首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficiency of translation of alfalfa mosaic virus (AMV) RNA 4, barley alpha-amylase (B alpha A) mRNA, and two chimeric mRNAs, AMV 4-B alpha A and B alpha A-AMV 4 (in which the 5' leader sequences of the two mRNAs were interchanged), was measured in an S30 extract from wheat germ and a fractionated system from wheat germ in which translation could be made dependent upon initiation factor (eIF) 3, 4A, 4F, or 4G. In the S30 system, AMV RNA 4 and the chimeric mRNA AMV 4-B alpha A are translated much more efficiently than B alpha A mRNA and the chimeric mRNA B alpha A-AMV 4. When the S30 system was supplemented with high amounts of purified eIF-3, eIF-4A, eIF-4F, and eIF-4G, B alpha A and B alpha A-AMV 4 mRNAs were translated as efficiently as AMV RNA 4 and AMV 4-B alpha A mRNA. These findings indicated that the mRNAs containing the B alpha A leader sequence required higher amounts of one or more of the initiation factors (eIF-3, eIF-4A, eIF-4F, and eIF-4G) for efficient translation. Determination of the amounts of the initiation factors required for translation in the fractionated system showed that AMV RNA 4 required 2-4-fold lower amounts of eIF-3, eIF-4A, eIF-4F, and eIF-4G than did B alpha A mRNA. Replacement of the B alpha A leader sequence with that of AMV RNA 4 decreased the amounts of eIF-4A, eIF-4G, and eIF-3 required, but did not affect the amount of eIF-4F required. Replacement of the AMV RNA 4 leader sequence with that of B alpha A mRNA increased the amounts of eIF-4F, eIF-4G, and eIF-3 required, but did not affect the amount of eIF-4A required. These data strongly suggest that the amounts of the factors required are affected not only by the 5' leader itself but also by interactions between the 5' leader and a region(s) of the mRNA 3' to the initiation codon.  相似文献   

2.
Cytoplasmic polyadenylation controls the translation of several maternal mRNAs during Xenopus oocyte maturation and requires two sequences in the 3' untranslated region (UTR), the U-rich cytoplasmic polyadenylation element (CPE), and the hexanucleotide AAUAAA. c-mos mRNA is polyadenylated and translated soon after the induction of maturation, and this protein kinase is necessary for a kinase cascade culminating in cdc2 kinase (MPF) activation. Other mRNAs are polyadenylated later, around the time of cdc2 kinase activation. To determine whether there is a hierarchy in the cytoplasmic polyadenylation of maternal mRNAs, we ablated c-mos mRNA with an antisense oligonucleotide. This prevented histone B4 and cyclin A1 and B1 mRNA polyadenylation, indicating that the polyadenylation of these mRNAs is Mos dependent. To investigate a possible role of cdc2 kinase in this process, cyclin B was injected into oocytes lacking c-mos mRNA. cdc2 kinase was activated, but mitogen-activated protein kinase was not. However, polyadenylation of cyclin B1 and histone B4 mRNA was still observed. This demonstrates that cdc2 kinase can induce cytoplasmic polyadenylation in the absence of Mos. Our data further indicate that although phosphorylation of the CPE binding protein may be involved in the induction of Mos-dependent polyadenylation, it is not required for Mos-independent polyadenylation. We characterized the elements conferring Mos dependence (Mos response elements) in the histone B4 and cyclin B1 mRNAs by mutational analysis. For histone B4 mRNA, the Mos response elements were in the coding region or 5' UTR. For cyclin B1 mRNA, the main Mos response element was a CPE that overlaps with the AAUAAA hexanucleotide. This indicates that the position of the CPE can have a profound influence on the timing of cytoplasmic polyadenylation.  相似文献   

3.
Messenger RNAs from the transforming region of bovine papilloma virus type I   总被引:52,自引:0,他引:52  
Messenger RNAs present in C127 mouse cells transformed by bovine papilloma virus type 1 (BPV-1) were studied by the S1 nuclease protection technique, Northern blotting, and electron microscopic heteroduplex analysis. The results revealed at least five classes of spliced mRNAs which we designate types 1 to 5. They had a common poly(A) addition site located at co-ordinate 53 and all mRNAs, except the type 3 mRNAs, contained an exon located between co-ordinates 41 and 53. In the type 1 mRNAs this exon was connected to a very short leader sequence located around co-ordinate 31. The type 2 mRNAs contained 220 to 400-nucleotide long leaders which were located approximately 1.5 X 10(3) base-pairs further upstream. Two different subclasses of type 2 molecules (2A and 2B) were identified and these had slightly different leaders. The type 4 mRNAs contained a bipartite leader, whereas the type 5 mRNAs carried an approximately 900-nucleotide long leader. The type 3 mRNAs consisted of a main exon located between co-ordinates 32 and 53, linked to the same leader as is present in the type 2A mRNAs. A cap site which presumably is utilized by the type 2A, type 3, type 4 and type 5 mRNAs was mapped at nucleotide 89 in the BPV-1 sequence. A putative cap site for the type 1 mRNAs was mapped at co-ordinate 31.  相似文献   

4.
(1) Poly(A)-containing mRNAs from total polysomal RNA of regenerating rat liver were incubated with [3H]leucine in a wheat germ cell-free system. Ribosomal proteins were purified as described previously [1], and with two-dimensional gel electrophoresis. The proteins on the gel except for less basic protein had appreciable radioactivity, whereas the surrounding areas had very low radioactivity. Acetic acid-soluble proteins labeled in this system were subjected to three-dimensional gel electrophoresis [2]. Except for L1 and L2 proteins, each of the ribosomal proteins, including less basic ones, showed a major radioactive peak coinciding with the protein band on SDS gel. Thus, the wheat germ cell-free system completely translates almost all mRNAs for individual ribosomal proteins. Equimolar amounts of almost all ribosomal proteins were synthesized in the presence of the saturating concentration of mRNAs. (2) Free polysomes from regenerating rat liver were fractionated into three sizes. Each class of polysomes was incubated with [3H]leucine. Ribosomal proteins with molecular weights of 40 000 to 21 000 were mainly synthesized by Fraction B (5-14 monomeric ribosomes), L1 and L2 [2] with 60 000 and 54 000, by Fraction C (greater than 15 monomeric ribosomes) and B, and ribosomal proteins smaller than 20 000 by Fractions A (less than pentamer) and B. (3) mRNAs from rat liver total polysomes were fractionated into seven classes by size and each was translated in the wheat germ extract. Ribosomal proteins with molecular weights of 54 000 to 30 000 were mainly synthesized by mRNAs of 12 to 14.5 S, ribosomal proteins of 35 000 to 22 000 by those of 9.5 to 12 S, ribosomal proteins of 22 000 to 13 000 by those of 7 to 9.5 S, and smaller ribosomal proteins by those smaller than 7 S. These results indicate that individual ribosomal proteins are synthesized by monocistronic mRNAs, the lengths of which are proportional to the molecular weights of the corresponding ribosomal proteins.  相似文献   

5.
6.
7.
8.
The expression of specific and non-specific rat liver messenger RNAs has been studied during 3'-methyl-4-(dimethylamino)azobenzene (3'-MeDAB) carcinogenesis, using cDNA probes complementary to mRNAs encoding aldolase A and B, L-type pyruvate kinase, albumin, alpha-fetoprotein, transferrin and an unidentified 2.7 X 10(3)-base mRNA. mRNAs specific for undifferentiated cells, such as those encoding aldolase A and the unidentified 2.7 X 10(3)-base species were re-expressed very early, being easily detectable at the 1st week of 3'-MeDAB treatment. They reached a maximum of expression at the 4th week. Simultaneously the levels of aldolase B and L-type pyruvate kinase mRNAs dramatically decreased as compared to controls, but remained responsive to induction by a high-carbohydrate diet. Albumin and transferrin mRNA levels were only slightly modified in the course of the carcinogenic diet. At the terminal stage of hepatocarcinogenesis, i.e. in malignant hepatoma cells, expression and inducibility of aldolase B and L-type pyruvate kinase mRNAs were similar to those in normal adult rats while mRNAs specific for undifferentiated or foetal stages were also synthesized. The very early changes in gene expression for aldolases A and B, L-type pyruvate kinase and the 2.7 X 10(3)-base mRNA species could indicate that carcinogenic diet modifies gene control mechanisms long before inducing hepatoma.  相似文献   

9.
A plasmid cDNA library was constructed using poly(A+) RNA isolated from the livers of rats treated with 3,5,3'-triiodothyronine (T3) and fed a high carbohydrate diet. This library was screened by differential colony hybridization with [32P]cDNA probes made from hypothyroid and hyperthyroid rat liver poly(A+) RNA to obtain clones representing T3-inducible mRNAs. Using plasmid cDNAs to 4 different T3-inducible mRNAs, we have studied by hybridization assay the responses of these mRNAs to different thyroidal steady states and to a high carbohydrate diet. The fold of induction (hypothyroid to hyperthyroid) varied from about 4.0 (mRNA 5-8D) to 13.2 (mRNA 4-12B). The linearity of response with regard to nuclear receptor occupancy was estimated by assessing the relative mRNA levels in a euthyroid state. Three of the mRNAs demonstrated nonlinear responses with the largest portion of the induction occurring in the euthyroid to hyperthyroid transition. An induction by the high carbohydrate diet was clearly seen for only one mRNA (5-8D) suggesting that these two pathways of induction are independent. In a study of the response kinetics of each mRNA to a nuclear receptor saturating dose of T3 in hypothyroid animals, an increase was seen within 4 h (the earliest time point examined) for one of the mRNAs. The other 3 mRNAs did not increase significantly until 8 h after the T3 dose. Northern analysis showed a single mRNA corresponding to each of these 4 clones with sizes ranging from about 1375 to 7600 bases. Two mRNAs (5-9E and 4-12B) were shown by hybrid-selected translation to code for proteins of molecular mass of about 27 and 46 kDa, respectively. The availability of several different cDNA probes to T3 responsive liver mRNAs should facilitate future studies on the mechanism of action of this hormone.  相似文献   

10.
Gene downregulation by antisense morpholino oligonucleotides (MOs) is achieved by either hybridization around the translation initiation codon or by targeting the splice donor site. In the present study, an antisense MO method is introduced that uses a 25-mer MO against a region at least 40-nt upstream from a poly(A) tail junction in the 3′-untranslated region (UTR) of maternal mRNA. The MO removed the poly(A) tail and blocked zebrafish cdk9 (zcdk9) mRNA translation, showing functional mimicry between miRNA and MO. A PCR-based assay revealed MO-mediated specific poly(A) tail removal of zebrafish mRNAs, including those for cyclin B1, cyclin B2 and tbp. The MO activity targeting cyclins A and B mRNAs was validated in unfertilized starfish oocytes and eggs. The MO removed the elongated poly(A) tail from maternal matured mRNA. This antisense method introduces a new application for the targeted downregulation of maternal mRNAs in animal oocytes, eggs and early embryos.  相似文献   

11.
Cholera toxin catalyzed ADP-ribosylation of Gs alpha, the stimulatory guanine nucleotide binding protein of the adenylyl cyclase system, is enhanced by approximately 20-kDa guanine nucleotide binding proteins, termed ADP-ribosylation factors or ARFs. ARF is an allosteric activator of the A1 catalytic protein of the toxin. Bovine ARF cDNA clones, ARF-1 isolated from adrenal (Sewell & Kahn, 1988) and ARF-2B from retina (Price et al., 1988), exhibit nucleotide and deduced amino acid sequences that are 80% and 96% identical, respectively, in the coding region. To determine tissue and species distribution of ARF-like mRNAs, bovine ARF-2B and human ARF-1 cDNAs and 30- or 48-base oligonucleotide probes that distinguish between ARF-1 and ARF-2B cDNAs in coding and 3'-untranslated regions were used for Northern analysis of poly(A+) RNA from different tissues and species. On the basis of hybridization with specific oligonucleotide probes, all bovine tissues contained mRNAs of 1.7 and 2.1 kb that were related to ARF-1 and ARF-2B, respectively. Northern analysis of brain poly(A+) RNA from different species with ARF-2B and ARF-1 cDNAs at low stringency demonstrated several bands varying in size from 0.9 to 3.7 kb. A 1.7-kb band consistently hybridized with an ARF-1 30-base coding-region probe but not with a probe for the 3'-untranslated region. Similar ARF-2B oligonucleotide probes did not hybridize with rat, mouse, rabbit, or human brain mRNA. Cleavage of ARF-2B cDNA with PvuII generated two fragments, one containing coding and the other 3'-noncoding region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
TOP mRNAs (contain a 5' terminal oligopyrimidine tract) are differentially translated in rapamycin-treated human B lymphocytes. Following rapamycin treatment, ribosomal protein (rp) and translation elongation factor TOP mRNAs were translationally repressed, whereas hnRNP A1 TOP mRNA was not. Poly(A)-binding protein (Pabp1) TOP mRNA was translationally repressed under all conditions tested. To investigate the mechanism involved, chimeric mRNAs containing the hnRNP A1 5' untranslated region (UTR) linked to the human growth hormone (hGH) reporter were analyzed. Wild-type hnRNP A1 construct mRNA behaved similarly to endogenous hnRNP A1, whereas a single mutation (guanosine to cytidine) within the TOP element resulted in increased translational regulation. These results suggest that TOP mRNA translation can be modulated and that all TOP mRNAs are not translated with equal efficiency.  相似文献   

13.
The COOH-terminal alpha-amidation of bioactive peptides is a 2-step process catalyzed by two separable enzymatic activities both derived from the peptidylglycine alpha-amidating monooxygenase (PAM) precursor. Two forms of PAM mRNA (rPAM-1 and -2), differing by the presence or absence of optional Exon A, were previously characterized; both encode precursors predicted to have an NH2-terminal signal sequence, an intragranular domain containing both enzymatic activities, and a single transmembrane domain followed by a short, cytoplasmic COOH-terminal domain. In this report, two novel types of PAM mRNA were identified in adult rat atrium. A cDNA of each type was sequenced, and the results indicate that rPAM-3 and -4 could be related to each other and to the previously characterized rat PAM cDNAs by alternative mRNA splicing. Deletion of a 258-nucleotide segment (optional Exon B) encoding the transmembrane domain from rPAM-3 and the presence of a novel 3'-exon in rPAM-4 mean that both rPAM-3 and -4 mRNAs encode precursor proteins that have an NH2-terminal signal peptide but lack a transmembrane domain. The rPAM-4 precursor protein lacks the region of the PAM precursor catalyzing the second step in the alpha-amidation reaction. Low levels of rPAM-3 and -4 type mRNA were detected in atrium. Utilizing the polymerase chain reaction, two major patterns of distribution of forms of PAM mRNA were found. In the heart and central nervous system, PAM mRNAs both containing and lacking optional Exon A were prevalent and almost all of the PAM mRNAs detected contained optional Exon B. In the pituitary and submaxillary glands, PAM mRNAs lacking optimal Exon A were prevalent, as were PAM mRNAs lacking all or part of optional Exon B. Since the distribution of PAM activity between soluble and membrane fractions is tissue-specific and developmentally regulated and since rPAM-4 lacks an enzymatic portion of the PAM precursor, the tissue-specific expression of these forms of rat PAM mRNA is expected to be of functional significance.  相似文献   

14.
15.
16.
17.
18.
A quantitative RT-PCR assay has been developed that is able to measure the mRNA content of the major human CYPs (1A1, 1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5). The technique is highly specific, reproducible, rapid, and sensitive enough to quantitate low and high abundant mRNAs. The PCR primers were selected to specifically match each CYP mRNA, to have a very close annealing temperature, and to render PCR products of similar sizes. The PCR conditions were designed to allow the simultaneous measurement of the various human liver CYPs in a single run. To achieve precise and reproducible quantitation of each cytochrome mRNA, a external standard (luciferase mRNA) is added to the probes to monitor the efficiency of the RT step. The degree of amplification is estimated using appropriate cDNA standards and quantitation of the amplified products by fluorescent measurement. This assay can be used to quantify the most relevant CYPs in human liver and cultured human hepatocytes. CYPs 3A4 and 2E1 were the most abundant mRNAs in human liver (2.5 and 1.7 x 10(8) molecules/microgram of total RNA respectively), whereas 1A1 and 2D6 were the least abundant isoforms (1.2 and 2.1 x 10(6) molecules/microgram of total RNA). A similar pattern was also found in short-term cultured human hepatocytes. This technique is also suitable for assessing CYP mRNA induction by xenobiotics. Cells exposed to 3-methylcholanthrene showed a characteristic increased expression of CYP1A2 and 1A1 mRNAs. Upon incubation with phenobarbital and rifampin (rifampicin), human hepatocytes increased CYP 2B6, 3A4, and 3A5 among others.  相似文献   

19.
Cytoplasmic polyadenylation is a key mechanism controlling maternal mRNA translation in early development. In most cases, mRNAs that undergo poly(A) elongation are translationally activated; those that undergo poly(A) shortening are deactivated. Poly(A) elongation is regulated by two cis-acting sequences in the 3'-untranslated region (UTR) of responding mRNAs, the polyadenylation hexanucleotide AAUAAA and the U-rich cytoplasmic polyadenylation element (CPE). Previously, we cloned and characterized the Xenopus oocyte CPE binding protein (CPEB), showing that it was essential for the cytoplasmic polyadenylation of B4 RNA. Here, we show that CPEB also binds the CPEs of G10, c-mos, cdk2, cyclins A1, B1 and B2 mRNAs. We find that CPEB is necessary for polyadenylation of these RNAs in egg extracts, suggesting that this protein is required for polyadenylation of most RNAs during oocyte maturation. Our data demonstrate that the complex timing and extent of polyadenylation are partially controlled by CPEB binding to multiple target sites in the 3' UTRs of responsive mRNAs. Finally, injection of CPEB antibody into oocytes not only inhibits polyadenylation in vivo, but also blocks progesterone-induced maturation. This is due to inhibition of polyadenylation and translation of c-mos mRNA, suggesting that CPEB is critical for early development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号