首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron is essential for the growth of nearly all microorganisms yet iron is only sparingly soluble near the neutral pH, aerobic conditions in which many microorganisms grow. The pH of ocean water is even higher, thereby further lowering the concentration of dissolved ferric ion. To compound the problem of availability, the total iron concentration is surprisingly low in surface ocean water, yet nevertheless, marine microorganisms still require iron for growth. Like terrestrial bacterial, bacteria isolated from open ocean water often produce siderophores, which are low molecular weight chelating ligands that facilitate the microbial acquisition of iron. The present review summarizes the structures of siderophores produced by marine bacteria and the emerging characteristics that distinguish marine siderophores.  相似文献   

2.
The fungus Cunninghamella blakesleeana NCIM 687, industrially recognized for progesterone biotransformation, was found to produce two siderophores at low stress of iron (upto 40 M iron in the growth medium). HPLC analysis and direct comparison with authentic samples characterized one of them as ferrichrysin (hydroxamate type) and other probably as a member of the coprogen family of siderophores.  相似文献   

3.
铁是影响初级生产力的主要限制性因子之一,其在海洋环境中的分布具有空间异质性。由于铁在海洋中主要以溶解度较低、易沉降的三价态(Fe3+)形式存在,因此溶解铁对海洋生物而言是一种稀缺资源。为了获得生命代谢所需的铁,微生物进化出多种铁摄取的策略来满足需求,其中铁载体(siderophores)是最典型的代表。铁载体作为重要的代谢辅因子,除了铁循环以外,也强烈影响着其他元素的循环。基于铁载体的重要性,深入理解它的合成、转运和调控机制是系统认识海洋铁循环和生命过程的重要环节之一。本文以近20年的研究为重点,总结了铁载体的最新进展,包括其类型、合成/运输系统、获取途径、调控机制以及铁载体的功能与应用,旨在更好地认识铁载体在海洋微生物生态学过程中的作用,加深对海洋铁循环动力学机制的理解。  相似文献   

4.
Concentrations up to 2 and 12 nM of the hydroxamate siderophores ferrichrome and ferricrocin, respectively, were identified in soil solutions of podzolic forest soils at four sites in both northern and southern Sweden. No ferrichrysin was detected. As with the dissolved organic carbon and low molecular mass organic acids, the highest concentrations of the siderophores were found in the upper layers i.e. the mor layer, the eluvial and upper illuvial horizons. At the southern sites, the concentrations of ferrichrome and ferricrocin were both of similar magnitude and did not differ between the two sites. In contrast, soil solutions at the two northern sites contained more ferricrocin than ferrichrome; the ferricrocin concentrations were also higher at the northern sites than at the southern sites. Analyses were performed by high performance liquid chromatography with a porous graphitic carbon column on which ferrichrome, ferricrocin and ferrichrysin were separated. Detection by electrospray ionization mass spectrometry (ESI-MS) combined with on-line sample pre-concentration, by means of column-switching, enabled detection limits of 0.1–0.2 nM for ferrichrome, ferrichrysin and ferricrocin. The structural identities of the siderophores were further verified by MS/MS fragmentation. Fragmentation of ferrichrome, ferricrocin and ferrichrysin occurred mainly via peptide cleavage. The most intense fragments were typified by the loss of one of the three iron(III) chelating hydroxamate residues, i.e N5-acyl-N5-hydroxy ornithine.  相似文献   

5.
Siebner-Freibach  H.  Hadar  Y.  Chen  Y. 《Plant and Soil》2003,251(1):115-124
Previous investigations have shown significant sorption of siderophores to the solid phase in soils, and clay surfaces in particular. The ability of plants to utilize Fe from this reservoir is therefore of great interest. This research focused on the ability of the hydroxamate siderophore ferrioxamine B (FOB) sorbed to Ca-montmorillonite – prevailing in soils – to supply Fe to peanuts (Arachis hypogeae L.). Remediation of Fe deficiency by the sorbed siderophore was found to be similar to that by the free (unsorbed) form. The concentration needed to achieve complete remediation of chlorosis was one order of magnitude higher than that of the optimal FeEDDHA [Fe-ethylenediamine-di(o-hydroxyphenylacetic acid)]. Using dialysis tubes, it was shown that Fe uptake from the sorbed siderophore is executed mainly via long-range pathways and does not require close proximity to the plant roots. It was hypothesized that the process involves chelating agents in solution, which transport the Fe from the immobilized siderophore and enable its uptake by the plant. Under calcareous conditions, the ability of the sorbed FOB to supply Fe was significantly impaired, probably as a result of inactivation of the bridging mechanism. Various possible shuttle compounds were examined. EDDHA was found to be a very efficient shuttle compound, which caused complete remediation of Fe deficiency, even under very harsh calcareous conditions. The findings support our hypothesis and imply the effectiveness of a ligand-exchange mechanism to strategy I plants (commonly attributed to strategy II plants). We suggest that the secretion of substances with chelating abilities, which is usually considered a less effective means of Fe acquisition mechanism, takes on more importance in this context.  相似文献   

6.
This research investigated the potential role of siderophores in aerobic microbial Fe acquisition from natural organic matter (NOM; XAD-8 isolate and reverse osmosis concentrate pre- and post-Chelex® treatment) through the use of a siderophore-producing Pseudomonas mendocina wild type (WT) bacterium and an engineered mutant (Mt) that was incapable of siderophore production. NOM had complex effects on microbial growth under Fe-limited conditions as measured by optical density, most likely because of the presence of other toxic (trace) metals such as Al, NOM binding interference with additional trace metal nutrients, and/or biofilm development. However, a bioassay for cellular Fe status showed that both WT and Mt readily acquired Fe naturally associated with NOM. Thus, while siderophores may be useful for Fe acquisition from NOM by P. mendocina, they do not appear to be essential for this process.  相似文献   

7.
利用高效液相凝胶色谱法对荧光假单胞菌所产铁载体进行了分析,结果显示高产铁载体P.fluorescens sp-f与P.fluorescens AB92001均可分泌3种铁载体,其中具有荧光的pyoverdine容易被细胞外的铁抑制。高效液相凝胶色谱法适用于假单胞菌铁载体的分析检测。  相似文献   

8.
In this study, sulfonated graphene oxide (SGO) was synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). It was used to make Mb–SGO–Nafion composite films by coating myoglobin (Mb) on the glassy carbon electrodes (GCE). Positions of the Soret absorption bands suggested that Mb retained its native conformation in the films. Mb–SGO–Nafion film modified electrode showed a pair of well-defined and nearly reversible cyclic voltammetry peaks at around −0.39 V versus saturated calomel electrode (SCE) in pH 7.0 buffers, characteristic of heme Fe(III)/Fe(II) redox couples. Electrochemical parameters such as electron transfer rate constant (ks) and formal potential (Eo′) were estimated by fitting the data of square-wave voltammetry with nonlinear regression analysis. Experimental data demonstrated that the electron transfer between Mb and electrode was greatly facilitated and showed good electrocatalytic properties toward various substrates, such as H2O2 and NaNO2, with significant lowering of reduction overpotential.  相似文献   

9.
10.
Willis RM  Wahlen BD  Seefeldt LC  Barney BM 《Biochemistry》2011,50(48):10550-10558
Fatty alcohols are of interest as a renewable feedstock to replace petroleum compounds used as fuels, in cosmetics, and in pharmaceuticals. One biological approach to the production of fatty alcohols involves the sequential action of two bacterial enzymes: (i) reduction of a fatty acyl-CoA to the corresponding fatty aldehyde catalyzed by a fatty acyl-CoA reductase, followed by (ii) reduction of the fatty aldehyde to the corresponding fatty alcohol catalyzed by a fatty aldehyde reductase. Here, we identify, purify, and characterize a novel bacterial enzyme from Marinobacter aquaeolei VT8 that catalyzes the reduction of fatty acyl-CoA by four electrons to the corresponding fatty alcohol, eliminating the need for a separate fatty aldehyde reductase. The enzyme is shown to reduce fatty acyl-CoAs ranging from C8:0 to C20:4 to the corresponding fatty alcohols, with the highest rate found for palmitoyl-CoA (C16:0). The dependence of the rate of reduction of palmitoyl-CoA on substrate concentration was cooperative, with an apparent K(m) ~ 4 μM, V(max) ~ 200 nmol NADP(+) min(-1) (mg protein)(-1), and n ~ 3. The enzyme also reduced a range of fatty aldehydes with decanal having the highest activity. The substrate cis-11-hexadecenal was reduced in a cooperative manner with an apparent K(m) of ~50 μM, V(max) of ~8 μmol NADP(+) min(-1) (mg protein)(-1), and n ~ 2.  相似文献   

11.
Aims: As a toxic metal, cadmium (Cd) affects microbial and plant metabolic processes, thereby potentially reducing the efficiency of microbe or plant‐mediated remediation of Cd‐polluted soil. The role of siderophores produced by Streptomyces tendae F4 in the uptake of Cd by bacteria and plant was investigated to gain insight into the influence of siderophores on Cd availability to micro‐organisms and plants. Methods and Results: The bacterium was cultured under siderophore‐inducing conditions in the presence of Cd. The kinetics of siderophore production and identification of the siderophores and their metal‐bound forms were performed using electrospray ionization mass spectrometry. Inductively coupled plasma spectroscopy was used to measure iron (Fe) and Cd contents in the bacterium and in sunflower plant grown in Cd‐amended soil. Siderophores significantly reduced the Cd uptake by the bacterium, while supplying it with iron. Bacterial culture filtrates containing three hydroxamate siderophores secreted by S. tendae F4 significantly promoted plant growth and enhanced uptake of Cd and Fe by the plant, relative to the control. Furthermore, application of siderophores caused slightly more Cd, but similar Fe uptake, compared with EDTA. Bioinoculation with Streptomyces caused a dramatic increase in plant Fe content, but resulted only in slight increase in plant Cd content. Conclusion: It is concluded that siderophores can help reduce toxic metal uptake in bacteria, while simultaneously facilitating the uptake of such metals by plants. Also, EDTA is not superior to hydroxamate siderophores in terms of metal solubilization for plant uptake. Significance and Impact of the Study: The study showed that microbial processes could indirectly influence the availability and amount of toxic metals taken up from the rhizosphere of plants. Furthermore, although EDTA is used for chelator‐enhanced phytoremediation, microbial siderophores would be ideal for this purpose.  相似文献   

12.
一株细菌儿茶酚型铁载体分泌的影响因素研究   总被引:3,自引:0,他引:3  
采用两种新的高分辨率的薄层层析(TLC)方法对一株土壤细菌S1在3种不同培养基上产生的儿茶酚型铁载体进行了分析。结果表明:不同培养基对铁载体的产生影响较大,在3种不同的培养基上菌株S1产生不同的儿茶酚铁载体,其中仅在1种培养基上S1能够分泌2,3-二羟基苯甲酸(2,3-DHBA)。同时,还分析了Al^3+对S1分泌的儿茶酚型铁载体总量的影响,结果表明:Al^3+能显著刺激铁载体的分泌,并且能抵消一定浓度范围内的Fe^2+对铁载体分泌的抑制作用,KMB培养液中产生的4种儿茶酚铁载体中有3种和Al^3+有较强的螯合力.  相似文献   

13.
The iron binding properties and antioxidant activities of compounds with hydroxy-keto binding sites, 3-hydroxychromone, 5-hydroxychromone, and sulfonated morin were investigated. For these compounds, prevention of iron-mediated DNA damage and kinetics of FeII oxidation were studied in aqueous solutions close to physiological pH (pH 6). 3-Hydroxychromone and sulfonated morin inhibit iron-mediated DNA damage at lower concentrations than 5-hydroxychromone. All three compounds bind iron, but 3-hydroxychromone and sulfonated morin promote FeII oxidation much faster than 5-hydroxychromone. These results indicate that DNA damage inhibition by flavonols with competing hydroxy-keto binding sites is primarily due to iron binding at the 3-hydroxy-keto site. Iron oxidation rate also plays a significant role in antioxidant activity. In addition to iron binding and oxidation, reactive oxygen species scavenging occurs at high concentrations for the hydroxychromones. This study emphasizes the importance of iron binding in polyphenol antioxidant behavior and provides insights into the iron binding antioxidant activity of similar flavonols such as quercetin and myricetin.  相似文献   

14.
Summary A total of 94 actinomycete strains were isolated from the marine sediments of a shrimp farm, 87.2% belonged to the genus Streptomyces, others were Micromonospora spp. Fifty-one percent of the actinomycete strains showed activity against the pathogenic Vibrio spp. strains. Thirty-eight percent of marine Streptomyces strains produced siderophores on chrome azurol S (CAS) agar plates. Seven strains of Streptomyces were found to produce siderophores and to inhibit the growth of Vibrio spp. in vitro. Two of them belonged to the Cinerogriseus group, the most frequently isolated group of Streptomyces. The results showed that streptomycetes could be a promising source for biocontrol agents in aquaculture.  相似文献   

15.
Pyrite and chalcopyrite are the two most abundant sulphides observed in seafloor hydrothermal systems. The alteration of sulphides is primarily controlled by reactions on the mineral surfaces and Fe(II)-oxidizing bacteria closely related to Marinobacter aquaeolei are thought to play a major role in iron oxidation under circumneutral conditions. We assessed the influence of M. aquaeolei on the electroactivity of FeS2 and CuFeS2 minerals under circumneutral conditions. Samples for the experiments were obtained from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound (field), 26 °N on the Mid-Atlantic Ridge and Ireland (CuFeS2)]. The experimental approach relied on voltammetry and scanning electrochemical microscopy (SECM). The tip-substrate voltammetry mode of SECM was found to be particularly suitable to probe the major redox processes of those minerals and permitted an assessment of the microorganisms influence on these processes. M. aquaeolei was found to enhance FeS2 and CuFeS2 oxidation, particularly under suboxic conditions. M. aquaeolei also significantly enhances Fe dissolution under oxic circumneutral conditions but suppresses the dissolution of most other elements compared to abiotic conditions. Under abiotic conditions the surfaces of the minerals are rapidly passivated when oxygen is available; while addition of M. aquaeolei significantly hinders the passivation of chalcopyrite, no passivation of the pyrite surface is observed. This study demonstrates the ability of Marinobacter aquaeolei to enhance oxidation of FeS2 and CuFeS2 under circumneutral conditions and supports the involvement of Marinobacter species in weathering reactions on the seafloor and the control of the ultimate fate of sulphide deposits.  相似文献   

16.
Summary Plasma membrane NADH-oxidase of mammalian cells is usually assayed biochemically in isolated plasma membranes by measuring its ability to oxidise NADH or to reduce oxygen to water. Lack of a convenient cellular assay has greatly limited the study of NADH-oxidase, the physiological significance of which remains uncertain. Recently, we demonstrated that the novel cell-impermeative sulfonated tetrazolium salt WST-1 (2-[4-iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H-tetrazolium, monosodium salt), used in conjunction with an intermediate electron acceptor, was reduced extracellularly suggesting involvement of a component of the trans-plasma membrane electron transport system in WST-1 reduction. In this study we provide evidence that WST-1 is reduced at the external surface of the plasma membrane by an NADH-oxidase, and that reduction is primarily mediated by superoxide. Thus, WST-1 reduction was extensively inhibited by superoxide dismutase and by the potent NADH-oxidase inhibitor resiniferatoxin. Dihydrocapsaicin and capsaicin which are less potent inhibitors of NADH-oxidase also inhibited WST-1 reduction, but the impermeative SH-blocking reagentpara-chloromercuriphenylsulfonic acid and trypsin, both of which are known to inhibit NADH-ferricyanide reductase but not NADH oxidase, had little effect on WST-1 reduction. Human peripheral blood neutrophils activated by phorbol myristate acetate efficiently reduced WST-1. This reduction was inhibited by 95% by superoxide dismutase but was unaffected by resiniferatoxin indicating a distinct mechanism of reduction by neutrophil NADPH-oxidase. Metabolic inhibitors were used to investigate putative involvement of cytosolic NADH in WST-1 reduction. Mitochondrial inhibitors such as cyanide and thenoyltrifluoroacetone, and to a lesser extent azide and rotenone, stimulated WST-1 reduction by Jurkat cells whereas inhibitors of glucose uptake and glycolysis were inhibitory. These results are explained by respiratory inhibitors having a sparing effect on cytosolic NADH levels and by glycolytic inhibitors lowering NADH. We conclude that WST-1 is reduced extracellularly by plasma membrane NADH-oxidase by a mechanism involving superoxide production. WST-1 is also efficiently reduced by the plasma membrane NADPH-oxidase of activated neutrophils.Abbreviations WST-1 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt - MTT 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide - XTT 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-carboxanilide-2H-tetrazolium, monosodium salt - MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-car-boxymemoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt - TTFA thenoyltrifluoroacetone - pCMBS p-chloromercuriphenylsul-fonic acid - SOD Superoxide dismutase - PMOR plasma membrane - NADH oxidoreductase - PMS phenazine methosulfate - PMA phorbol myristate acetate  相似文献   

17.
The complexation of the sodium salt of sulfonated morin (H5SM) with Fe2+ was studied by potentiometric titration as was its deprotonation. Only four of the five hydroxy groups were deprotonated under the conditions employed. The associated pKa values are 3.80, 7.47, 9.24 and 11.48. Analysis of the titration data suggests formation of (H3SM)Fe, (H2SM)Fe2−, (HSM)Fe3− and (HSM)2Fe8−. Log β values (based on HSM5− as the ligand species) are 24.8, 16.1, 7.1 and 11.6, respectively. Theoretical calculations predict that the 7-hydroxy group is deprotonated first followed closely by the 3-hydroxy position. Deprotonation of the 2′-hydroxy group results in proton migration from the 3-hydroxy oxygen atom. These calculations along with previous results suggest that chelation of the metal ion likely occurs at the 3-hydroxy-4-keto site.  相似文献   

18.
Microbial invasions can compromise ecosystem services and spur dysbiosis and disease in hosts. Nevertheless, the mechanisms determining invasion outcomes often remain unclear. Here, we examine the role of iron-scavenging siderophores in driving invasions of Pseudomonas aeruginosa into resident communities of environmental pseudomonads. Siderophores can be ‘public goods’ by delivering iron to individuals possessing matching receptors; but they can also be ‘public bads’ by withholding iron from competitors lacking these receptors. Accordingly, siderophores should either promote or impede invasion, depending on their effects on invader and resident growth. Using supernatant feeding and invasion assays, we show that invasion success indeed increased when the invader could use its siderophores to inhibit (public bad) rather than stimulate (public good) resident growth. Conversely, invasion success decreased the more the invader was inhibited by the residents’ siderophores. Our findings identify siderophores as a major driver of invasion dynamics in bacterial communities under iron-limited conditions.  相似文献   

19.
Five sulfonated compounds, namely 4-gingesulfonic acid and shogasulfonic acids A, B, C and D, were isolated together with seven known compounds including 6-gingesulfonic acid from Zingiberis rhizome (Japanese name: Shokyo) made out of ginger. Their structures were characterized by means of spectroscopic analysis.  相似文献   

20.
In this study, a bioanode was developed by using layer-by-layer (LBL) assembly of sulfonated graphene (SG)/ferritin (Frt)/glucose oxidase (GOx). The SG/Frt biocomposite was used as an electron transfer elevator and mediator, respectively. Glucose oxidase (GOx) from Aspergillus niger was applied as a glucose oxidation biocatalyst. The electrocatalytic oxidation of glucose using GOx modified electrode increases with an increase in the concentration of glucose in the range of 10–50 mM. The electrochemical measurements of the electrode was carried out by using cyclic voltammetry (CV) at different scan rates (20–100 mV s−1) in 30 mM of glucose solution prepared in 0.3 M potassium ferrocyanide (K4Fe(CN)6) and linear sweep voltammetry (LSV). A saturation current density of 50 ± 2 mA cm−2 at a scan rate of 100 mV s−1 for the oxidation of 30 Mm glucose is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号