planticola), of EPS35-5, a composite model, that includes all identified structural elements, was formulated as follows: [Formula: see text].  相似文献   

19.
Alginate extracted from the macroalgae Sargassum sinicola was used as the raw material for co-immobilization of the microalgae Chlorella sorokiniana and growth-promoting bacterium Azospirillum brasilense for wastewater treatment and as an inoculant carrier of A. brasilense for plant growth promotion. The composition, structure, viscosity, color, and phenolic compound content of the alginate were analyzed and compared with commercially available alginate produced from the macroalgae Macrocystis pyrifera. From 1H NMR analysis of alginate, S. sinicola was found to have more guluronic acid (F G=0.64) than it had mannuronic acid (F M=0.38) and had a viscosity of 13.5 m Pa s compared to 50 m Pa s for M. pyrifera. The S. sinicola alginate had dark brown color, reducing light penetration, with more phenolic compounds than M. pyrifera alginate. Nonetheless, growth of C. sorokiniana and A. brasilense in S. sinicola alginate was not significantly different than the growth in M. pyrifera alginate beads. Nutrient removal from wastewater by the co-immobilized microorganisms was similar for both types of alginate beads, and so was the growth enhancement of tomato plants inoculated with microbeads containing A. brasilense. This study shows the potential use of S. sinicola alginate as a raw material for cell immobilization for wastewater treatment and plant growth promotion.  相似文献   

20.
Alginate may be considered as a block co-polymer of D-mannuronic and L-guluronic acids, and consists of three types of blocks: homopolymeric blocks of mannuronic acid (MM) and of guluronic acid (GG), and blocks with an alternating sequence (MG). The block composition of alginates has been characterized by a simple chemical method involving partial hydrolysis with acid, followed by fractional precipitation of the acid-resistant part of the alginate. Alginates from eleven different species of brown algae have been examined and, for five species, alginates from different tissues have been compared. The results indicate that young tissue is rich in MM blocks, and that the difference between the alginates from different species is mainly due to the alginates from the older parts of the plants. Extracellular alginates from two types of bacteria have been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号