首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
研究了固定化啤酒酵母细胞催化三甲基硅乙酮不对称还原反应,系统探讨了振荡速度、底物浓度、固定化细胞浓度、pH值和反应温度对反应速度、产率和产物光学纯度的影响。结果表明,上述因素对固定化啤酒酵母细胞催化三甲基硅乙酮不对称还原反应均有较显著的影响。振荡速度以150r/min为宜,底物浓度和固定化细胞浓度分别为14mmol/L和0.15g/mL较佳,适宜的pH值为7.3,最佳反应温度为25℃~30℃。在该优化反应条件下,反应最大产率和产物的光学纯度分别高达84.9%和90.2%ee。  相似文献   

2.
比较了SA-PVA-SiO2固定化酿酒酵母和游离酿酒酵母的乙醇发酵能力,采用批次发酵试验研究固定化酿酒酵母的发酵稳定性。结果表明,SA-PVA-SiO2固定化酿酒酵母的发酵速度比游离酿酒酵母快,发酵周期短;发酵稳定性很好,30℃,橡胶塞、90 r/min摇床培养24 h时,乙醇体积分数均在3%~3.5%之间,连续发酵14批次后,固化小球的形态依然完好,不发粘。通过扫描电镜对酿酒酵母包埋微生态环境进行了分析,图像表明固定化小球的内部环境非常有利于酵母细胞的厌氧发酵产乙醇,充分证明了SA-PVA-SiO2固定化酿酒酵母乙醇发酵的优越性。  相似文献   

3.
The existence and change of actin in the pollen mother cells of Secale cereale L., Vicia faba L., and Lilium davidii var willmottiae were identified by the application of the polyacrylamide gel electronphoresis. It was proved that the pollen mother cells of the three plants contained certain amount of actin at cytomixis stage and that this protein began to appear at early zygotene stage and to disappear after tetrad stage. Finally, the relation between the actin and cytomixis was discussed.  相似文献   

4.
Saccharomyces cerevisiae ATCC 4126 was grown within the macroporous matrix of asymmetric-walled polysulfone hollow-fiber membranes and on the exterior surfaces of isotropic-walled polypropylene hollow-fiber membranes. Nutrients were supplied and products were removed by single-pass perfusion of the fiber lumens. Growth of yeast cells within the macrovoids of the asymmetric-walled membranes attained densities of greater than 1010 cells per ml and in some regions accounted for nearly 100% of the available macrovoid volume, forming a tissue-like mass. A radial distribution of cell packing existed across the fiber wall, indicating an inadequate glucose supply to cells located beyond 100 μm from the lumen surface. By comparison, yeast cell growth on the exterior surfaces of the isotropic-walled membranes resulted in an average density of 3.5 × 109 viable cells per ml. Ethanol production by reactors containing isotropic polypropylene fibers reached a maximum value of 26 g/liter-h based on the total reactor volume. Reactor performance depended on the fiber packing density and on the glucose medium flow rate and was limited by low nutrient and product transport rates. The inhibition of ethanol production and the reduction in fermentation efficiency arose primarily from the accumulation of CO2 gas within the sealed reactor shell space.  相似文献   

5.
Pyruvate-decarboxylase (Pdc)-negative Saccharomyces cerevisiae has been reported to grow in batch cultures on glucose-containing complex media, but not on defined glucose-containing media. By a combination of batch and chemostat experiments it is demonstrated that even in complex media, Pdc- S. cerevisiae does not exhibit prolonged growth on glucose. Pdc- strains do grow in carbon-limited cultures on defined media containing glucose-acetate mixtures. The acetate requirement for glucose-limited growth, estimated experimentally by continuously decreasing the acetate feed to chemostat cultures, matched the theoretical acetyl-CoA requirement for lipid and lysine synthesis, consistent with the proposed role of pyruvate decarboxylase in the synthesis of cytosolic acetyl-CoA.  相似文献   

6.
Growth and Assimilation in Cultures of Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
  相似文献   

7.
8.
Summary Baker's yeast was aerobically grown in gaseous fluidized beds in the form of solid particles. Air was used as the fluidizing fluid and as a source of oxygen, while the concentrated nutrient solution was sprayed at the top of the bed. Five glucose concentrations 125, 160, 200, 250 und 350 gl–1 were used. A maximum in the growth rate and in the yield coefficient occurred at 250 and 200 g l–1, respectively. The calculated growth rates are one order of magnitude less than the growth rates in submerged cultures, but the maintenance energy coefficient is the same in both systems. Alcohol ppm level in the exhaust gases increased with increasing glucose concentration in the nutrient solution. Oscillations in the alcohol production indicated product inhibition of the cell growth under high glucose concentrations in the nutrient feed solution.  相似文献   

9.
Conversion of benzaldehyde to L-phenylacetyl carbinol (L-PAC) was achieved with immobilized, growing cells of Saccharomyces cerevisiae in different reactors. Product formation increased (31%) with the subsequent initial reuses of the entrapped cells. Biomass production and PAC formation depleted (40 and 57%, respectively) after 4-5 continuous growth and biotransformation cycles. With the regeneration of the biocatalysts, catalytic activity of the cells was resumed. The highest yields were in a stirred tank reactor (29 g PAC) from 77 g benzeldehyde with 14 repeated uses of entrapped cells.  相似文献   

10.
Polyomavirus middle-T antigen contains a contiguous sequence of 22 hydrophobic amino acids near the carboxyl terminus, which is the putative membrane-binding domain of the protein. The DNA encoding this region was mutated to form a series of deletions, insertions, and substitutions called RX mutants. The phenotypes of these mutants fall into three groups based on the transforming and biochemical properties of their encoded proteins. The first group, with deletions outside but proximal to the hydrophobic domain, displayed an essentially wild-type phenotype. A second group, with extensive deletions within the region encoding the hydrophobic domain, expressed middle-T species which did not fractionate with cellular membranes or associate with pp60c-src and which were defective in their ability to transform. A third group of mutants with more subtle predicted alterations in the hydrophobic domain were wild type for the biochemical parameters investigated but were unable to transform cultured rodent cells. These observations are consistent with previous findings that membrane association plays an important role in transformation by middle-T and that, whereas association between middle-T and pp60c-src is a necessary correlate of transformation, it is not sufficient. A comparison of murine polyomavirus middle-T and a newly described hamster papovavirus putative middle-T revealed a strong homology between their respective hydrophobic-domain amino acid sequences. This homology is not observed in the anchorage domains of other model proteins, and this may imply that the middle-T hydrophobic domain is important in transformation for reasons other than simple membrane association.  相似文献   

11.
应激心肌细胞蛋白质组双向凝胶电泳分析   总被引:14,自引:0,他引:14  
采用双向凝胶电泳技术和计算机辅助的图像分析方法 ,对去甲肾上腺素诱导的应激心肌细胞与正常心肌细胞蛋白质进行分离和比较分析 .正常心肌细胞可分离 12 32± 5 6个蛋白点 ,蛋白点匹配率为 83 3%± 1 0 %.有 11种蛋白质在NE应激后发生了明显和稳定的质和量的改变 (P <0 0 5 ) ,其中 6种 (Mr pI :4 9 7kD 7 8,38 3kD 5 9,37 1kD 6 6 ,2 9 3kD 7 4 ,18 7kD 6 1,18 5kD 7 7)在应激后表达降低 ,4种 (Mr pI:4 7 6kD 5 5 ,31 9kD 4 4 ,2 6 6kD 4 6 ,33 2kD 8 1)在应激后表达增高 ,1种 (Mr pI:19 4kD 6 9)只在应激后发生表达 .这些差异表达的蛋白质可能参与了心血管应激反应乃至应激损伤发生的过程 .  相似文献   

12.
A peptic hydrolysate of soybean protein was filtered with Sephadex G–25 and was separated approximately into four fractions (I, II, II, and IV in the order of mol. wt.). Fraction II (av. mol. wt: 1043) and III (av. mol. Wt.: 685) were more plastein-productive than others. When plastein produced from Fraction II with Nagarse was investigated by plate electrophoresis using 7.5% polyacrylamide-gel, the upper limit of the molecular weight was found to be about 25,000. A similar result was obtained also with Fraction III. The increase of molecular weight in the course of the plastein formation with the mixture (substrate) of Fractions II and III was shown that the final product lay mainly in a position between cytochrome c (mol. wt.: 11,700) and Nagarse (mol wt.: 27,600). In addition, the gel-electrophoretic experiments revealed that the most favorable condition for the plastein synthesis were pH 6.5 and 35% in substrate concentration.  相似文献   

13.
Synthesis of ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein was determined in Saccharomyces cerevisiae during amino acid and pyrimidine starvation and during shift-up and shift-down conditions. During amino acid starvation, cell mass, cell number, and RNA continued to increase for varying periods. During amino acid and pyrimidine starvation, cell mass and RNA showed little increase, whereas total DNA increased 11 to 17%. After a shift from broth medium to a minimal defined medium, increase in RNA and protein remained at the preshift rate before assuming a lower rate. DNA increase remained at an intermediate rate during shift-down, and then dropped to a low rate. During shift-up from minimal to broth medium, increase in cell number, protein, and DNA showed varying lag periods before increasing to the new rate characteristic of broth medium; each of these quantities exhibited a step sometime in the first 2 hr after transfer to rich medium, suggesting a partial synchronous division. Immediately after shift-up, RNA synthesis assumed a high rate, and then dropped to a rate characteristic of growth in the rich medium after about 1 hr.  相似文献   

14.
Growth and metabolism of inositol-starved Saccharomyces cerevisiae.   总被引:14,自引:12,他引:14       下载免费PDF全文
Upon starvation for inositol, a phospholipid precursor, an inositol-requiring mutant of Saccharomyces cerevisiae has been shown to die if all other conditions are growth supporting. The growth and metabolism of inositol-starved cells has been investigated in order to determine the physiological state leading to "inositolless death". The synthesis of the major inositol-containing phospholipid ceases within 30 min after the removal of inositol from the growth medium. The cells, however, continue in an apparently normal fashion for one generation (2 h under the growth conditions used in this study). The cessation of cell division is not preceded or accompanied by any detectable change in the rate of macromolecular synthesis. When cell division ceases, the cells remain constant in volume, whereas macromolecular synthesis continues at first at an unchanged rate and eventually at a decreasing rate. Macromolecular synthesis terminates after about 4 h of inositol starvation, at approximately the time when the cells begin to die. Cell death is also accompanied by a decline in cellular potassium and adenosine triphosphate levels. The cells can be protected from inositolless death by several treatments that block cellular metabolism. It is concluded that inositol starvation results in a imbalance between the expansion of cell volume and the accumulation of cytoplasmic constituents. This imbalance is very likely the cause of inositolless death.  相似文献   

15.
Polycyclic aromatic heterocycles, such as carbazole, are environmental contaminants suspected of posing human health risks. In this study, we investigated the degradation of carbazole by immobilized Sphingomonas sp. strain XLDN2-5 cells. Four kinds of polymers were evaluated as immobilization supports for Sphingomonas sp. strain XLDN2-5. After comparison with agar, alginate, and κ-carrageenan, gellan gum was selected as the optimal immobilization support. Furthermore, Fe3O4 nanoparticles were prepared by a coprecipitation method, and the average particle size was about 20 nm with 49.65-electromagnetic-unit (emu) g−1 saturation magnetization. When the mixture of gellan gel and the Fe3O4 nanoparticles served as an immobilization support, the magnetically immobilized cells were prepared by an ionotropic method. The biodegradation experiments were carried out by employing free cells, nonmagnetically immobilized cells, and magnetically immobilized cells in aqueous phase. The results showed that the magnetically immobilized cells presented higher carbazole biodegradation activity than nonmagnetically immobilized cells and free cells. The highest biodegradation activity was obtained when the concentration of Fe3O4 nanoparticles was 9 mg ml−1 and the saturation magnetization of magnetically immobilized cells was 11.08 emu g−1. Additionally, the recycling experiments demonstrated that the degradation activity of magnetically immobilized cells increased gradually during the eight recycles. These results support developing efficient biocatalysts using magnetically immobilized cells and provide a promising technique for improving biocatalysts used in the biodegradation of not only carbazole, but also other hazardous organic compounds.  相似文献   

16.
In this protocol, gene expression in yeast (Saccharomyces cerevisiae) is changed after exposure to oxidative stress induced by the addition of hydrogen peroxide (H2O2), an oxidizing agent. In the experiment, yeast is grown for 48 hours in 1/2X YPD broth containing 3X glucose. The culture is split into a control and treated group. The experiment culture is treated with 0.5 mM H2O2 in Hanks Buffered Saline (HBSS) for 1 hour. The control culture is treated with HBSS only. Total RNA is extracted from both cultures and is converted to a biotin-labeled cRNA product through a multistep process. The final synthesis product is taken back to the UVM Microarray Core Facility and hybridized to the Affymetrix yeast GeneChips. The resulting gene expression data are uploaded into bioinformatics data analysis software.Download video file.(79M, mov)  相似文献   

17.
The study of Saccharomyces cerevisiae cell surface proteins was performed because of their important role in cell wall biogenesis and in the physiology of the yeast. Two different proteomic approaches were carried out. First, proteins loosely associated or S–S linked to structural wall components were released by treatment of whole intact cells with dithiothreitol, separated by 2D-PAGE and identified by mass spectrometry. Second, cell surface-exposed proteins (surfome) were digested with trypsin and DTT from whole intact cells, and analyzed by LC–MS/MS. Ninety-nine different proteins were identified: 67 with DTT treatment and 52 with DTT and trypsin digestion. These proteins were classified in different cellular processes: control of cell wall organization, cell rescue, defence, and virulence, protein fate, protein synthesis and metabolism. Most of the proteins have already been reported as present on the cell surface showing that the yeast cell surface is composed not only by typical but also by atypical cell wall proteins. “Bona fide” cell wall proteins were identified by both protocols but a higher number with the non-gel strategy. However, only 20% of the proteins identified were common to both protocols, thus, for a complete knowledge of the cell surface proteome, several strategies have to be used.  相似文献   

18.
19.
As a consequence of the increase in global average temperature, grapes with the adequate phenolic and aromatic maturity tend to be overripe by the time of harvest, resulting in increased sugar concentrations and imbalanced C/N ratios in fermenting musts. This fact sets obvious additional hurdles in the challenge of obtaining wines with reduced alcohols levels, a new trend in consumer demands. It would therefore be interesting to understand Saccharomyces cerevisiae physiology during the fermentation of must with these altered characteristics. The present study aims to determine the distribution of metabolic fluxes during the yeast exponential growth phase, when both carbon and nitrogen sources are in excess, using continuous cultures. Two different sugar concentrations were studied under two different winemaking temperature conditions. Although consumption and production rates for key metabolites were severely affected by the different experimental conditions studied, the general distribution of fluxes in central carbon metabolism was basically conserved in all cases. It was also observed that temperature and sugar concentration exerted a higher effect on the pentose phosphate pathway and glycerol formation than on glycolysis and ethanol production. Additionally, nitrogen uptake, both quantitatively and qualitatively, was strongly influenced by environmental conditions. This work provides the most complete stoichiometric model used for Metabolic Flux Analysis of S. cerevisiae in wine fermentations employed so far, including the synthesis and release of relevant aroma compounds and could be used in the design of optimal nitrogen supplementation of wine fermentations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号